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Summary

Many functional network properties of the human brain have been identified during rest and task

states, yet it remains unclear how the two relate. We identified a whole-brain network architecture

present across dozens of task states that was highly similar to the resting-state network

architecture. The most frequent functional connectivity strengths across tasks closely matched the

strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional

brain organization. Further, a set of small but consistent changes common across tasks suggests

the existence of a task-general network architecture distinguishing task states from rest. These

results indicate the brain’s functional network architecture during task performance is shaped

primarily by an intrinsic network architecture that is also present during rest, and secondarily by

evoked task-general and task-specific network changes. This establishes a strong relationship

between resting-state functional connectivity and task-evoked functional connectivity – areas of

neuroscientific inquiry typically considered separately.
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INTRODUCTION

Recent advances in human neuroimaging have led to numerous studies characterizing inter-

regional temporal relationships during task and resting states (Fox and Greicius, 2010;

Friston, 2011). Initial functional connectivity (FC) studies focused on FC during task states
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(Friston, 1994), yet FC during the resting state has come to dominate the field (Biswal et al.,

2010). There are many reasons for this shift in focus, though perhaps the most influential is

the notion that resting-state FC may characterize an “intrinsic” functional network

architecture that is present across many (or all) brain states (Fox and Raichle, 2007; Vincent

et al., 2007), much like structural connectivity. If true, this would greatly simplify the study

of functional brain organization – from needing to consider a virtually infinite variety of task

states to considering a state space strongly constrained by a single (or few) network

architecture(s). Thus, determining the universality of the resting-state network architecture is

an important step toward understanding the brain’s functional organization.

Most comparisons between task and rest FC have observed high correspondence (Fair et al.,

2007; Fox et al., 2007; Greicius et al., 2003), but these comparisons have been limited to

small sets of task states and connections. More recent comparisons between task and rest FC

have emphasized differences in FC patterns, also during a small number of task states

(Buckner et al., 2013; Hermundstad et al., 2013; Mennes et al., 2013). Thus, some studies

advocate a more universal architecture, while others advocate differential task and resting

architectures.

We sought to test for universality of the resting-state network architecture in a more

comprehensive manner – using large-scale graphs built from FC among hundreds of brain

regions encompassing every major brain system (Power et al., 2011) across dozens of task

states (Barch et al., 2013; Cole et al., 2010) and rest. We hypothesized that resting-state FC

would reveal an intrinsic network architecture that would also be present across a wide

variety of task states. We also hypothesized that some task-evoked FC changes from this

intrinsic architecture would be evident (‘evoked’ network architectures), but that these

evoked changes would tend to be small and be restricted to a relatively small number of

connections for any given task. This would suggest that the intrinsic network architecture

represents a standard state of brain organization that is modified as necessary to implement

task demands. Generally, this would help bridge resting-state FC and task FC findings in the

literature, facilitating a more comprehensive account of human brain organization.

RESULTS

Detecting the human brain’s intrinsic and evoked network architectures

It may be that evoked FC changes occur in the presence of an intrinsic functional network

architecture that extends across many or all brain states (e.g., rest and tasks). To address this

question, we used functional MRI (fMRI) to measure temporal relationships between

hundreds of brain regions across dozens of task states and rest in single subjects. Two

datasets were used. The first dataset involved the Permuted Rule Operations cognitive

paradigm (Cole et al., 2010), which contained 12 rules that were permuted into 64 distinct

task states in short task blocks (Figure 1A). Tasks were defined as distinct cognitive

processes, such that the same stimuli could be presented across each of the 64 tasks but

distinct cognitive processes would be necessary to respond correctly to each one.

Importantly, this paradigm isolated cognitive task set differences by minimizing perceptual

changes across tasks (e.g., changes in visual field, sensory modality). To extend and test the

robustness of findings from the 64-task dataset, we also conducted analyses with a Human
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Connectome Project dataset (118 subjects) that included rest and a set of 7 tasks (Figure 1B)

(Barch et al., 2013). The 7 tasks were highly distinct from one another, though they also

differed in basic perceptual aspects (e.g., changes in visual field, sensory modality), which

could be a larger driver of FC differences than cognitive task set differences. FC was

estimated as temporal correlations (Zalesky et al., 2012) among a set of 264 putative

functional regions throughout the brain (defined independently to reduce potential statistical

biases) (Power et al., 2011). These correlations were estimated for task FC after regressing

out (across-trial mean) task-evoked activations and removing the short rest periods between

task blocks from each region’s time series.

