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Abstract

We discuss sample size determination in group-sequential designs with two endpoints as co-

primary. We derive the power and sample size within two decision-making frameworks. One is to 

claim the test intervention’s benefit relative to control when superiority is achieved for the two 

endpoints at the same interim timepoint of the trial. The other is when the superiority is achieved 

for the two endpoints at any interim timepoint, not necessarily simultaneously. We evaluate the 

behaviors of sample size and power with varying design elements and provide a real example to 

illustrate the proposed sample size methods. In addition, we discuss sample size recalculation 

based on observed data and evaluate the impact on the power and Type I error rate.
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1 Introduction

Traditionally, in clinical trials, a single outcome is selected as a primary endpoint. This 

endpoint is then used as the basis for the trial design including sample size determination, 

interim monitoring, and final analyses. However, many recent clinical trials, especially in 
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medical product development, have utilized more than one endpoint as co-primary. “Co-

primary” in this setting means that the trial is designed to evaluate if the new intervention is 

superior to the control on all endpoints, thus evaluating the intervention’s multidimensional 

effects. Regulators have issued guidelines recommending co-primary endpoints in some 

disease areas. For example, the Committee for Medicinal Products for Human Use (CHMP) 

issued a guideline [1] recommending the use of cognitive, functional, and global endpoints 

to evaluate symptomatic improvement of dementia associated with in Alzheimer’s disease, 

indicating that primary endpoints should be stipulated reflecting the cognitive and functional 

disease aspects. Offen et al. [2] provides other examples with co-primary endpoints for 

regulatory purposes.

The resulting need for new approaches to the design and analysis of clinical trials with co-

primary endpoints has been noted [2–4]. Utilizing multiple endpoints may provide the 

opportunity for characterizing intervention’s multidimensional effects, but also creates 

challenges. Specifically controlling the Type I and Type II error rates when the multiple co-

primary endpoints are potentially correlated is non-trivial. When designing the trial to 

evaluate the joint effects on ALL of the endpoints, no adjustment is needed to control the 

Type I error rate. However, the Type II error rate increases as the number of endpoints to be 

evaluated increases. Thus adjustments in design (i.e., sample size) are needed to maintain 

the overall power. Methods for clinical trials with co-primary endpoints have been discussed 

in fixed sample size designs by many authors [5–16]. Even if the correlation among the 

endpoints is incorporated into the sample size calculation, existing methods often result in 

large and impractical sample sizes as the testing procedure for co-primary endpoints is 

conservative. Chuang-Stein et al. [7] and Kordzakhia et al [10] discuss the methods to adjust 

the significance levels that depend on the correlation among the endpoints in the fixed 

sample size designs. The methods may provide relatively smaller sample sizes, but also 

introduce the other challenges. For example, the sample size calculated to detect the joint 

effect may be smaller than the sample size calculated for each individual endpoint. The 

prespecified correlation incorporated into the significance level adjustment is usually 

unknown and may be incorrect. This calls into question whether or not the significance level 

should be updated based on the observed correlation.

In this paper, we extend previous work for the fixed sample size designs, considering sample 

size evaluation in the group-sequential setting with co-primary endpoints. As suggested in 

Hung and Wang [3], a group-sequential design may be a remedial, but practical approach 

because it offers the possibility to stop a trial early when evidence is overwhelming and thus 

offers efficiency (i.e., potentially fewer patients than the fixed sample size designs). We 

discuss the case of two positively correlated continuous outcomes. We consider a two-arm 

parallel-group trial designed to evaluate if an experimental intervention is superior to a 

control. The paper is structured as follows: in Section 2 we describe the statistical setting, 

decision-making frameworks for rejecting the null hypothesis, and definitions of power. In 

Section 3, we evaluate the behaviors of sample size and power with varying design elements 

and then provide a real example to illustrate the methods. In Section 4, we describe sample 

size recalculation and the resulting effect on power and Type I error rate. In Section 5 we 

summarize the findings and discuss the further developments.
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2 Group-sequential designs with two co-primary endpoints

2.1 Statistical setting

Consider a randomized, group-sequential clinical trial of comparing the test intervention (T) 

with the control intervention (C). Two continuous outcomes are to be evaluated as co-

primary endpoints. Suppose that a maximum of L analyses are planned, where the same 

number of analyses with the same information space are selected for both endpoints. Let nl 

and rlnl be the cumulative number of participants on the test and the control intervention 

groups at the l th analysis (l=1,…, L), respectively, where rl is the sampling ratio. Hence, up 

to nL and rLnL participants are recruited and randomly assigned to the test and the control 

intervention groups, respectively. Then there are nL paired outcomes (YT1i,YT2i) (i = 1,…, 

nL) for the test intervention group and rLnL paired outcomes (YC1j,YC2j) (j=1,…, rLnL) for 

the control intervention group. Assume that (YT1i,YT2i) and (YC1j,YC2j) are independently 

bivariate-normally distributed as  and 

, respectively. For simplicity, the variances are 

assumed to be known and common, i.e.,  and . Note that the 

method can be applied to the case of unknown variances. For the fixed sample size designs, 

Sozu et al. (2011) discuss a method for the unknown variance case and show that the 

calculated sample size is nearly equivalent to that for the known variance in the setting of a 

one-sided significance level α = 0.025 and power 1−β = 0.8 or 0.9. By analogy from the 

fixed sample designs, there is no practical difference in the group-sequential setting and the 

methodology for a known variance provides a reasonable approximation for the unknown 

variances case.

