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Abstract

The true missing data mechanism is never known in practice. We present a method for generating

multiple imputations for binary variables that formally incorporates missing data mechanism

uncertainty. Imputations are generated from a distribution of imputation models rather than a

single model, with the distribution reflecting subjective notions of missing data mechanism

uncertainty. Parameter estimates and standard errors are obtained using rules for nested multiple

imputation. Using simulation, we investigate the impact of missing data mechanism uncertainty on

post-imputation inferences and show that incorporating this uncertainty can increase the coverage

of parameter estimates. We apply our method to a longitudinal smoking cessation trial where

nonignorably missing data were a concern. Our method provides a simple approach for

formalizing subjective notions regarding nonresponse and can be implemented using existing

imputation software.
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1 Introduction

Many intervention trials have binary outcome variables that are subject to missingness. For

example, in many smoking cessation trials, the primary outcome is a binary variable

indicating whether or not the participant is still smoking at some follow-up time point. In

cancer screening promotion trials, the outcome is often receipt of a cancer screening

procedure such as a mammogram during follow-up among participants non-adherent to

screening guidelines at baseline. A widely used strategy for handling missing values in such

studies is single imputation: in smoking cessation studies, it is assumed that all non-

respondents are smoking [1]; similarly, in cancer screening promotion trials, it is assumed
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that all non-respondents failed to obtain screening [2]. After singly imputing the missing

outcomes, analyses proceed as if all data were observed.

Many authors have discussed the drawbacks to the missing = smoking and other single

imputation assumptions [1, 3]. In addition to being a very strong assumption regarding the

nature of the missing data, this approach treats missing values as if they were observed and

thus fails to account for uncertainty due to missingness. When one treatment group has more

missing values than another, missing = smoking can severely bias the treatment effect

estimate. Despite these limitations, the approach remains in use. One reason for its

continued use is the belief among researchers that participants in smoking cessation trials

whose values are missing are more likely to be smokers than participants who are observed.

In the missing data literature, this phenomenon—when the probability of missingness

depends on unobserved information like the missing value itself—is referred to as

nonignorably missing data. Ignorably missing data occur when the probability that a value is

missing does not depend on unobserved information [4].

In order to produce valid estimates in the presence of nonignorably missing data, analyses

must take into account the process that gave rise to the missing data, commonly referred to

as the missing data mechanism. In the context of a clinical trial, failure to take into account

the missing data mechanism may result in inferences that make a treatment appear more or

less effective. Failure to incorporate uncertainty regarding the missing data mechanism may

result in inferences that are overly precise given the amount of available information [5, 6].

Since a nonignorable missing data mechanism is involved with unobserved data, there is

little information available to correctly model this process. One approach is to perform a

sensitivity analysis, drawing inferences based on a variety of assumptions regarding the

missing data mechanism [7]. A full-data distribution is specified, then followed by an

examination of inferences across a range of values for one or more unidentified parameters

[7, 8]. When the missingness occurs on binary variables, these unidentified parameters can

take the form of odds ratios, expressing the odds of a nonrespondent experiencing the event

versus a respondent [3, 9, 10].

When a decision is required, a drawback of sensitivity analysis is that it produces a range of

answers rather than a single answer [8]. Several authors have proposed model-based

methods for obtaining a single inference which involve placing an informative prior

distribution on the unidentified parameters that characterize assumptions about the missing

data mechanism. Inferences are then drawn that combine a range of assumptions regarding

the missing data mechanism [7, 11].

An alternative approach to model-based methods for handling data with nonignorable

missingness is multiple imputation, where missing values are replaced with two or more

plausible values. Multiple imputation methods have several advantages over model-based

methods for analyzing data with missing values. These advantages include: (1) they allow

standard complete-data methods of analysis to be performed once the data have been

imputed; and (2) auxiliary variables that are not part of the analysis procedure can be

included in the imputation procedure to increase efficiency and reduce bias [4, 12, 13].

Siddique et al. Page 2

Stat Med. Author manuscript; available in PMC 2015 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Most methods for generating multiple imputations assume the missing data mechanism is

ignorable. Methods for multiple imputation with nonignorably missing data include those of

Carpenter et al. [14] who use a reweighting approach to investigate the influence of

departures from the ignorability assumption on parameter estimates. van Buuren et al. [15]

perform a sensitivity analysis with multiply imputed data using offsets to explore how robust

their inferences are to violations of the assumption of ignorability. Hedeker et al. [3]

describe a multiple imputation approach for nonignorably missing binary data from a

smoking cessation study. Imputations are generated by positing an odds ratio reflecting the

odds of smoking for nonrespondents versus respondents. A limitation of these approaches is

that they do not take into account uncertainty regarding the missing data mechanism.

Instead, they provide a range of inferences for various ignorability assumptions.

Recently, Siddique et al. [16] developed a multiple imputation approach for handling

continuous nonignorably missing data in which multiple imputations are generated from

many imputation models where each imputation model represents a different assumption

regarding the missing data mechanism. By using more than one imputation model, missing

data mechanism uncertainty is incorporated into final parameter estimates.