In addition to testing for the existence of an intrinsic network architecture – an architecture

common across rest and multiple task states – we sought to identify inter-regional

connections unique to each task state, together comprising a set of evoked network

architectures. To estimate both intrinsic and evoked architectures simultaneously, we used a

tool (multislice community detection) developed to extract clusters and cluster changes in

multi-network systems (Mucha et al., 2010) and recently applied to neuroimaging data sets

(Bassett et al. 2011) (Figure 2A). Unlike other clustering algorithms, this algorithm enabled

us to identify network communities (putative functional modules) in brain networks both

within and across task states. Using this approach, we identified network communities

elicited differentially across tasks (using a low inter-task coupling parameter) and we also

identified consensus communities present across tasks (using a high inter-task coupling

parameter). The assignment of brain regions to communities is referred to as a “partition”.

The coupling parameter determines the extent to which identified partitions are constrained

by multiple task states. We were most interested in low coupling parameters, in which all

task states are considered separately, and also especially high coupling parameters

(identified by the production of a partition stable across additional increases in the coupling

parameter), in which all task states are considered together. To examine the relationship

between these community partitions and a previously defined resting-state FC community

partition (Power et al., 2011) (Figure 2B), we calculated the partition similarity using the z-

score of the Rand coefficient (Traud et al., 2011).

We hypothesized that there would be significant differences among the task partitions at low

coupling parameters, but that they would converge on a consensus partition similar to the

resting-state FC community partition at high coupling parameters. Note that the multislice

community detection approach forces a single consensus partition at high coupling

parameters, but this approach does not require that the consensus partition look like any

other particular partition (e.g., a resting-state FC partition). Further, this approach does not

require that partitions differentiate from any particular other partition at low coupling

parameters.

When the coupling parameter was low, allowing greater independence of communities

across tasks, significant differences were found in community structure across tasks (Figure

2C). This was found using an ANOVA on partition similarities with a coupling parameter of

0 (see Experimental Procedures for details): F(63,13)=21, p<0.00001. This indicates that the

brain’s functional network architecture can differ between task states, as implied by previous

task FC studies (Bassett et al., 2011; Friston, 2011; Rissman et al., 2004). When coupling
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parameters were higher, encouraging the algorithm to find common structure across tasks, a

single architecture emerged with high similarity to the resting-state network architecture:

z=24, p<0.00001. Similar results were obtained in the 7-task dataset (Figure 2D). Note that

across all tasks, and even with low coupling parameters and thus more variable partitioning

(the left side of Figure 2C), the similarity of task partitioning to resting-state partitioning

was high (task with lowest similarity: z=7, p<0.00001). This indicates that the network

architecture present across many task states is also present during rest, signifying the general

relevance of resting-state FC to task states.

Intrinsic network architecture: Resting-state and multi-task similarity

We used the multislice community approach because of its ability to simultaneously

characterize network dynamics in terms of inter-state differentiation (at low coupling

parameters) and inter-state similarity (at high coupling parameters). We next used a simpler

approach to better characterize the intrinsic network architecture observed at high coupling

parameters. This approach involved building FC matrices of pairwise functional connections

separately for multi-task and resting-state FC. We equated these two forms of FC for

comparison by calculating multi-task FC as similarly as possible to how resting-state FC

was calculated. Specifically, multi-task functional connections were calculated as

correlations across the concatenated time series of all 64 tasks (excluding rest periods). We

thus define the multi-task matrix as the network organization observed across many task

states, estimated from 58 minutes of task fMRI per subject (Figure 3A, left side). As a

comparison, we define a resting-state matrix using resting-state FC, estimated from 10

minutes of rest fMRI per subject (Figure 3A, right side).

We found that the across-subject mean resting-state FC and multi-task FC matrices were

highly similar (r=0.90, p<0.00001), supporting the existence of intrinsic FC common across

rest and a variety of task states. This result was replicated in the 7-task dataset (Figure 4):

r=0.90, p<0.00001. Note that the 7-task dataset estimates were based on 40 minutes of task

fMRI data and 56 minutes of rest fMRI data per subject. Together, these results suggest that

a highly similar underlying network architecture is present across rest and task.