Let (δ1, δ2) denote the differences in the means for the test and the control intervention 

groups respectively, where δk = μTk − μCk (k = 1, 2). Suppose that positive values of (δ1, δ2) 

represent the test intervention’s benefit. We are interested in conducting a hypothesis test to 

evaluate if the intervention is superior to the control intervention, i.e., the null hypothesis 

H0 : δ1≤ 0 or δ2 ≤ 0 versus the alternative hypothesis H1 : δ1 > 0 and δ2> 0. Let (Z1l, Z2l) be 

the statistics for testing the hypotheses at the l th analysis, given by 

, where κl = (1+rl)/rl, and ȲTkl and ȲCkl are the sample 

means given by  and . Z1l and Z2l are 

normally distributed as  and , respectively. Thus 

(Z1l, Z2l) is bivariate-normally distributed with the correlation (rlρT + ρC)/(1 + rl). 

Furthermore, the joint distribution of (Z11, Z21,…, Z1L, Z2L) is 2L multivariate normal with 

their correlations given by  if k = k′; 

if k ≠ k′.

2.2 Decision-making framework, stopping rules, and power

When evaluating the joint effects on both of the endpoints within the context of group-

sequential designs, there are the two decision-making frameworks associated with 

hypothesis testing. One is to reject H0 if and only if superiority is achieved for the two 
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endpoints simultaneously (i.e., at the same interim timepoint of the trial) (DF-1). The other 

is to reject H0 if superiority is achieved for the two endpoints at any interim timepoint (i.e., 

not necessarily simultaneously) (DF-2). We will discuss the two decision-making 

frameworks separately as the corresponding stopping rules and power definitions are unique.

DF-1—The DF-1 is relatively simple: if superiority is demonstrated on only one endpoint at 

an interim, then the trial continues and the hypothesis testing is repeated for both endpoints 

until the joint significance for the two endpoints is established simultaneously. The stopping 

rule for DF-1 is formally given as follows:

At the l th analysis (l=1,…, L−1)

at the Lth analysis

where c1l and c2l are the critical values, which are constant and selected separately, 

using any group-sequential method such as the Lan-DeMets (LD) alpha-spending 

method [17] to control the overall Type I error rate of α, as if they were a single primary 

endpoint, ignoring the other co-primary endpoint. The testing procedure for co-primary 

endpoints is conservative. For example, if a zero correlation between the two endpoints 

is assumed and each endpoint is tested at the one-sided significance level of 2.5%, then 

the Type I error rate is 0.0625 %. As shown in Section 4, the maximum Type I error 

rate associated with the rejection region of the null hypothesis increases as the 

correlation goes toward one, but it is not greater than the targeted significance level.

The power corresponding to DF-1 is

(1)

where Akl = {Zkl > ckl }(k= 1,2; l = 1,…, L). The power (1) can be numerically assessed by 

using multivariate normal integrals. A detailed calculation is provided in Appendix A.1.

DF-2—DF-2 is more flexible than DF-1. If superiority is demonstrated on one endpoint at 

the interim, then the trial will continue but subsequent hypothesis testing is repeatedly 

conducted only for the previously non-significant endpoint until superiority is demonstrated. 

The stopping rule for DF-2 is formally given as follows:

At the l th analysis (l=1,…, L−1)
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at the Lth analysis

Therefore, following DF-2, the power is

(2)

Similarly as in the power (1), the power (2) can be calculated by using multivariate normal 

integrals. For the details, please refer to Appendix A.1.

For simplicity, consider a two-stage group-sequential design with one interim and one final 

analysis. The probability of rejecting the null hypothesis at the interim analysis is same for 

DF-1 and DF-2. The difference in power between DF-1 and DF-2 is due to whether or not 

the null hypothesis is rejected at the final analysis. The difference in decision-making for 

DF-1 and DF-2 comes from the following two situations where the interim analysis result is 

inconsistent with the final analysis result even the alternative hypothesis is true, i.e., (i) 

Endpoint 1 is statistically significant at the interim, but not at the final analysis and similarly 

and (ii) Endpoint 2 is statistically significant at the interim, but not at the final analysis. Thus 

DF-1 fails to reject the null hypothesis in both situations even if the alternative hypothesis is 

true, but DF-2 is able to reject the null hypothesis in both situations. However the likelihood 

of this scenario occurring is quite low. Thus there is little practical difference in the power 

and sample size determinations for DF-1 and DF-2. However, DF-2 offers the option of 

stopping measurement of an endpoint for which superiority has been demonstrated. 