In this paper, we extend the approach of Siddique et al. [16] to the case of nonignorably

missing binary data. We generate our imputations using multiple models and then use

specialized combining rules that account for between-model variability to generate

inferences that take into account missing data mechanism uncertainty. Our goal is to develop

a multiple imputation framework analogous to model-based methods such as those of

Daniels and Hogan [7], Kaciroti et al. [10], and Rubin [17] that incorporate a range of

ignorability assumptions into one inference. Implementation of our methods is

straightforward using standard imputation software.

The outline for the rest of this paper is as follows. In Section 2 we describe a smoking

cessation trial that motivated this work. In Section 3 we describe methods for generating

multiple imputations for binary data from multiple models that take into account missing

data mechanism uncertainty. We also describe diagnostics that measure the amount of

missing data mechanism uncertainty that has been incorporated into the standard error of a

post-imputation parameter estimate. Section 4 presents the results of a simulation study. In

Section 5 we implement our approach using data from the smoking cessation trial. Section 6

provides implementation guidelines and a discussion.

Closely related to the concept of ignorability are the missing data mechanism taxonomies

“missing at random” (MAR) and “not missing at random” (NMAR). MAR requires that the

probability of missingness depends on observed values only, while ignorability includes the

additional assumption that the parameters that generate the data and the parameters

governing the missing data mechanism are distinct [4]. While distinctness of these two sets

of parameters cannot always be assumed, for the purposes of this paper we will use the

terms MAR and ignorable interchangeably and the terms NMAR and nonignorable

interchangeably.
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2 Motivation: A smoking cessation study

Our data come from a smoking cessation study described in Gruder et al. [18]. This three-

arm study evaluated the effectiveness of adding group-based treatment to an existing

smoking cessation intervention comprised of a television program and self-help manual.

Two types of group-based treatments were evaluated: one that included social support

(buddy training) and relapse prevention training, and one that was a general group

discussion of stopping smoking. The control condition used only the television and self-help

materials. Participants were smokers who had registered for the existing television-based

program (to receive the self-help materials) and who indicated an interest in attending

group-based meetings. Although participants were randomized to condition, only 50% of the

participants scheduled to attend a group session came to at least one meeting. Thus, for

analysis, the original report considered four ‘conditions’: the two group treatments, a ‘no

show’ group consisting of individuals who were randomized to a group treatment but never

showed up for any group meetings, and the no-contact control condition. Here, for

simplicity and exposition, we combine the controls and no-shows into one group and the two

active treatments into a second group. Hereafter, we refer to this first group as control and

the second as treatment.

Smoking outcomes were collected at four postintervention telephone interviews, the first of

which was conducted immediately postintervention and then 6, 12, and 24 months later. The

first postintervention interview assessed demographic characteristics, television viewing,

and manual use. Subjects were dichotomized as either daily users or less-than-daily users for

each of these two program media. Abstinence at the first assessment was defined as self-

report of no smoking for 3 days prior to the interview, as some subjects were called as soon

as 3 days after the quit day specified in the program. At six, 12, and 24 months, abstinence

was defined as self-report of no smoking for 7 days prior to the interview.

Table 1 lists the percent smoking and percentage of missing values by measurement wave

and treatment group. While there were apparent differences in rates of smoking between

groups at the end of the program, rates are very similar from 6 months onward.

Postintervention rates of missingness range from 4% to 28% and are higher in the control

group at every postintervention time point. Missing data were monotonically missing. Data

on race, television viewing, and manual use were complete. In the treatment group, 11% of

participants were black and television and manual use were 36% and 56%, respectively. In

the control group, 33% of participants were black and television and manual use were 19%

and 22%, respectively.

We focus our attention on the treatment differences in smoking at 24 months. Based on the

raw observed status data in Table 1, the odds of smoking in the treatment group at month 24

were lower than those in the control group: odds ratio=0.71; SE=0.18; 95% CI: (0.43, 1.17).

This result excludes over a quarter of the sample. Assuming that missing=smoking results in

an odds ratio=0.62; SE=0.15; 95% CI: (0.38, 1.01).

The complete-case analysis assumes missing smoking values are ignorably missing. An

underlying concern was whether missing values were nonginorably missing. Specifically,
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investigators believed that participants with missing values were more likely to be smokers

than participants with observed values, especially in the control group. The motivation for

the work described here was to develop imputation methods for handling missing binary

data that use all available information and take into account uncertainty in the ignorability

assumption in order to estimate the effect of treatment on smoking outcomes.

3 Methods

Our approach proceeds as follows. First, a distribution of imputation models is specified

where each model makes a different assumption regarding the missing data mechanism.

Then, nested multiple imputation is conducted by drawing M models from this distribution

of models and generating N multiple imputations from each of the M models resulting in M

× N complete data sets. The complete-data analysis method is applied to each of the M × N

complete data sets, and special nested imputation combining rules are used to obtain point

estimates and standard errors for parameters of interest. We also provide formulas for

quantifying rates of missing information.