We hypothesized that the equivalence of multi-task FC and resting-state FC was due to

resting-state FC reflecting the most frequent (modal) state of a given connection, suggesting

each FC value has a “standard” value that tends to remain unchanged across task states and

rest. We calculated a multi-task modal FC matrix by calculating the mode across all 64 tasks

for each connection (Figure 5). Consistent with our hypothesis, the multi-task modal FC

matrix was highly correlated with the multi-task matrix (64-task dataset: r=0.92; 7-task

dataset: r=0.97). We more directly tested this possibility by comparing the multi-task modal

FC matrix with the resting-state FC matrix. Though the correlation was lower than with the

original multi-task matrix it was still highly significant (64-task dataset: r=0.83, p<0.00001;

7-task dataset: r=0.88, p<0.00001), suggesting intrinsic FC reflects the most frequent state of

a given connection. Intuitively, this can be visualized as an approximately Gaussian

distribution for each connection across brain states, with a prominent peak reflecting the

modal value and suggesting a tendency for the connection’s strength to remain stable across

states.
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We next sought to better characterize the intrinsic network architecture by identifying the

network communities present in the resting-state and multi-task FC matrices, and comparing

these partitions to a previously-identified resting-state community partition (Figure 2B). A

standard algorithm (Blondel et al., 2008) was used to identify communities – groups of

regions with stronger within-group FC than expected in a non-parametric null model (see

Experimental Procedures for details).

We observed similar network partitions for resting-state FC and multi-task FC (Figure 3B):

z=128, p<0.00001. Further, the resting-state FC (z=94, p<0.00001) and multi-task FC (z=79,

p<0.00001) partitions were also similar to the partition identified by Power et al. (2011)

using independent resting-state data and a distinct community detection approach (Figure

2B). Note that the few observable differences between the partitions in Figure 3B were not

stable (i.e., they shifted depending on the exact partitioning parameters chosen), and likely

reflect noise in the data given the small number of subjects included in this analysis. These

results support the conclusion that there is an intrinsic FC architecture that is present across

rest and a variety of tasks, and that this network architecture is largely consistent with

known functional systems such as visual, default, and fronto-parietal systems.

Intrinsic and evoked FC: Relative contributions to task network configurations

The above results suggest the existence of both intrinsic and evoked network architectures,

and that the intrinsic network architecture reflects a standard value for each functional

connection across task states. This implies that the intrinsic network architecture continues

to shape the brain’s overall functional network structure during tasks, but that task-specific

FC changes are also present. We next assessed the degree to which intrinsic FC and evoked

FC contribute to each task’s functional network structure (i.e., each task’s FC matrix). As

before, we primarily utilized FC matrix comparisons. We illustrate these FC matrix

comparisons using the 7-task dataset (Figure 6), given the better single-task FC estimates

due to substantially larger amount of data per task (several minutes each) relative to the 64-

task dataset (approximately 22 seconds each). We continue to focus on the 7-task dataset

whenever single-task FC estimates are involved.

We assessed the relative contribution of intrinsic FC and evoked FC to each task FC matrix

by calculating the correlation between the intrinsic FC matrices and each task individually

(Figures 6 and S1A). As before, we compared whole-brain FC matrices using Pearson

correlations, but we now square the resulting r-values to facilitate inferences regarding

percent variance explained. We found that the resting-state FC matrix was highly correlated

with each individual task on average (mean Pearson correlation coefficient r2=0.38,

t(63)=153, p<0.00001), as was the multi-task FC matrix (mean r2=0.46, t(63)=166,

p<0.00001). Moreover, we observed that the multi-task FC matrix accounted for more of the

inter-task variance than did the resting-state FC matrix (Student’s t-test on the Pearson

correlation coefficients between the reference matrix and the individual task matrices:

t(63)=55, p<0.00001). Note that for these comparisons the multi-task FC matrix was

estimated from 63 tasks: the to-be-compared task was removed from the multi-task

estimates to remove circularity. We explore the implications of greater similarity of

individual tasks to multi-task than rest FC further below.
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We next asked whether similar results could be obtained from the 7-task dataset. Despite

large differences between the datasets, our findings in the 64-task dataset were also observed

in the 7-task dataset. Specifically, the resting-state FC matrix was highly correlated with

each individual task on average (mean r2=0.70, t(6)=26, p<0.00001), as was the multi-task

FC matrix (mean r2=0.81, t(6)=17, p<0.00001). Moreover, we observed that the multi-task

FC matrix accounted for more of the inter-task variance than did the resting-state FC matrix

(Student’s t-test on the Pearson correlation coefficients between the reference matrix and the

individual task matrices: t(6)=4, p=0.006). Note that the differences in effect sizes between

the datasets was due to differences in the amount of data per task (see Supplemental

Experimental Procedures), corroborating our decision to focus primarily on the 7-task

dataset for analyses involving individual task FC estimates.

