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Abstract

We seek to compute a diffeomorphic map between a pair of diffusion-weighted images under

large deformation. Unlike existing techniques, our method allows any diffusion model to be fitted

after registration for subsequent multifaceted analysis. This is achieved by directly aligning the

diffusion-weighted images using a large deformation diffeomorphic registration framework

formulated from an optimal control perspective. Our algorithm seeks the optimal coordinate

mapping by simultaneously considering structural alignment, local fiber reorientation, and

deformation regularization. Our algorithm also incorporates a multi-kernel strategy to concurrently

register anatomical structures of different scales. We demonstrate the efficacy of our approach

using in vivo data and report on detailed qualitative and quantitative results in comparison with

several different registration strategies.

1 Introduction

Diffusion-weighted imaging (DWI) is widely used to noninvasively study tissue micro-

structures in the human brain. To compare DWI data across subjects or groups we have to

handle the alignment of macro-structures and the reorientation of micro-structures

simultaneously. Concurrent optimization of these two components is very challenging but is

required for accurate registration.

For registration of DWI data, a commonly used approach is to fit some diffusion model to

the DWI data to estimate relevant information such as orientation distribution functions

(ODFs), and then incorporate such information into a registration algorithm for structural

alignment. Early work uses the relatively simple diffusion tensor model [3,14]. Recent

studies [6,5,8,9,12,4,16] have moved forward by using more complicated models that take

into account complex fiber configurations such as crossings.
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Geng et al. [6] aligned ODFs represented by spherical harmonics (SHs) using an elastic

registration algorithm. Du et al. [5] integrated a similarity metric for the ODFs, which is

defined in a Riemannian manifold, into a large deformation diffeomorphic metric mapping

(LDDMM) algorithm [7]. Yap et al. [12] extracted coarse-to-fine features from the ODFs for

hierarchically refined alignment. Instead of using ODFs, Hong et al. [8] performed

registration with the help of T2-weighted images and then subsequently reoriented the fiber

orientation distribution (FOD). Raffelt et al. [9] registered DWI data by mapping the FODs

via a subject-template-symmetric diffeomorphic framework.

However, the aligned data generated by the above approaches are not in the form of

diffusion-weighted images. The ability to produce diffusion-weighted images as the final

registration outcome is important for common-space analysis using diffusion models that do

not have warping and reorientation algorithms.

To overcome this problem recent studies propose to register DWI data directly in the Q-

space [4,16]. Dhollander et al. [4] tackled the problem by utilizing an SH-based

reorientation algorithm together with a diffeomorphic demons algorithm [11]. In [16] we

achieved a similar goal by using a set of fiber basis functions (FBFs) [13] and a simplified

shooting algorithm [1]. Both methods regard spatial alignment and local fiber reorientation

as two separate components, and perform optimization by repeating the following two steps:

(1) compute the map between the DWI data without considering reorientation, and (2)

reorient the data using the resulting map. Although this strategy is simple, it ignores the

crucial role reorientation plays in correspondence establishment.

In this paper we describe a method that is able to register diffusion-weighted images in the

Q-space. Our work distinguishes itself from [16] by concurrently achieving image matching,

data reorientation, and deformation regularization in a single framework. To the best of our

knowledge, this is the first work that integrates spatial alignment and local reorientation into

a single cost function to address the direct registration of DWI data. In addition, our

mathematical formulation reveals how reorientation affects registration, and such insight

cannot be gained from [16]. Our work is also different from [3] and [14], where

reorientation is incorporated into the cost function to address the registration of diffusion

tensor models.

Below we first introduce the shooting algorithm used in this work. We then describe the

integration of diffusion data reorientation into the shooting algorithm in Sect. 3. We

demonstrate the efficacy of our algorithm in Sect. 4, and conclude our work in Sect. 5.

2 Geodesic Shooting

Let I0 be the source image and I1 be the target image. We would like to minimize

(1)

where vt is a time-dependent velocity field to be solved, σ > 0 is a regularization constant,

ϕs,t is a map induced by vt, mapping a voxel from its position at time s to its position at time
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t, and id is an identity map. , where L is a proper differential operator

controlling the smoothness of vt, which, in turn, guarantees a diffeomorphic solution [2].

Usually smoothing is achieved by convolving momentum L†Lvt with a kernel K = (L†L)−1.

Here we use a multi-Gaussian kernel scheme [10] to introduce a natural multi-resolution

property to the solution.  and D· is the Jacobian operator. Note that

 simply amounts to transport equations for the individual coordinates of

the map, which can be understood as a natural consequence of diffeomorphism (see [2] for

details). This is different from [16], where transport equations for image intensity are used.