3.1 Specification of the imputation model distribution

The first step in the process is to identify a distribution of models from which to sample.

Model choice will depend on subjective notions regarding the dissimilarity of observed and

missing values that the imputer wishes to formalize. Ideally, this external information is

elicited from experts or those who collected the data.

Rubin [19] notes the importance of using easily communicated models to generate multiple

imputations assuming nonignorability so that users of the completed data can make

judgments regarding the relative merits of the various inferences reached under different

nonresponse models. A simple transformation, due to Rubin [19, p. 203] for generating

nonignorable imputed values from ignorable imputed values for a continuous variable Yi is

(1)

For example, if k = 1.2 then the assumption is that, conditioning on other observed

information, missing values are 20% larger than observed values. In order to create a

distribution of nonignorable (and ignorable) models, Siddique et al. [16] replace the constant

multiplier k in Equation 1 with multiple draws from some distribution. When the imputer

believes that missing values tend to be larger than observed values then potential

distributions for k might be a Uniform (1, 3) or Normal (1.5, 1) distribution. By centering

the distribution of k around values equal to 1.0, one can generate imputations that are

centered around a missing at random mechanism but with additional uncertainty.

If Yi is binary, Equation 1 will generate implausible values. We instead propose the

following approach. Let πn̂onignr and π̂
ignr represent the probability of the event under

nonignorability and ignorability, respectively, and consider the odds ratio
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(2)

Thus k is the odds of the event for subjects with nonignorable missing data as compared to

the odds for subjects with ignorable missing data. Taking the logarithm of both sides and

rearranging, we obtain

(3)

Using this equation, we can calculate logit(π̂
ignr) under an MAR assumption from, for

example, a logistic regression model, then apply the multiplier k to obtain probabilities (after

applying the inverse logit transformation) assuming nonignorability. The probability π̂nonignr

is then used to generate binary imputed values assuming nonignorability. The multiplier k

encodes beliefs about the nonignorable missing data mechanism on an odds ratio scale. For

example, if k = 2, then the assumption is that, conditioning on other observed information,

the odds of the event are double for subjects with missing values as compared to subjects

with non-missing values. This approach, of expressing the difference between

nonrespondents and respondents in terms of an odds ratio is similar to that used by Hedeker

et al. [3], White et al. [9], and Kaciroti et al. [10]. A novel aspect of our method is that we

take into account both uncertainty in the missing values (via multiple imputation) and

uncertainty in the missing data mechanism (by drawing multiple values of k).

As with the multiplier described in Equation 1 above, multiple models can be generated by

drawing the multiplier in Equation 3 from some distribution; for example, a Normal or

Uniform distribution. If the imputer wants to generate imputations that are centered around a

missing at random mechanism but with additional uncertainty, they could specify a

distribution centered around log(1) for the multiplier. Note that as k → ∞, we obtain the

missing = smoking result. The multiplier k and its distribution are not estimable from the

observed data and must be specified by the imputer.

Daniels and Hogan [7] categorize the priors used in a sensitivity analysis as departures from

a MAR mechanism. They use the categories: MAR with no uncertainty, MAR with

uncertainty, NMAR with no uncertainty, and NMAR with uncertainty. Viewed in this

framework, the standard MAR assumption (MAR with no uncertainty) is simply one

mechanism across a continuum of mechanism specifications and is equivalent to using a

distribution with point mass at log(1) for the multiplier in Equation 3. Note that when we use

the term “imputation model uncertainty” we are referring to uncertainty in the missing data

mechanism as governed by uncertainty in the multiplier k.

3.2 Nested multiple imputation

Once the distribution of models has been specified, imputation proceeds in two stages. First

M models are drawn from the distribution of models. Then N multiple imputations for each

missing value are generated for each of the M models, resulting in M × N complete data sets.
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More specifically, let the complete data be denoted by Y = (Yobs, Ymis). For the first stage,

the imputation model ψ is drawn from its predictive distribution ψm ~ p(ψ) where m = 1, 2,

…, M. The second stage starts with each model ψm and draws N independent imputations

conditional on ψm,  where n = 1, 2, …, N.

Because the M × N nested multiple imputations are not independent draws from the same

posterior predictive distribution of Ymis, it is necessary to use nested multiple imputation

combining rules [20, 21] in order to take into account variability due to the multiple models

(for justification, see [16]). Nested multiple imputation combining rules are presented in the

Appendix.

3.3 Rates of missing information

Harel [21] derived rates of missing information for nested multiple imputation based on the

amount of missing information due to model uncertainty and missingness. These rates

include an overall rate of missing information γ, which can be partitioned into a between-

model rate of missing information γb, and a within-model rate of missing information γw.