To further confirm the existence of an intrinsic network architecture across diverse brain

states we used a complementary data-driven approach: principal component analysis on all 7

of the task FC matrices. We identified a single principal component that accounted for

approximately 85% of the variance in inter-task network architecture (Figure 7A).

Consistent with our prior analyses, this component looked very similar to the resting-state

FC matrix (r=0.90) (Figure 7B). Further, the weighting of every task on this first component

was positive, signifying that the component was present across all tasks. Finally, we

assessed the contribution of resting-state FC to this component relative to task FC. We

performed a second principal component analysis on 8 FC matrices: the 7 task FC matrices

and 1 resting-state FC matrix. We again identified a component that accounted for

approximately 85% of the variance in inter-state network architecture. We controlled for the

amount of data by ensuring that the resting-state FC matrix was estimated using the same

number of time points as one of the task FC matrices (the “Emotional” task). We observed

that the first principal component in this larger decomposition was most highly weighted to

the resting-state FC matrix, with a weight of 0.42 (next highest: 0.41; average weight of the

7 tasks: 0.34) (Figure 7C). These results complement our prior analyses by again

demonstrating the existence of an intrinsic functional network architecture across task states,

and by suggesting that this architecture is similar to all task-specific FC network

architectures as well as the resting-state FC network architecture.

Task-evoked differences from rest reveal task-general network changes

We next used a distinct approach to better determine the amount of FC modification relative

to rest for each of the 7 tasks. Rather than using matrix correlations, we tested each

connection independently using t-tests (p<0.05, false discovery rate corrected for multiple

comparisons). We then calculated the percentage of connections significantly changed from

rest (Figure 8A), indicating that 38.98% of connections were altered on average (minimum:

33.92%, maximum: 48.37%). This is consistent with the result obtained using matrix

correlations reported above, despite reporting in terms of the number of estimated changes

rather than variance explained. Together these results suggest most functional connections

are not changed significantly from the resting-state network architecture during a given task

state. Further confirming the generally small amount of change from rest, the average

absolute value FC change from rest across all tasks and connections was 0.04 (0.07 among

significantly changed connections).
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We next explored the properties of the relatively few (but likely functionally important)

task-evoked FC changes from rest. We began by plotting each functional connection’s

change from rest versus its connection strength at rest (Figure 8B). A negative relationship

was apparent, indicating that connections with higher resting-state FC tend to decrease

during tasks, while connections with lower resting-state FC tend to increase during tasks.

This was the case for all seven tasks (r-values: −0.24, −0.66, −0.48, −0.53, −0.61, −0.38,

−0.58; all p<0.00001).

We next plotted the significant changes from rest for each task, separately for increases and

decreases (Figure 8C). This revealed a complex pattern, with many connections being

changed across all or most tasks. Notably, there was a strong tendency for within-

community connections to decrease (percent of significant within-community FC changes

that were decreases: 79%), while there was a small tendency toward between-community

connections increasing (percent of significant between-community FC changes that were

increases: 51%). This is consistent with the observed negative correlations between task-

evoked FC changes and resting-state FC, given that the communities were defined based on

strong resting-state FC. Note that even though strong positive connections tended to

decrease, they almost always stayed strongly positive during tasks (Figure 6).

We next summarized consistent across-task FC changes from rest by subtracting the multi-

task FC matrix by the resting-state FC matrix (Figure 8D). The similarity between this FC

matrix and consistent FC changes across tasks in Figure 8C suggests that the above results

demonstrating greater individual-task FC similarity to multi-task than rest FC (Figure 6 &

Figure S1) was due to consistent task FC changes from rest. We also ran this analysis with

the 64-task dataset (Figure 8E), revealing a relatively similar result (r=0.31, p<0.00001)

despite major differences between datasets. Within-community connections for both the 7-

task (mean within-community change: −0.04) and the 64-task (mean within-community

change: −0.02) tended to decrease for multi-task FC relative to resting-state FC.