Stopping measurement may be desirable if the endpoint is very invasive or expensive 

although stopping measurement may also introduce an operational difficulty into the trial. 

This will be illustrated in Section 3.

2.3 Maximum sample size and average sample number

We discuss two sample size concepts, i.e., the maximum sample size (MSS) and the average 

sample number (ASN) based on DF-1 and DF-2, and the corresponding powers (1) and (2) 

discussed in the previous section.

The MSS is the sample size required for the final analysis to achieve the desired power 1−β. 

The MSS is given by the smallest integer not less than nL satisfying the power (1) or (2) for 

a group-sequential design at the pre-specified δ1, δ2, ρT and ρC, with Fisher’s information 

time for the interim analyses, nl/nL, l = 1,…, L. To find a value of nL, an iterative procedure 

is required to numerically solve for the power (1) or (2). This can be accomplished by using 
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a grid search to gradually increase nL until the power under nL exceeds the desired power, 

although this often requires considerable computing resources. To reduce the computational 

resources, the Newton–Raphson algorithm in Sugimoto et al. [14] or the basic linear 

interpolation algorithm in Hamasaki et al. [15] may be utilized.

The ASN is the expected sample size under a specific hypothetical reference. Given these 

pre-specifications, the ASN per intervention group for DF-1 is given by

(3)

and for DF-2,

(4)

where rl = 1 and nl = ln1, l = 1,…,L. The representations for calculating ASN (3) and (4) are 

described in Appendix A.2.

The powers, MSS and ASN will depend on the design parameters including differences 

between means, the correlation structure between the endpoints, the testing procedure (e.g., 

O’Brien-Fleming (OF) boundary [20], Pocock (PC) boundary [21]), the number of analyses, 

and the information time.

3. Evaluation of the sample size

3.1 Behavior of the sample size

In this section, we evaluate the behavior of the power, MSS, and ASN as the design 

parameters vary. Here, without loss of generality,  is chosen for simplicity, so that 

δ1 and δ2 are interpret as (standardized) effect sizes.

Figures 1 illustrates how the MSS and ASN per intervention group for DF-1 behave as a 

function of the number of analyses and the boundaries when effect sizes are equal and 

unequal, i.e., δ1 = δ2 and δ1 ≠ δ2 between the two endpoints. The MSS and ASN for DF-1 

and DF-2 (equally-sized groups: rl = 1) were calculated to detect the joint difference in the 

two endpoints with the overall power of 80% at the one-sided significance level of 2.5%, 

where δ1 = δ2 = 0.1 for equal effect sizes and δ1 = 0.1 and δ2 = 0.2 for unequal effect sizes; 

; ρT = ρC = ρ = 0.0, 0.3, 0.5 and 0.8. The critical values are determined by the 

three boundary combinations, i.e., (i) the OF for both endpoints (OF-OF), (ii) the PC for 

both endpoints (PC-PC) and (iii) the OF for δ1 and the PC for δ2 (OF-PC), with the LD 

alpha-spending method with equal information space.

When effect sizes are equal, the MSS for the three boundary combinations increases as the 

number of analyses increases and the correlation is smaller. In all of ρ = 0, 0.3, 0.5 and 0.8, 

the largest MSS is given by PC-PC, and the smallest MSS by OF-OF. On the other hand, the 
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ASN for the three boundary combinations decreases as the number of analyses increases and 

the correlation is larger. In all of ρ = 0, 0.3, 0.5 and 0.8, the largest ASN is given by OF-PC.

When effect sizes are unequal δ1 < δ2, in addition to the three boundary combinations, one 

more combination of (iv) the PC for δ1 and the OF for δ2 (PC-OF) is considered, δ1 = 0.1 

and δ2 = 0.2. Similarly as seen with equal effect sizes, the MSS for the four boundary 

combinations increases as the number of analyses increases, but it does not change as with 

the correlation varies. The largest MSS is given by PC-PC and PC-OF, and the smallest 

MSS by OF-OF and OF-PC. On the other hand, the ASN for the four boundary 

combinations decreases as the number of analyses increases independently of the 

correlation. The largest ASN is given by OF-OF and OF-PC, and the smallest ASN by PC-

PC and PC-OF. When one effect size is relatively smaller (or larger) than the other, the MSS 

and ASN will be driven by the smaller effect size. In this illustration, as the OF is selected 

for the smaller effect size and the PC for the larger, the MSS and ASN by OF-PC are 

approximately equal to those by OF-OF.