Using quantities described in the Appendix, let Q̄ be the overall average of all M × N point

estimates, Ū, the overall average of the associated variance estimates, B, the between-model

variance, and W, the within-model variance. With no missing information (either due to

nonresponse or imputation model uncertainty), the variance of (Q − Q̄) reduces to Ū so that

the estimated overall rate of missing information is [21]

(4)

If the correct imputation model is known, then B, the between-model variance, is 0 and the

estimated rate of missing information due to nonresponse is

(5)

Roughly speaking, Equation 4 measures the fraction of total variance accounted for by

nonresponse and model uncertainty and Equation 5 measures the fraction of total variance

accounted for by nonresponse when the correct imputation model is known. See Harel [21]

for details. The estimated rate of missing information due to model uncertainty is then γ̂b = γ̂

− γ̂w.

In a multiple-model multiple imputation framework, Siddique et al. [16] use the ratio  to

measure the contribution of missing data mechanism uncertainty to the overall rate of

missing information. For example, a value of  equal to 0.5 would suggest that half of the

overall rate of missing information is due to mechanism uncertainty, the other half due to

missing values. We anticipate that most researchers would not want to exceed this value

unless they have very little confidence in their imputation model. Note that most imputation

procedures use one model and implicitly assume that  is equal to 0.
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In the next section we present simulations showing that including more than one imputation

model in an imputation procedure increases both γ̂b and  and increases the coverage of

parameter estimates versus procedures that use only one imputation model.

4 Simulation study

The goal of the simulation study was to better understand how different assumptions

regarding ignorability and mechanism uncertainty influence point estimates, their standard

errors, and the coverage and width of their nominal 95% confidence intervals. We examined

a scenario in which the treatment group data were MAR while the control group data were

NMAR. Such settings, in which the missing data mechanism differs across treatment arms,

can occur in practice, especially when contact time differs across arms, and represents a

situation in which severe bias in the treatment effect estimate could occur when assuming

MAR in both conditions. Longitudinal binary data with missing values were simulated

according to the following data generating model:

(6)

where yij is a continuous latent variable to be dichotomized, Timej is coded 0, 1, 2, 3 for four

timepoints, Trti is dummy-coded as 1 for treatment and 0 for control, and Dropi is dummy-

coded as 1 for subjects who dropped out of the study at any point and 0 for completers. The

regression coefficients were defined to be: β0 = log(0.3), β1 = log(1.5), β2 = log(2), β3 =

log(0.5) = −β2. Using this setup, the slopes of the treatment group dropouts and nondropouts

and the non-dropout control groups are equal (and take the value β1) while the dropout

control group has a steeper slope (equal to β1 + β2). Thus, while there is a difference in

slopes between the treatment and control groups, failing to take into account the missing

data mechanism will result in a treatment effect estimate biased towards zero due to the fact

that control subjects with higher values are more likely to be missing.

The random subject effect v0i was assumed normal with mean zero and variance π2/3 so that

the intra-class correlation was 0.5. The errors εij were assumed to follow a standard logistic

distribution. Binary data were generated by making simulated values equal to 1 when yij ≥ 0

and 0 otherwise. Thus, the expected percent experiencing the event in the treatment group

and the non-dropout controls at the four timepoints are 29.3, 34.8, 40.7, and 46.7. For the

control group dropouts, the expected percent are 29.3, 44.9, 60.9, and 74.2.

We used a sample size of 150 subjects in each group with 100 dropouts per group. We

generated nonignorable missing values on yij using the following rule: at time points 1, 2,

and 3, subjects in the dropout group dropped out with probabilities (1/3, 2/3, 1) so that the

overall proportions of missing values were 0.22, 0.52, and 0.67 for the three final

timepoints. Each treatment group was imputed separately so that imputed values depended

only on information from other cases in the same treatment arm.

Imputation of the simulated binary data using the multiplier approach of Section 3

proceeded as follows. We first generated 2 imputations for each missing value at time points

1, 2, and 3 using MICE [22] with a logistic regression imputation model [19, pp. 169–170]
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which assumes the missing data are MAR. The imputation model for each time point

conditioned on values from all other time points. Thus, for subject i at time j, our ignorable

imputation model is

where the notation yi,−j represents values of yi at all times other than time j.

Imputations were generated after 20 iterations through the Gibbs sampler as suggested by

van Buuren and Groothuis-Oudshoorn [22]. The fully conditional specifications method of

MICE has been shown to work well in many settings when data are nonignorably missing

[23]. To generate nonignorable imputations, we then re-imputed missing values again, this

time using Equation 3 with a multiplier drawn from one of the ignorablity/uncertainty

distributions described in Sections 4.1 and 4.2. We repeated this procedure 100 times to

generate 200 imputations from 100 imputation models. As in Siddique et al. [16], M = 100

imputation models and N = 2 imputations within each model were chosen so that the degrees

of freedom for the between-model variance M − 1 and the within-model variance M(N − 1)

were approximately equal. This allowed us to estimate between- and within-model variance

with equal precision which is necessary for stable measurements of the rates of missing

information [21].

