Skip to main content
. 2014 Feb 4;36(3):9622. doi: 10.1007/s11357-014-9622-7

Table 4.

Variance component analysis of IGF1, testing for independent effect of age, SNP (additive model), and their interaction

VCAa—parameters of the model rs855203 rs35765 rs2288378 rs7964748
Regression parameters β 1 (age) −0.46 ± 0.01 −0.46 ± 0.01 −0.46 ± 0.01 −0.46 ± 0.01
β 2 (SNP) −0.10 ± 0.03 0.09 ± 0.03 0.07 ± 0.02 0.07 ± 0.02
β 3 (age × SNP) −0.08 ± 0.03 0 0 0
p 1 value (LRT) <0.001 0.26 0.68 0.80
Correlationb (r) (N, p value) AA (major) 0.46 (3,630, <0.001) 0.48 (3,503, <0.001) 0.48 (2,516, <0.001) 0.48 (3,008, <0.001)
AB 0.53 (770, <0.001) 0.48 (883, <0.001) 0.45 ± 0.01 (1,631, <0.001) 0.46 (1,292, <0.001)
BB (minor) 0.22 (57, 0.08) 0.24 (70, 0.03) 0.52 ± 0.03 (307, <0.001) 0.49 (157, < 0.001)
p 2 value (χ 2) AA/AB 0.009 0.241 0.20 0.22
AA/BB 0.020 0.008 0.18 0.43
AB/BB 0.004 0.010 0.09 0.32
V componentsc Given in Table 3

VCA variance component analysis; β 1 , β 2 , β 3 regression coefficients reflecting effect of age, genotype, and age*; p 1 value (LRT) likelihood ratio test for heterogeneity of regression coefficients, showing genotype-specific age dependence of IGF-1 variation; p 2 value (χ 2 ) pairwise comparison of the corresponding genotype-specific correlations between IGF-1 level variations and age

aTesting effects of covariates on IGF-1 variation

bPresents genotype-specific correlation, by SNP, sample size, and p value for correlation coefficient estimate

cVariance component estimated in the entire sample and for “all ages” given in Table 3