Figures 2 illustrates how the MSS and ASN per intervention group for DF-2 behave as a 

function of the number of analyses and the boundaries when effect sizes are equal δ1 = δ2 

and unequal δ1 ≠ δ2 between the two endpoints with the same parameter settings as in Figure 

1. The MSS and ASN behaviors are similar to those observed for DF-1. The major 

difference between DF-1 and DF-2 is that the MSS and ASN for DF-2 are smaller than those 

for DF-1. They are notably smaller as the number of analyses increases, especially when the 

correlation is low.

If the trial was designed to detect effects on at least one endpoint with a prespecified 

ordering of endpoints, a choice of different boundaries for each endpoint (i.e., the OF for the 

primary endpoint and the PC for the secondary endpoint) can provide a higher power than 

using the same boundary for both endpoints [18, 19]. However, as shown in Figures 1 and 2, 

the selection of a different boundary has a minimal effect on the power.

3.2 Example

We provide an example to illustrate the sample size methods discussed in the previous 

sections. Consider the clinical trial, “Effect of Tarenflurbil on Cognitive Decline and 

Activities of Daily Living in Patients With Mild Alzheimer Disease”, a multicenter, 

randomized, double-blind, placebo-controlled trial in patients with mild Alzheimer disease 

(AD) [22]. Co-primary endpoints were cognition as assessed by the Alzheimer Disease 

Assessment Scale Cognitive Subscale (ADAS-Cog; 80-point scale) and functional ability as 

assessed by the Alzheimer Disease Cooperative Study activities of daily living (ADCS-

ADL; 78-point scale). A negative change score from baseline on the ADAS-cog indicates 

improvement while a positive change score on the ADCS-ADL indicates improvement. The 

original sample size per intervention group of 800 patients provided an overall power of 

96% to detect the joint difference in the two primary endpoints between the tarenflurbil and 

placebo groups, by using a one-sided test at 2.5% significance level, with the standardized 

effect size of 0.2 for both endpoints. In addition, the correlation between the two endpoints 

was assumed to be zero in the calculation of the sample size although the two endpoints 

were expected to be correlated (for example, see Doraiswamy [23]).
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Table 1 displays the MSS and ASN per intervention group (equally-sized groups: rl = 1) for 

the DF-1 and DF-2. The sample size was with an alternative hypothesis of a difference for 

both ADAS-Cog (δ1 = 0.2) and ADCS-ADL (δ2 = 0.2), with the overall power of 96% at the 

one-sided significance level of 2.5%, where ρ = ρT = ρC = 0.0, 0.3, 0.5, and 0.8; L = 1, 2, 3, 

5, 8 and 10. The critical values are determined by the three boundary combinations, i.e., the 

OF for both endpoints (OF-OF), the PC for both endpoints (PC-PC), and OF for ADAS-Cog 

and the PC for ADCS-ADL (OF-PC).

Based on the selected parameters described in Green et al. [22], i.e., L = 1 and ρ = 0.0, the 

sample size per intervention group is calculated as 804. If four interims and one final 

analysis are planned (i.e., L = 5) with DF-1, and conservatively assuming a zero correlation 

between the endpoints, then the MSS is 825 for OF-OF, 945 for PC-PC and 895 for OF-PC, 

and the ASN is 604 for OF-OF, 548 for PC-PC and 608 for OF-PC. If the correlation is 

incorporated into the calculation when ρ = 0.3, 0.5 and 0.8, then the MSS are 820, 810 and 

785 for OF-OF; 940, 930 and 900 for PC-PC; 890, 885 and 860 for OF-PC. The ASN are 

589, 574 and 543 for OF-OF; 525, 506 and 469 for PC-PC and 593, 582, and 556 for OF-

PC. When comparing DF-2 to DF-1, there are no major differences in MSS and ASN for all 

of the boundary combinations, although DF-2 provides a slightly smaller MSS and ASN 

than DF-1, for PC-PC and OF-PC. However, if the endpoint is very invasive and thus 

stopping measurement may be ethically desirable, there is a benefit of using DF-2 as DF-2 

offers the option of stopping measurement of an endpoint for which superiority has been 

demonstrated. For example, when four interims and one final analysis with DF-2 are 

planned (i.e., L = 5), the average total number of measurements for each intervention group 

are 1052, 1045, 1041 and 1021 for OF-OF; 846, 845, 841 and 831 for PC-PC; 966, 961, 958 

and 944 for OF-PC, corresponding to ρ = 0.0, 0.3, 0.5, and 0.8. They are relatively smaller 

than those for DF-1 as the average total number of measurements for DF-1 are 1208, 1178, 

1148 and 1086 for OF-OF; 1096, 1050, 1012 and 938 for PC-PC; 1216, 1186, 1164 and 

1112 for OF-PC.

4. Sample size recalculation

Clinical trials are designed based on assumptions often constructed based on prior data. 