DISCUSSION

The present findings reframe resting-state FC and task FC in terms of intrinsic versus

evoked network architectures. This framework may facilitate an integrated understanding

across the sub-fields of neuroscience that currently focus separately on either resting-state or

task FC. For instance, this account suggests functional brain systems are defined by a stable

intrinsic network architecture that is present across rest and tasks (Figure 2 & Figure 3),

establishing an intimate link between resting-state FC and task FC. The intrinsic structure is

dominant: we found that FC strengths typically stay unchanged from rest once a task begins

(Figure 5 & Figure 6) and that resting-state FC accounts for most of the brain’s functional

network architecture during individual tasks (Figure 7 & Figure S1). This suggests that

while statistically significant changes in FC occur across tasks (Figure 2 & Figure 8), these

changes are relatively small (though likely important functionally) overall. We further found

that task-evoked FC changes from rest are often similar to one another, suggesting the

existence of a task-general network architecture (Figure 8). Together, these results suggest

the functional network architecture present during a given task is shaped primarily by the

Cole et al. Page 7

Neuron. Author manuscript; available in PMC 2015 July 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



intrinsic network architecture and secondarily by a limited set of task-general and task-

specific evoked FC changes.

Intrinsic and Evoked Network Architectures Jointly Shape Task FC

Previous findings identified similarity between resting-state FC and task FC for a small

number of brain regions and tasks (Biswal et al., 1995; Fair et al., 2007; Fox et al., 2007;

Greicius et al., 2003). More recently, studies examining many regions have emphasized

differences between resting-state FC and FC during a small number of tasks (Buckner et al.,

2013; Hasson et al., 2009; Mennes et al., 2013). This suggested that resting-state FC may

not be informative regarding tasks (Buckner et al., 2013), yet we identified a whole-brain

intrinsic network architecture across a wide variety of tasks and rest, suggesting resting-state

FC is relevant to task states. This is broadly consistent with previous studies showing

correlations between individual differences in resting-state FC and task performance (Cole

et al., 2011; 2012; Kelly et al., 2008; Van Den Heuvel et al., 2009), and studies that

identified correlations between resting-state FC and task co-activation patterns (based on

neuroimaging meta-analysis) (Laird et al., 2013; Smith et al., 2009). Importantly, the present

results provide a potential explanation for these observations: resting-state FC may relate to

behavior and task co-activation patterns because the intrinsic network architecture shapes

FC during both rest and a wide variety of task states.

This perspective suggests that the intrinsic network architecture influences all brain activity,

including task-evoked activation patterns. The clearest evidence for this comes from the

similarity of task-evoked activation patterns to the intrinsic network architecture (Laird et

al., 2013; Smith et al., 2009), which suggests a strong association between intrinsic FC and

task activation. Thus, it may be that even if observed FC correlations during tasks are largely

driven by spontaneous activity (Fox et al., 2007), the intrinsic network architecture

nonetheless shapes task-evoked activation patterns. The present results suggest that both

spontaneous activity and evoked activity may flow through the same functional network

architecture, with relatively minor changes to this architecture across different contexts. It

will be important for future research to make more direct links between task-evoked

activations, behavior, and the intrinsic functional network architecture in order to better

determine the extent to which the intrinsic architecture shapes both spontaneous and task-

evoked functionality.

One major reason for current interest in resting-state FC is the possibility that it can be used

to identify a universal intrinsic network architecture present across most or all brain states.

As outlined above, preliminary evidence for such universality came from studies relating

meta-analytic task activation patterns to rest FC (Laird et al., 2013; Smith et al., 2009). We

went beyond these findings to determine that the actual FC architectures during a variety of

individual task states (rather than covariance of activation patterns across tasks/studies) are

highly similar to the resting-state FC architecture. We found that this intrinsic network

architecture was not fixed, however. Instead, the intrinsic network architecture appeared to

be a “standard” state of the human brain’s functional network, with task demands having a

moderate effect on this state when considered in terms of overall brain organization (Figure

7 & Figure 8A). These results suggest that investigating resting-state FC is an efficient
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means for understanding the human brain’s functional organization across a wide variety of

brain states, but that full understanding will require the characterization of individual brain

states.