The minimization of (1) leads to the following optimality conditions:

(2)

(3)

where  is the k-th element of λt. The minimization of (1) involves (i) converting it to an

unconstrained energy functional via Lagrange multipliers (e.g., introducing multiplier λt for

the constraint ; (ii) computing functional variation w.r.t vt, ϕt,0 and the

Lagrange multipliers; and (iii) obtaining the optimality conditions by setting the variation to

zero.

The gradient of (1) w.r.t vt is given by ▽vtE = L†Lvt + (Dϕt,0)Tλt. As geodesic shooting

allows us to perform gradient descent only for t = 0 by leveraging conservation of

momentum [1], we can write an equivalent gradient as ▽v0E = L†Lv0 + ∣Dϕ0,1∣λ1○ϕ0,1. As

(2) should hold at all times at convergence, we have λ = –L†Lv0 at t = 0. Hence, the final

gradient used is given by

(4)

Note that we perform gradient descent directly on λ0 by pulling the final adjoint λ1 back to t

= 0. The pullback can be achieved by computing a forward map (from t = 0 to t = 1) on the

fly during a backward integration. In this work we use line search for gradient descent. Note

that this is a simplification (inspired by Ashburner and Friston [1]) to the actual gradient

descent w.r.t. the initial condition which would require the computation of a second-order

adjoint system (see [1] for details).

3 Geodesic Shooting with Reorientation

We now briefly review the major concepts involved in reorientation using the FBFs [13] and

then describe how this can be integrated into the above shooting algorithm.
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3.1 Reorientation of Diffusion-Weighted Data

Reorientation in Q-space can be achieved in three steps: (1) decompose the diffusion signal

profile into a set of weighted FBFs; (2) reorient each FBF independently using a local

transformation; (3) recompose the reoriented FBFs to obtain the desired profile.

Let S(qi) be the diffusion signal measured in direction qi (i = 1, … , M). It can be represented

by a set of N FBFs, each of which being realized by a Waston distribution function with

mean direction , where

 is a probability density function of the Watson

distribution, κ is a constant and is the concentration parameter, and C(κ) is a normalization

factor; wj is the weight associated with the j-th FBF; f0 ≡ C(0) is a constant representing the

isotropic diffusion component. Let S be the signal vector, then we have S = Fw, where S =

[S(q1), S(q2), … , S(qM)]T, w = [w0, w1, … , wN]T and

Since typically, M < N + 1, this is a set of under-determined linear equations, which can be

solved by a L1 regularized least-squares solver with a non-negative constraint (see [13] for

details).

A local affine transformation A is used to reorient the directions of the FBFs, i.e.

. Usually A is estimated from the map resulting from registration. A matrix

of reoriented FBFs, F’, is calculated based on  and then used to obtain the orientation-

rectified profile S’ by S’ = F’ w. Note that the isotropic component is not reoriented.

3.2 Integration with the Shooting Algorithm

Let I be a vector-valued image representing diffusion signal vector S at each position x. We

define the action of a map ϕ on I as I ○ ϕ = FϕW ○ ϕ, where W is a weight image associated

with I and contains a sparse weight vector w at each x, and Fϕ is a reoriented FBF image,

whose voxel at x is a matrix and is given by

To reflect reorientation we can now rewrite the cost function (1) as
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(5)

where W0 is the weight image associated with I0. Similarly, we can obtain a set of optimality

conditions (deviation details omitted due to space limit). All conditions are the same as

given in Sect. 2 except for condition (3), which is now given by

(6)

where B1, B2 and B3 are vector-valued images of the same size as I0 and I1. Let bk be the

voxel of Bk at position x. bk is a M × 1 vector and its i-th element is computed as follows

where xk is the k-th element of x,  is the j-th element of the voxel of W0 at x,

 and  is the k-th element of .

Note that (6) reveals how spatial alignment and reorientation interact with each other. The

shooting process is used to obtain an initial map, which, together with data reorientation, is

used to compute λ1 using (6). The new λ1 is then pulled back to t = 0 as described in Sect. 2

to compute the gradient (4) for updating the map via shooting. The whole process is

repeated until convergence. Our work considers spatial alignment and reorientation in a

single cost function (5). Reorientation plays an active role in the whole registration process.

In contrast, spatial alignment and reorientation are regarded as two separate components in

[16], and their relationship is unclear.

4 Experiments

DWI data were acquired from 11 adults using a Siemens 3T TIM Trio MR Scanner with an

EPI sequence. Diffusion gradients were applied in 120 non-collinear directions with

diffusion weighting b = 2000 s/mm2. The imaging matrix was 128×128 with a field of view

of 256×256mm2. 80 contiguous slices with thickness of 2 mm covered the whole brain.