However prior data may be limited or an inaccurate indication of future data, resulting in 

trials that are over/under-powered. Interim analyses provides an opportunity to evaluate the 

accuracy of the design assumptions and potentially make design adjustments (i.e., to the 

sample size) if the assumptions were markedly inaccurate. The tarenflurbil trial mentioned 

in the previous section, failed to demonstrate a beneficial effect of tarenflurbil on both 

ADAS-Cog and ADCS-ADL. The observed treatment effects were smaller than the assumed 

effects. Group-sequential designs allow for early stopping when there is sufficient statistical 

evidence that the two treatments are different. However more modern adaptive designs may 

also allow for increases in the sample size if effects are smaller than assumed. Such 

adjustments must be conducted carefully for several reasons. Challenges include: (a) 

maintaining control of statistical error rates, (b) developing a plan to make sure that 

treatment effects cannot be inferred via back-calculation of a resulting change in the sample 

size, (c) consideration of the clinical relevance of the treatment effects, and (d) practical 

concerns such as an increase in cost and the challenge of accruing more trial participants. In 
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this section, we discuss sample size recalculation based on the observed intervention’s 

effects at an interim analysis with a focus on control of statistical error rates.

4.1 Test statistics and conditional power

Consider that the maximum sample size is recalculated to  based on the interim data at the 

R th analysis. Suppose that  is subject to , where λ is a pre-specified 

constant for the maximum allowable sample size. For simplicity, assume a common 

correlation between the treatment groups, i.e., ρT = ρC = ρ. Let (δ̃
1, δ̃

2) and let ( ) be the 

mean differences used for planned sample size and for recalculated sample size, 

respectively.

Here we consider the Cui-Hung-Wang (CHW) statistics [24] for sample size recalculation in 

group-sequential designs with two co-primary endpoints to preserve the overall Type I error 

rate at a pre-specified alpha level even when the sample size is increased and conventional 

test statistics are used. The CHW statistics are,

where  and rR = rm = 1 (k=1,2; R=1,…, L−1; m=R

+1,…, L). The same critical values utilized for the case without sample size recalculation are 

used.

The sample size is increased or decreased when the conditional power evaluated at the R th 

analysis is lower or higher than the desired power 1−β. Under the planned maximum sample 

size and a given observed value of (Z1R, Z2R), for DF-1, the conditional power is defined by

(5)

if Z1l ≤ c1l or Z2l ≤ c2l for all l = 1,…, R, where (a1R, a2R) is a given observed value of (Z1R, 

Z2R). On the other hand, the conditional power for DF-2 is given by

(6)

The detailed calculation of the conditional powers for DF-1 and DF-2 are provided in the 

Appendix A.3. Since (δ1, δ2) is unknown, it is customary to substitute ( ), the estimated 
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mean differences at the R th analysis (δ̂
1R, δ̂2R) or the assumed mean differences during trial 

planning (δ̃
1, δ̃

2). We consider the conditional power based on , which 

allows evaluation of behavior of power independent of (δ1, δ2).

When recalculating the sample size, three options are possible: (i) only allowing an increase 

in the sample size, (ii) only allowing a decrease in the sample size, and (iii) allowing an 

increase or decrease in sample size. For all the cases, we assign  and  instead of Zkm 

and nm in the conditional powers (5) and (6) for the conditional power with sample size 

recalculation. Consider the rule for determining the recalculated sample size , when the 

sample size may be increased only, which is:

where  is the smallest integer , where the conditional power achieves the desired 

power 1−β. When the sample size may be decreased only, the recalculated sample size  is:

When the sample size may be increased or decreased, then the recalculated sample size 

is:

4.2 Simulation study

A simulation study was performed to evaluate the impact of sample size recalculation based 

on DF-1 and DF-2 on the power and Type I error rate. We consider group-sequential designs 

with a single interim, i.e., one interim and one final analyses, and with multiple interims, 

i.e., three interims and one final analyses. In addition, we discuss the three options of: (i) 

only decreasing the sample size, (ii) only increasing the sample size, and (iii) increasing or 

decreasing the sample size, based upon the observed intervention’s effect. The planned MSS 

per intervention group is calculated to detect the joint difference for two endpoints with the 

overall power of 80% at the one-sided significance level of 2.5%, where (δ̃
1, δ̃2) = (0.2, 0.2), 

 and the correlation is assumed to be known correlation at the design stage, i.e., ρ 

= 0.0, 0.3, 0.5, and 0.8. For the evaluation of the Type I error rate, the two pairs of the mean 

differences (δ1, δ2) = (0.0, 0.0) and (0.0, 0.2) are considered under H0. For the designs with a 

single interim, the timing of the interim analysis for sample size recalculation is evaluated at 

0.25, 0.50 and 0.75 of information time. For designs with multiple interims, one sample size 
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recalculation is considered and the timing is evaluated at the 1st, 2nd and 3rd of interim 

analysis. The critical values are determined by the OF boundary for both endpoints with the 

LD alpha-spending method, with equal information space. The upper limit of the 

recalculated sample size is set to  with λ = 1.5. The number of replications for the 

simulation is set to 1,000,000 for the evaluation of the Type I error rate and 100,000 

replications for the power. These number of replications for the simulation was determined 

based on the precision, where a sample size of 1,000,000 provides a two-sided 95% 

confidence interval with a width equal to 0.001 when the proportion is 0.025, and a total 

number of replications of 100,000 provides a two-sided 95% confidence interval with a 

width equal to 0.005 when the proportion is 0.80.