Indeed, despite their moderate effect on overall brain organization, evoked FC changes are

likely of primary importance for a variety of functional questions. For instance, the

contribution of network organization to adaptive cognition likely relies on task-specific

updates. This is consistent with recent findings indicating that a fronto-parietal system’s FC

updates are strongly related to current task demands (Cole et al., 2013). Importantly, such

findings are consistent with the present results, which indicate that a relatively small number

of connections are changed during task performance, since only a small number of pathways

are likely involved in any given task context (e.g., from a particular representation in visual

cortex to a particular finger representation in motor cortex during a visual-motor task).

Task-evoked Changes from Rest Reveal a Task-general Dynamic Architecture

In addition to a standard network architecture, the brain’s functional network architecture

during a given task appears to reflect 1) task-specific evoked FC, and 2) task-general evoked

FC. We identified this task-general network architecture in several ways, perhaps most

straightforwardly as the difference between the multi-task FC matrix and the resting-state

FC matrix (Figure 8D). This revealed a complex set of FC changes, with a prominent pattern

of decreased within-system FC during task performance. It will be important for future

research to determine what this pattern means, and why it is so consistent across diverse task

states.

One possibility is that this effect is due to some difference in electrophysiological brain

rhythms during resting state relative to task. For instance, electrophysiological alpha

rhythms that are consistently present during rest (Buzsáki, 2006) may indirectly result in

increased synchrony in the BOLD signal, such that shifts to other frequencies during task

performance decreases fMRI-based FC. Another possibility is that task performance requires

a breakdown of network communities (reflected in decreased within-system FC), such that

activity can better flow between systems with diverse functions.

Another notable task-general pattern is the increase between the visual system and fronto-

parietal, default-mode, and subcortical systems. It will be important to determine the

significance of this pattern. The consistent FC decrease between fronto-parietal and default-

mode systems is also notable, given evidence that the fronto-parietal system contributes to

decreases in default-mode activity during a variety of tasks (Anticevic et al., 2012; Raichle,

2010).

More broadly, the observation of a task-general network architecture suggests that multi-

task FC might better predict the functional brain architecture in a wide variety of states than

resting-state FC. Consistent with this conclusion, the multi-task FC architecture was more

correlated with most individual task FC architectures than the resting-state FC architecture,

for both datasets (Figure 6 & Figure S1A). It may be, however, that the task-general

architecture is actually a modification of the resting-state architecture, which better reflects

the “true” intrinsic network architecture given that rest involves especially low metabolic
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demand (Raichle et al., 2001). Consistent with this, we found that rest FC was most related

to a network architecture component common across all tested brain states (Figure 7).

Overall these results suggest that the resting-state network architecture better reflects the

intrinsic architecture, which is consistently modified by the task-general architecture across

a wide variety of tasks.

Limitations

The present work involves several limitations worth noting. First, while our study

investigates an especially large sample of task states per subject, this sample is nonetheless

small relative to the virtually infinite variety of possible tasks. However, our results were

similar across two datasets with highly distinct sets of tasks, suggesting these results will

generalize to a wide variety of other tasks as well. Second, we used a limited set of 264

regions of interest to estimate FC throughout the brain (Power et al., 2011). We used this set

of regions because it sampled from every major brain system, was estimated using

independent data (reducing potential circularity or biases from over-fitting in our analyses

(Kriegeskorte et al., 2009)), and came with an independently identified node community

partition (again, to reduce potential biases). Third, less data per task was available relative to

many task FC studies, potentially reducing the reliability of our results. We were able to find

statistically significant differences across task functional connections based on inter-subject

variance (Figure 2 & Figure 8), suggesting results were nonetheless fairly reliable across

subjects. Further, most results were similar across the two datasets despite substantial

differences in the amount of data per task.

Future Directions

It will be important for future research to identify the forces that shape the intrinsic network

architecture. One likely possibility is that structural connectivity shapes spontaneous and

evoked activity flow through brain networks (Adachi et al., 2011; Goñi et al., 2014),

resulting in similar time series correlations across rest and task states. Importantly, however,

structural connectivity cannot fully account for resting-state FC (Goñi et al., 2014). This

suggests that synaptic efficacy – the tendency for one neuron to fire in response to another

anatomically connected neuron – also plays a role in shaping the intrinsic network

architecture. Consistent with this possibility, resting-state functional connections change

with task training (Lewis et al., 2009), suggesting the intrinsic network architecture partially

reflects learning (possibly via synaptic modifications) from previous task experiences. The

present results suggest this learning may be Hebbian in nature (Hebb, 1949). This is because

resting-state FC looks similar to multi-task FC (Figure 2 & Figure 3), which forms a

consensus across a broad sampling of task experiences similar to how Hebbian learning

would, given the many tasks implemented in daily life. It will be important for future

research to more directly investigate the role of Hebbian-like learning in shaping the

intrinsic network architecture, perhaps using task training in combination with rest, task, and

multi-task FC techniques.