We then analyzed the 200 imputed data sets using a logistic regression model to estimate the

log odds ratio of the treatment group experiencing the event versus controls at Timej = 3. We

focus our attention on this endpoint as it is the simplest analysis that still allows us to

examine how assumptions regarding ignorability and mechanism uncertainty influence our

inferences. Results across the 200 imputed data sets were combined using the nested

imputation combining rules described in the Appendix. One thousand replications for the

above scenario were simulated.

A MICE function for generating nonignorable imputed values using logistic regression

imputation is available from the first author. R code for combining nested multiple

imputation inferences and calculating rates of missing information is available online [24].

4.1 Ignorability assumptions

We explored the effect of imputing under four different ignorability assumptions which we

refer to as MAR, Weak NMAR, Strong NMAR, and Misspecified NMAR. We now discuss

each of these assumptions in turn:

1. Missing at Random (MAR): Under this assumption, we generate multiple

imputations assuming the data are missing at random. Specifically, we generate

imputations where the multiplier in Equation 3 is drawn from a Normal distribution

with a mean of log(1) (nonrespondents have the same odds of experiencing the

event as respondents).

2. Weak Not Missing at Random (Weak NMAR): Under this assumption, we generate

multiple imputations assuming the data are NMAR with nonrespondents somewhat
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different from respondents. Specifically, the multiplier in Equation 3 is drawn from

a Normal distribution with a mean of log(2) (nonrespondents have twice the odds

of experiencing the event as respondents).

3. Strong NMAR: Here we generate multiple imputations assuming that

nonrespondents are quite a bit different than respondents. Imputations are generated

using a multiplier distribution mean of log(3).

4. Misspecified NMAR: Here we generate multiple imputations assuming the data are

NMAR but that nonrespondents are less likely to experience the event than

respondents even though in truth the reverse is true. Imputations assuming

misspecified NMAR are generated using a multiplier drawn from a Normal

distribution with a mean of log(0.5) (nonrespondents have half the odds of

experiencing the event). We chose this assumption to evaluate whether

incorporating model uncertainty can increase coverage even when the imputer is

wrong about the nature of nonignorability.

4.2 Missing data mechanism uncertainty assumptions

In addition to generating imputations using the above ignorability assumptions, we also

generated imputations based on four different assumptions regarding how certain we were

about the missing data mechanism. When there is no mechanism uncertainty, all imputations

are generated from the same model. When there is mechanism uncertainty, then multiple

models are used. All models are centered around one of the ignorability assumptions in

Section 4.1. Uncertainty is then characterized by departures from the central model. The

four different uncertainty assumptions used to generate multiple models were no, mild,

moderate, and ample uncertainty. These assumptions are described below.

To determine the standard deviation of the multiplier distribution, we used the following

approach. Let kupper and klower be the range for the multiplier k in Equation 3 and assume

these values correspond to the endpoints of a 95% confidence interval of a normal

distribution. The equation for the standard deviation is then

(7)

Thus we specify the standard deviation of the multiplier distribution in terms of the ratio in

Equation 7.

1. No uncertainty: This is the assumption of most imputation schemes. One

imputation model is chosen and all imputations are generated from that one model.

In particular, the most common imputation approach is to assume the data are

MAR with no uncertainty. For the imputation approach described in Equation 3,

imputations with no mechanism uncertainty were generated by using the same

multiplier for all 100 imputation models.

2. Mild uncertainty: Here we assume that there is a small degree of uncertainty

regarding what is the right mechanism. By incorporating uncertainty, imputations
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are generated using multiple models. Specifically, values for the multiplier log(k) in

Equation 3 were drawn from a Normal distribution with a standard deviation based

on the ratio in Equation 7 being equal to 2.

3. Moderate uncertainty: Multiple models with moderate uncertainty were generated

by setting the ratio in Equation 7 equal to 3.

4. Ample uncertainty: The multiplier was drawn from a Normal distribution with a

standard deviation based on the ratio in Equation 7 being equal to 4.

With four ignorability and four uncertainty assumptions, we imputed data under a total of 16

scenarios. For each scenario, we evaluated the bias and RMSE of the post-multiple-

imputation treatment log odds at time 3 as well as the coverage rate and width of the

nominal 95% confidence interval. In addition, we calculated measures of missing

information: the overall estimated rate of missing information (γ̂ in Equation 4), the

estimated rate of missing information due to nonresponse (γ̂w in Equation 5), the estimated

rate of missing information due to mechanism uncertainty, γ̂b = γ̂ − γ̂w, and the estimated

contribution of mechanism uncertainty to the overall rate of missing information as

measured by the ratio .

Under the data simulation set up described by Equation 6, the treatment group data are MAR

while the control data are NMAR. We performed two sets of imputations for the missing

data. In the first set, we imputed the treatment group data assuming MAR with no

uncertainty for every scenario and only imputed the control data using the 16 different

scenarios (Table 2). The second set of simulations used the same ignorability and

uncertainty scenarios for both intervention groups (Table 3).