Suppose that the sample size recalculation is based on the interim estimates of (δ1, δ2). Note 

that the value of correlation assumed at the design stage is retained for the sample size 

recalculation, i.e., without updating based on observed correlation at the interim as the 

correlation is a nuisance parameter in hypothesis testing. All results are summarized in 

Tables S1 to S4 in the Supplemental Data. As there are no significant differences between 

DF-1 and DF-2 with respect to the Type I error rates and empirical powers, we limit 

discussion to the behavior of the Type I error rates and power for DF-1.

Figure 3 illustrates how the Type I error rates and powers behave as a function of the 

correlation, the timing of the interim analysis for sample size recalculation, and the sample 

size recalculation options for DF-1 in the single-interim case. In all three recalculation 

options, the Type I error rates increase as the correlation increases, but they are not exceed 

the targeted 2.5%. There is no practical difference in the behavior of the Type I error rates 

depending on the timing of the interim analysis for sample size recalculation. On the other 

hand, for the behavior of the power, when only allowing an increase in the sample size, the 

empirical powers are higher than the desired power of 80% in all of the three timings of 

sample size recalculation, although the power is slightly decreased with higher correlation. 

When allowing an increase or a decrease in the sample size, if the timing for sample size 

recalculation is at 25% information time, then the empirical power is lower than the desired 

power of 80%, especially with higher correlation. However, if the timing for sample size 

recalculation is 50% or 75%, then the empirical powers are higher than in all three timings 

of sample size recalculation. When only allowing a decrease in the sample size, if the timing 

for the sample size recalculation is at 25% or 50% information time, then the empirical 

powers are always lower than the desired power, especially with higher correlation. If the 

timing for sample size recalculation is at 75% information time, then the empirical power is 

almost achieved at the desired power of 80%.

Figure 4 illustrates how the Type I error rates and powers behave as a function of the 

correlation, the timing of the interim analysis for sample size recalculation, and the sample 

size recalculation options for DF-1, in the multiple-interim case. The results are similar to 

those in the single-interim case; when only allowing an increase in the sample size, 

compared with the desired power of 80%, the empirical powers are improved in all of the 

three timings for the sample size recalculation, but the empirical power is much lower than 

the desired power if the sample size recalculation is conducted early in the study, especially 

when allowing a decrease in the sample size.
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These results suggest incorporating the uncertainty of the estimates at the interim into the 

sample size recalculation is important. The power is much lower than desired power if the 

sample size recalculation is conducted early in the study, especially when allowing for a 

decrease in the sample size.

5. Summary and discussion

The determination of sample size and the evaluation of power are fundamental and critical 

elements in the design of a clinical trial. If a sample size is too small then important effects 

may not be detected, while a sample size that is too large is wasteful of resources and 

unethically puts more participants at risk than necessary. Recently many clinical trials are 

designed with more than one endpoint considered as co-primary. As with trials involving a 

single primary endpoint, designing such trials to include interim analyses (i.e., with repeated 

testing) may provide efficiencies by detecting trends prior to planned completion of the trial. 

It may also be prudent to evaluate design assumptions at the interim and potentially make 

design adjustments (i.e., sample size recalculation) if design assumptions were dramatically 

inaccurate. However such design complexities create challenges in the evaluation of power 

and the calculation of sample size during trial design.

We discuss group-sequential designs with co-primary endpoints. We derive the power and 

sample size methods under two decision-making frameworks: (1) designing the trial to 

detect the test intervention’s superiority for the two endpoints simultaneously (i.e., at the 

same interim timepoint of the trial) (DF-1), and (2) designing the trial to detect superiority 

for the two endpoints at any interim timepoint (i.e., not necessarily simultaneously) (DF-2). 

The former is simpler while the latter is more flexible and may be useful when the endpoint 

is very invasive or expensive, as it allows for stopping the measurement of any endpoint 

upon which superiority has been demonstrated. We evaluate the behavior of sample size 

with varying design elements and provide an example to illustrate the methods. We also 

discuss sample size recalculation using CHW statistics and evaluate the impact on the power 

and Type I error rate. Although DF-2 will provide a slightly smaller sample size than DF-1, 

there is modest difference between two. However, if the endpoint is very invasive and thus 

stopping measurement may be ethically desirable, there is a benefit of using DF-2 as DF-2 

offers the option of stopping measurement of an endpoint for which superiority has been 

demonstrated. However stopping measurement on one endpoint could also create 

operational challenges in study conduct and patient monitoring. The timing of the sample 

size recalculation should also be carefully considered as the power does not reach desired 

levels if the sample size recalculation is done early in the study when considering a decrease 

in the sample size.