We randomly chose an image as the target image and used the rest as source images. For

each image, we fit the FBFs, with 321 directions uniformly distributed on a unit sphere, to

estimate the associated weight image, which was then used to obtain a reconstructed version

of the image. A set of affine transformations was estimated between the target image and

each source image using their anisotropy images computed from the reconstructed data.
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We used our method (Sect. 3.2) to register each source to the target using the estimated

affine transformations. To show the advantage of our method, we compared it with the

following DWI registration strategies:

1. Scalar Registration: For each reconstructed source, we warped its anisotropy image

using an affine transformation, and then aligned the warped image with the

anisotropy of the reconstructed target;

2. Vector Registration: We reconstructed each source using an affine transformation.

Note that this is different from the above case where the source images were

reconstructed without any transformation. We registered each reconstructed source

to the same reconstructed target as used in the above case;

3. Our early work [16]: This is an iterative registration scheme. Each stage consists of

three steps: (1) reconstructing the source and target images; (2) aligning the two via

a shooting algorithm; (3) concatenating the resulting map with the previous one.

The source is reconstructed using the composite map together with an affine

transformation, while the target is always reconstructed without any transformation.

At each stage the reconstruction is done by using an increasing number of diffusion

directions and a decreasing concentration κ.

In all three cases, the previously estimated affine transformations were used for warping or

reconstruction, and the image alignment was done as described in Sect. 2. We ran line

search of 30 iterations for the proposed method, scalar registration and vector registration.

For our early work [16] we used 5 stages and 30 iterations for the registration in the first two

stages, 20 for the middle stages and 10 for the final stage. The number of diffusion

directions was set to 1, 6, 21, 81 and 120 for each stage and κ gradually decreased from 0.

The spatial regularization was set to be the same for the proposed work and [16].

To quantify the comparison we reconstructed each source using the associated affine

transformation and the resulting map. We used the same metric, root mean square (RMS)

error as in [16], to compute registration error. Averaging the resulting RMS error images

across subjects for each method leads to the mean images shown in Fig. 1. We also show the

mean RMS error image of the source warped and reoriented using affine transformation

alone. For each mean RMS error image we computed its statistics (e.g., mean, s.d.) over all

voxels and report the results in Table 1a. We also computed the mean intensity value for

each RMS error image, and used the means across subjects to perform a student’s t-test

(two-tailed) between the proposed method and the other methods. The results are given in

Table 1b.

Table 1 clearly shows that affine transformation is insufficient for DWI registration. The

registration accuracy can be greatly improved with the help of non-rigid registration as

indicated by the results from scalar and vector registration. Despite the improvements, both

strategies, as well as our early work [16], do not take into account reorientation in

registration. In contrast, our method yields significantly better registration accuracy due to

explicit reorientation in registration.
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Figure 2 shows the anisotropy images of the target and averaged reconstructed source. It

shows that our method registers all main structures well and results in a crisp mean

anisotropy image. Results from other methods are not shown due to space limit. The

anisotropy image produced by affine registration is quite blurred due to structural

misalignment. Results from the other three non-rigid registration methods are visually

similar to the result shown for our method. Figure 2 also shows exemplar ODFs, which

indicate that the result produced by our method is in close agreement at voxel level with the

target image. This is important for applications such as white matter tractography, which is

sensitive to error in local fiber orientations.

We implemented our algorithm in C++ using the Insight Segmentation and Registration

Toolkit1 (ITK). The typical running time2/memory consumption (for 30 iterations) is 4.3

minutes/1GB for scalar registration and 4.2 hours/5GB for the proposed method.

5 Conclusion and Future Work

We have described a method for directly registering the DWI data under large deformation.

This is achieved by incorporating a DWI data reorientation technique into a variant of

geodesic shooting algorithm. Unlike most of existing methods, our approach produces

diffusion-weighted images as output, thus allowing the fitting of any diffusion model for

subsequent analysis. Experimental results indicate that our method significantly outperforms

several other DWI registration strategies. Future work includes validation and comparison

with other methods like DTI-TK [15] using a large dataset.
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Fig. 1.
From top to bottom: the mean RMS error images and the close-ups of the regions marked by

yellow circles. Note that the images were not sliced to show left-right symmetry.
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Fig. 2.
Left two columns: anisotropy images. Right two columns: exemplar ODFs generated from

the region (marked by cyan rectangles) in the original target and averaged reconstructed

source.
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Table 1

A detailed quantitative comparison of different DWI registration strategies

(a) (b)

Method Mean±s.d. Median 90%-ile Method p-value

Affine 12.6±5.9 11.3 18.9 Affine p < 10−5

Scalar 11.5±5.7 10.4 17.2 Scalar p < 10−4

Vector 10.7±4.7 9.9 15.4 Vector p < 10−4

Zhang et al. [16] 10.6±4.7 9.8 15.3 Zhang et al. [16] p < 10−3

Proposed method 9.8±4.1 9.4 14.1 Proposed method –
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