4.3 Simulation results

Focusing on MI inference for the log odds ratio, Table 2 provides the results of our

imputations under the 16 different ignorability/uncertainty scenarios for the control group

and a MAR with no uncertainty assumption for the treatment group using logistic regression

imputation and the transformation described in Equation 3. Beginning with the first row, we

see that assuming MAR with no mechanism uncertainty for the control group results in

estimates that are highly biased with a coverage rate of 59%. This result is not surprising as

the control data are nonignorably missing. Since we are assuming no mechanism

uncertainty, γ̂b, the estimated fraction of missing information due to mechanism uncertainty

is equal to 0 as is , the estimated contribution of mechanism uncertainty to the overall rate

of missing information.

Moving to the subsequent rows in Table 2 still assuming MAR, we see the effect of

increasing mechanism uncertainty on post-imputation parameter estimates. Both bias and

RMSE are the same as with no uncertainty, but now coverage increases as we increase the

amount of mechanism uncertainty in our imputation models. The mechanism here is clear—

by increasing the amount of uncertainty in our imputation models, we are now generating

imputations under a range of ignorability assumptions. This additional variability in the

imputed values translates to wider confidence intervals and hence greater coverage. Both γ̂b
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and  increase as the amount of mechanism uncertainty increases. As mechanism

uncertainty increases, it becomes a larger proportion of the overall rate of missing

information.

Since control group missing values in our simulation study were more likely to be events

than observed control group values, the weak and strong NMAR conditions result in smaller

bias than the imputations assuming the control data are MAR. As before, increasing the

amount of mechanism uncertainty does not change bias but increases coverage (by

increasing the width of the 95% confidence intervals) to the point that weak NMAR with

ample uncertainty achieves the nominal level. Under the strong NMAR assumption, bias is

small enough that there is no benefit to additional mechanism uncertainty in terms of better

coverage. As before, additional mechanism uncertainty is reflected in increasing values of γ̂b

and .

Finally, the last four rows of Table 2 present results when the missing data mechanism is

misspecified. Here, the missing data are imputed assuming that control group missing values

are less likely to be events than observed values (even after conditioning on observed

information) when the reverse is true. Not surprisingly, bias and RMSE are poor in this

situation, but by incorporating mechanism uncertainly into our imputations we are able to

build some robustness into our imputation model. With ample uncertainly, coverage is 24%,

an increase over the coverage rate of 14% which is the result of using the same

(misspecified) model for all imputations.

Table 3 presents simulation results when the assumption regarding the missing data

mechanism is the same for both the treatment and control groups despite the fact that the

treatment group missing data mechanism is MAR. As a result, the proportion experiencing

the event in both groups changes by the same amount and the resulting log odds ratio

remains the same across all 16 scenarios. A similar result was seen in Siddique et al. [16]

with continuous data. As in Table 2, increasing the amount of mechanism uncertainty has no

effect on bias or RMSE of the log odds ratio but widens the width of the 95% confidence

interval, increasing coverage and increasing the contribution of mechanism uncertainty (γ̂b)

to the overall rate of missing information. As before, increasing mechanism uncertainty also

provides a hedge against misspecification of the missing data mechanism.

In the scenarios in Tables 2 and 3 where there was no mechanism uncertainty, the rate of

missing information due to mechanism uncertainty was negative. As noted by Harel and

Stratton [25], this is possible due to the use of the method of moments for calculating the

rates of missing information. Following their recommendation, we set γ̂b and  equal to 0

when γ̂b was negative.

5 Application to a Smoking Cessation Study

We applied our methods to the smoking cessation data described in Section 2 by imputing

the missing smoking outcomes at each time point using the same approach and imputation

model distribution parameters as described in the simulation study. The focus of our

inference was the log odds of the treatment effect at 24 months. We chose an endpoint
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analysis as it is the simplest model which still allows us to focus on how assumptions

regarding the missing data mechanism affect inferences. Table 4 lists variables that were

used in imputation and analysis models and also indicates the percentage of missing values.

Each imputation model conditioned on all the variables listed in Table 4 and smoking

outcomes were imputed using a model that conditioned on smoking status at other time

points in order to make use of all available information. Let yij be the smoking status for

participant i at time j, j = 0, 1, 2, 3. Our ignorable imputation model for smoking status at a

given time point is

where yi,−j is the smoking status for participant i at all times other than time j. We analyzed

the 200 imputed data sets using a logistic regression model estimating month 24 smoking

status as a function of treatment group.

As with the simulation, each treatment group was imputed separately. We first assumed the

treatment data were MAR with no uncertainty and only the control group data were imputed

under different assumptions. We then performed another set of imputations where the

imputation model distribution parameters were the same in both intervention groups.

The Weak NMAR and Strong NMAR assumptions assume that participants with missing

values have greater odds of being smokers than respondents with the same covariates. The

term “Misspecified NMAR” is a misnomer in this setting because we do not actually know

the correct specification. We use the term only to be consistent with the simulation study.

For Misspecified NMAR, the assumption is that nonrespondents have lower odds of being

smokers than respondents.