There are other practical issues and extensions to consider when designing a group-

sequential clinical trial with co-primary endpoints. They include: how the value of 

correlation should be selected at the planning and interim, evaluating futility or efficacy and 

futility simultaneously, other endpoint scales, and other inferential goals. We discuss each of 

these issues.
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There are two important questions regarding the choice of the correlation in sample size 

calculations. One is whether the observed correlation from external or pilot data should be 

utilized or whether correlation is assumed to be zero. The other is whether the sample size 

should be recalculated based on the observed correlation at the interim. Incorporating the 

observed correlation at the planning or interim may affect the Type I error rate and power. 

Our experience suggests that when standardized effect sizes are unequal between the 

endpoints, the power is not improved with higher correlation. With unequal standardized 

effect sizes, incorporating the correlation into the sample size calculation at planning or 

interim may have no advantage [25, 26]. Further investigation will be required to assess how 

the choice of the correlation impacts the operation characteristics of the design.

Since the main objective of the paper is to provide the fundamental foundation in group-

sequential designs for co-primary endpoints, our discussion is restricted to a superiority 

clinical trial comparing two interventions based on two continuous endpoints. The study 

design allows for early stopping when larger intervention differences are observed, i.e., 

rejecting a null hypothesis only. However, this work provides a foundation for designing 

clinical trials with other design features. In addition to this fundamental situation, the 

method discussed here can be straightforwardly extended to other situations such as 

evaluating futility (rejecting the alternative hypothesis) or evaluating both efficacy and 

futility.

Time-to-event outcomes are common in oncology, cardiovascular and infectious disease 

clinical trials. The method for continuous endpoints described in the paper may not be 

directly extended to time-to-event endpoints. When considering a trial with two time-to-

event outcomes as co-primary with a plan for using the logrank test to compare two 

interventions in a group-sequential design, information for the two endpoints may 

accumulate at different rates. This creates challenges when designing trials, i.e., the amount 

of information for the endpoints may be different at any particular interim timepoint of the 

trial. Further investigation is required to assess this issue.

Although our primary interest is co-primary endpoints, these results provide a fundamental 

foundation to other inferential goals, e.g., designing a trial to detect an effect on at least one 

endpoint. Many authors have proposed methods for the at least one endpoint goal in fixed 

sample size designs, e.g., a weighted Bonferroni procedure, the prospective alpha allocation 

scheme method, the adaptive alpha allocation approach, the Bonferroni-type parametric 

procedure, and the fallback-type parametric procedure (e.g., see Dmitrienko et al. [4], Moyé 

[27] and Moyé and Baranuik [28]). In addition, several authors have discussed an extension 

of methods to the group-sequential designs with an inferential goal of at least one endpoint 

[29–32]. For example, Tang and Geller [30] discuss a method based on closed testing 

procedures and Tamhane et al. [31, 32] discuss sample size methods in two-stage group-

sequential designs based on the gatekeeping procedures with hierarchically ordered multiple 

endpoints.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Power calculation

The power (1) for DF-1 can be calculated by partitioning the set in (1) into mutually 

exclusive subsets and taking the sum of their probabilities as follows:
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(A1)

where Akl = {Zkl > ckl} and Ākl ={Zkl ≤ ckl} (k = 1,2; l = 1,…, L). The probability of {Ā1l′ ∪ 

Ā2l′} can be written as , where 

 and . Similarly, 

the probability of the union of {Ā1l′ ∪ Ā2l′} can be written by the sum of the probabilities of 

the unions composed of  and . Then, the second term of the right-hand side in 

(A1) can be rewritten as

The probability of  is calculated by a bivariate normal integral as follows:

where f2(z1l′, z2l′) is the density function of the joint distribution of (Z1l′, Z2l′) with the means 

and the covariance matrix given in Section 2.1. The probabilities of  and {A1l′ ∩ A2l′} 

are calculated similarly. Then the probability of the union composed of  and {A1l′ 

∩ A2l′} is calculated by a multivariate normal integral and the power is the sum of (3L−1)/2 

multivariate normal integrals. For details of the computation related to multivariate normal, 

please see Genz and Bretz [24].

For illustration, we provide the case of L = 2 and r = r1 = r2. In this case, the power can be 

rewritten as

where f2(z11, z21) is the density function of the bivariate normal distribution of Z2 = (Z11, 

Z21)T, which is given by
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with mean vector  and correlation matrix

and f4 (z11, z21, z12, z22) is the density function of the tetra-variate normal distribution of Z4 

= (Z11, Z21, Z12, Z22)T given by

with mean vector  and 

correlation matrix

where Σ4 is positive definite matrix under |ρT|, |ρC| < 1 and n1 ≠ n2 as |Σ4|=|Σ2|2 (1−n1/n2)2.

The power (2) for DF-2 can be calculated from two L–variate normal integrals and a 2L–

variate normal integral.

The power can be calculated similarly as discussed in the power (1) for DF-1.

A.2 ASN calculation

The ASN (3) for DF-1 can be calculated by the sum of multivariate normal integrals

Similarly, the ASN (4) for DF-2 can be calculated by
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A.3 Conditional Power

The conditional power (5) for DF-1 is described by

(A2)

if Z1l ≤ c1l or Z2l ≤ c2l for all l = 1,…, R, where Akm ={Zkm > ckm}, Ākm = {Zkm ≤ ckm} (k = 

1,2; m = R +1,…, L) and (a1R, a2R) is a given observed value of (Z1R, Z2R). The second term 

of the right-hand side in (A2) can be calculated in a similar way to that for the power 

calculation (Appendix A.1.). The conditional distribution of (Z1,R+1, Z2,R+1,…, Z1L, Z2L|a1R, 

a2R) is a multivariate normal with their means 

 and covariance given by 

 if k = k′; if k ≠ k′, 

where m′ ≤ m = R +1,…, L. For DF-2, the conditional power (6) can be described as

and calculated similarly as discussed in the power for DF-2 (Appendix A.1.).

When R = L−1, the conditional power for DF-1 can be rewritten as

where Φ2 (·, ·, | ρ) is the cumulative distribution function of the standard bivariate normal 

distribution with the correlation ρ, and  and 

 with t = nR/nL. For DF-2, the conditional 

power can be rewritten as
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where Φ(·) is the cumulative distribution function of the standardized normal distribution.
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Figure 1. 
Behavior of MSS and ASN for DF-1 as the number of analyses and boundaries vary. The 

MSS and ASN per intervention group (equally-sized groups: rl=1) were calculated to detect 

the joint difference in the two endpoints with the overall power of 80% at the one-sided 

significance level of 2.5%, where δ1 = δ2 = 0.1 for A and B, and δ1 = 0.1 and δ2 = 0.2 for C 

and D; . When differences between means are equal, the and critical values are 

determined by the three boundary combinations, i.e, (i) the OF for both endpoints, (ii) the 

PC for both endpoints and (iii) the OF for δ1 and the PC for δ2, with the LD alpha-spending 

method with equal information space. When differences between means are unequal, in 

addtion to the three combinations, (iv) the PC for δ1 and the OF for δ2 is considered.
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Figure 2. 
Behavior of MSS and ASN for DF-2 as the number of analyses and boundaries vary. The 

MSS and ASN per intervention group (equally-sized groups: rl=1) were calculated to detect 

the joint difference in the two endpoints with the overall power of 80% at the one-sided 

significance level of 2.5%, where δ1 = δ2 = 0.1 for A and B, and δ1 = 0.1 and δ2 = 0.2 for C 

and D; . When differences between means are equal, the critical values are 

determined by the three boundary combinations, i.e, (i) the OF for both endpoints, (ii) the 

PC for both endpoints and (iii) the OF for δ1 and the PC for δ2, with the LD alpha-spending 

method with equal information space. When differences between means are unequal, in 

addtion to the three combinations, (iv) the PC for δ1 and the OF for δ2 is considered.
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Figure 3. 
Behavior of the power and Type I error rate as a function of the correlation with sample size 

recalculation in two-stage group-sequential designs, where the information times of 0.25, 

0.50 and 0.75 were selected as the timing of the sample size recalculation. The planned MSS 

per intervention group is calculated to detect the joint difference for two endpoints with the 

overall power of 80% at the one-sided significance level of 2.5%, where one interim and one 

final analysis are to be performed. The critical values are determined by the OF boundary 

for both endpoints, with the LD alpha-spending method. The upper limit of recalculation 

sample size is  with λ = 1.5. The number of replications for simulation is set to 

1,000,000 for evaluation of the Type I error rate and 100,000 replications for the power 

(DF-1)
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Figure 4. 
Behavior of the power and Type I error rate as a function of the correlation with sample size 

recalculation in four-stage group-sequential designs, where the 1st, 2nd and 3rd interim 

point were selected as the timing of the sample size recalculation. The planned MSS per 

intervention group is calculated to detect the joint difference for two endpoints with the 

overall power of 80% at the one-sided significance level of 2.5%, where three interims and 

one final analysis are to be performed. The critical values are determined by the OF 

boundary for both endpoints, with the LD alpha-spending method. The upper limit of 

recalculation sample size is  with λ = 1.5. The number of replications for simulation 

is set to 1,000,000 for evaluation of the Type I error rate and 100,000 replications for the 

power (DF-1)
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