Table 5 provides estimates, standard errors, confidence intervals, p-values, and rates of

missing information for the log odds ratio between the treatment and control groups at

month 24 by the 16 different ignorability/uncertainty scenarios assuming the treatment

group missing data are MAR with no uncertainty. Table 6 provides the same information

when making the same ignorability and uncertainty assumptions in both intervention groups.

Looking first at Table 5, we see that assumptions regarding ignorability and uncertainty

have an impact on parameter estimates and their associated standard errors. Starting with

those rows assuming MAR in the control group, the point estimate for the treatment log

odds changes very little for all four uncertainty assumptions. However, as we assume more

uncertainty, the standard errors increase. This same phenomenon was seen in the simulation

study. The additional mechanism uncertainty is also reflected in increasing values of γ̂b and

. These values are large under ample uncertainty, reflecting the fact that the ample

uncertainty assumption is relatively diffuse (i.e. the 95% confidence interval for the odds of

smoking for nonrespondents versus respondents ranges from 0.5 to 2) for these data.

As mentioned above, the Weak NMAR and Strong NMAR assumptions in Table 5 assume

that control nonrespondents have greater odds of being smokers than respondents even after
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conditioning on observed information. These assumptions have the effect of increasing the

rates of smoking in the control group as compared to the treatment group. Under an

assumption of “Strong NMAR” this difference is large enough (OR=0.6) to achieve

statistical significance. Under Strong NMAR with Ample uncertainty, the treatment effect is

no longer significant at the 0.05 level as a result of the increased standard error due to the

large amount of uncertainty incorporated into the imputations. This result underscores the

importance of making reasonable assumptions. As mentioned above, the Ample uncertainty

assumption is quite diffuse in this setting. As before, the values of γ̂b and  appear to

capture missing data mechanism uncertainty.

The “Misspecified NMAR” assumption assumes that control nonrespondents have lower

odds of being smokers than respondents and as a result, the log odds ratio is smaller here

than in any of the other scenarios.

Figure 1 is a contour plot displaying the p-values of the treatment effects in Table 5 [26].

Figure 1 shows the regions where the treatment effect was significant (dark gray),

marginally significant (light gray), or non-significant (white) according to a given pair of

multiplier means and standard deviations. The point plotted at (ln(1), ln(1)/4) corresponds to

a MAR with no uncertainty assumption. Figure 1 makes clear that the effect of the

intervention is only significant under the most extreme nonignorability scenarios—Strong

NMAR with moderate to no uncertainty.

Table 6 displays results for the log odds ratio between the treatment and control groups, this

time using the same ignorability and uncertainty assumptions in both intervention groups.

As in the simulation (Table 3) the point estimate is similar in every ignorability/uncertainty

scenario. For each ignorability assumption, the log odds of the control group changed by the

same magnitude as the log odds of the treatment group. As a result, their difference remains

somewhat constant at each assumption. However, incorporating mechanism uncertainty into

the imputations increases the standard error of these parameter estimates.

6 Discussion

We have described a novel method for generating multiple imputations for binary variables

in the presence of nonignorable nonresponse. By generating multiple imputations from

multiple models, our method allows the user to incorporate missing data mechanism

uncertainty into their parameter estimates. This is a useful approach when the missing data

mechanism is unknown, which is almost always the case.

As seen in both the simulation studies and the application to the smoking cessation data,

post-imputation inferences can be highly sensitive to the choice of the imputation model.

With the smoking data, imputation using our methods had a strong effect on the log odds

ratio when the treatment group missing data were assumed to be MAR but less of an effect

on the odds ratio when the same assumptions were made in both intervention groups. When

making the same assumptions in both intervention groups, differences in the odds ratio

across assumptions were due to the control group having more missing values so that the

odds of smoking in this group was more sensitive to nonignorability assumptions.
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A special case of our method is the missing = smoking assumption which is the result when

the multiplier k in Equation 3 approaches infinity. Practically speaking, for the smoking

cessation data, we obtained results similar to imputing missing = smoking when the

multiplier k was approximately equal to 1000 with no uncertainty. This highlights the strong

assumption of assuming missing = smoking (nonrespondents have 1000 times the odds of

being smokers as respondents) and suggests the use of less extreme assumptions.

The assumption that the treatment group missing data are MAR with no uncertainty while

the control group missing data are NMAR (Table 5) is perhaps unreasonable and was chosen

to demonstrate that our method allows for different assumptions to be made for each

treatment group and to highlight the potential for biased treatment effect estimates when the

missing data mechanism differs across conditions. A more realistic assumption might be that

the treatment group missing data are “Weak NMAR” while the control group missing data

are “Strong NMAR.” At the very least, if the treatment group data are assumed to be MAR,

some uncertainty should be attached to this ignorability assumption. The fact that the

treatment effect was significant only when making the perhaps unreasonable assumption of

MAR in the treatment group and Strong NMAR in the control group (and not significant in

all other scenarios) suggests that there is little evidence that the smoking cessation

intervention produced a significant treatment effect.

Equation 7 suggests an approach for eliciting expert opinion when choosing a distribution

for the multiplier k in Equation 3. First, ask the subject-matter expert to provide an upper

and lower bound for the multiplier. Then, assuming the multiplier is normally distributed,

set the multiplier distribution mean equal to the average of the lower and upper bounds, and

the standard deviation equal to the difference in bounds divided by 3.92. This assumes that

the range defined by the upper and lower bounds is a 95% confidence interval which may be

appropriate given the tendency of people to specify overly narrow confidence intervals [27].

A similar calculation can be used if assuming a uniform prior.

If the expert is more comfortable working with probabilities, success probabilities under

ignorability can be provided and then the probability of success or a risk ratio or risk

difference for nonrespondents could be elicited. These values could then be used to calculate

an odds ratio for use in Equation 3. See Paddock and Ebener [28] and White et al. [29] for

useful references on eliciting expert opinions regarding nonresponse.

We draw our multipliers from normal distributions but this is not required and an analyst

may choose any distribution which they think is appropriate. In particular, one may want to

draw from a distribution truncated above or below by log(1) if one thinks that

nonignorability lies in only one direction. A triangular distribution may be used if the

analyst wishes to include lower and upper limits for the distribution of k. Another approach

is to draw from a bimodal distribution [30] where the modes represent very different yet

equally plausible nonignorability assumptions with little support for an ignorability

assumption.

The choice of multiplier distribution and its parameters will have very different effects on

inferences and once the data have been imputed, it is important to examine rates of missing
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information, in particular γ̂b and  , to confirm that appropriate uncertainty is being

incorporated into parameter estimates. For example, if too large a multiplier is used, all

imputed values would be imputed as events, resulting in too little variability and decreased

coverage.

In line with more of a sensitivity analysis rather than a final analysis, when it is hard to pin

down a single range for the multiplier, one may consider a growing set of ranges and

observe how subsequent inferences evolve accordingly. This approach will allow the user to

make more precise statements regarding the exact conditions under which the obtained

results apply [15] and what missing data assumptions result in a change in study conclusions

[31]. Contour plots, like those in Figure 1 are useful for interpreting the results obtained

from a sensitivity analysis [26] and can help determine whether the significance of a point

estimate is robust to different assumptions regarding the missing data mechanism.

Of course, in any applied setting it is impossible to know exactly how strong a nonignorable

assumption one should make and how much missing data mechanism uncertainty one should

include in their models. We see the second of these dilemmas—incorporating appropriate

mechanism uncertainty—as deserving more attention. Attempting to correctly specify the

missing data mechanism is difficult in most settings. Still, we see our method as an

improvement over methods that assume the missing data mechanism is known. In addition,

our method provides easily stated subjective notions regarding nonresponse so that they can

be easily stated, communicated, and compared, and can be implemented in a straightforward

manner using existing imputation software.
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A Appendix: Nested multiple imputation combining rules

In describing nested multiple imputation below, we use notation that follows closely to that

of Shen [20].

Let Q be the quantity of interest. Assume with complete data, inference about Q would be

based on the large sample statement that

where Q̂ is a complete-data statistic estimating Q and U is a complete-data statistic

providing the variance of Q − Q̂. The M × N imputations are used to construct M × N

completed data sets, where the estimate and variance of Q from the single imputed data set

is denoted by (Q̂ (m,n), U(m,n)) where m = 1, 2, …, M and n = 1, 2, …, N. The superscript (m,

n) represents the nth imputed data set under model m. Let Q̄ be the overall average of all M

× N point estimates

and let Q̄
m be the average of the mth model,

Three sources of variability contribute to the uncertainty in Q. These three sources of

variability are: Ū, the overall average of the associated variance estimates

B, the between-model variance
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(A.1)

and W, the within-model variance

The quantity

estimates the total variance of (Q − Q̄). Interval estimates and significance levels for scalar

Q are based on a Student-t reference distribution

where v, the degrees of freedom, follows from

In standard multiple imputation, only one model is used to generate imputations so that the

between-model variance B (Equation A.1) is equal to 0 and it is not necessary to account for

the extra source of variability due to model uncertainty.
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Figure 1.
Contour plot for the p-values of the treatment effects in Table 5 showing the regions where

the treatment was significant (dark gray), marginally significant (light gray), or non-

significant (white) according to a given pair of multiplier means and standard deviations.

The point plotted at (ln(1), ln(1)/4) corresponds to a MAR with no uncertainty assumption.
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Table 1

Number (percent) smoking and number (percent) of missing values by measurement wave and treatment

group

Measurement Wave

Treatment (n=190) Control (n=299)

Smoking No. (%) Missing No. (%) Smoking No. (%) Missing No. (%)

End of program 110/190 (57.9) 0 (0.0) 229/299 (76.6) 0 (0.0)

6 months 150/182 (82.4) 8 (4.2) 232/272 (85.3) 27 (9.0)

12 months 140/176 (79.6) 14 (7.4) 206/253 (81.4) 46 (15.4)

24 months 118/156 (75.6) 34 (17.9) 176/216 (81.5) 83 (27.8)
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