It will also be important to identify the exact neuronal mechanisms by which evoked FC is

altered across tasks. For example, this may occur via short-term plasticity (Yao et al., 2007;

Zucker and Regehr, 2002) or via altered synchrony of oscillations among neuronal
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populations (Buzsáki and Draguhn, 2004; Fries, 2005), possibly coordinated by the fronto-

parietal control system (Cole et al., 2013; Miller and Cohen, 2001; Sakai, 2008). Indeed,

recent results suggest the fronto-parietal system consists of flexible hubs – brain regions

with especially high concentrations of evoked FC dynamics with a variety of brain systems

(Cole et al., 2013). It will be critical for future research to further characterize the role of

fronto-parietal and related systems in top-down control of whole-brain network

reconfiguration, as well as the role of distributed and self-organizing processes that are

independent of these systems.

The characterization of stable and dynamic FC in the present study also suggests the need to

reconcile these findings with evidence that resting-state FC is not stable over time

(Hutchison et al., 2013). For instance, it will be important to determine if the intrinsic

network architecture identified here is also prominent across temporal windows during rest,

much like was observed here across task states. Further, it will be important to test whether

the connections that changed the most across tasks here are also those that change the most

across temporal windows during rest. Such a finding would suggest the “flexibility” of a

functional connection is a stable property of that connection, and therefore something that

could be used to predict brain dynamics across a variety of states.

Conclusions

In this report we found that many of the inter-region temporal relationships observed during

rest are also present during a wide variety of tasks. This intrinsic network architecture

reflects the most frequent state of each functional connection across task states, suggesting it

is a standard state of the brain. Further, changes from the intrinsic FC network architecture

tend to be limited, as the intrinsic network architecture accounts for more than half of the

variance in the functional network structure during any given task. When task-evoked

differences are present, however, they consist of task-general and task-specific changes from

rest. Together, these results bridge perspectives emphasizing either intrinsic FC or task-

evoked FC, suggesting task FC is composed primarily of intrinsic FC and secondarily of

task-evoked FC. Thus, this work provides a framework for future studies to characterize FC

during tasks in terms of both intrinsic FC identified using resting states and evoked FC

identified across tasks and in particular task contexts.

EXPERIMENTAL PROCEDURES

Data collection

Two functional magnetic resonance imaging (fMRI) datasets were collected. We collected

the first dataset on a 3T Siemens Tim TRIO, with 15 right-handed participants (eight male,

seven female), aged 19 –29 (mean age 22). Participants were recruited from the University

of Pittsburgh (Pittsburgh, PA) and surrounding area. All participants gave informed consent.

Further details regarding participant selection for this dataset can be found elsewhere (Cole

et al., 2010). Thirty-eight transaxial slices were acquired every 2000 ms (field of view, 210

mm; echo time, 30 ms; flip angle, 90°; voxel dimensions, 3.2 mm3) with a total of 300 echo-

planar imaging volumes collected for the rest run and 216 volumes per task run. Siemens’

implementation of GRAPPA (generalized autocalibrating partially parallel acquisition) was
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used to double the image acquisition speed (Griswold et al., 2002). Ten minutes of rest (eyes

open with fixation) fMRI data were collected, followed by ten task fMRI runs involving 64

tasks (4 previously practiced, 60 novel) (Cole et al., 2010). The tasks were presented in short

blocks (average duration = 22 s) consisting of task instructions (4 s) followed by three trials

(2 s each). Each trial event was followed by a variable 2 to 6 s delay, while each task block

was followed by a variable 12 to 16 s delay.

The second dataset was collected as part of the Washington University-Minnesota

Consortium Human Connectome Project (Van Essen et al., 2013). Participants were

recruited from Washington University (St. Louis, MO) and the surrounding area. All

participants gave informed consent. The data used were from the first and second quarter

releases, consisting of data from 139 participants. Data from 21 subjects were not used

because one or more of the data runs were not collected for these subjects, such that data

from 118 subjects were included in the analyses. Whole-brain echo-planar imaging

acquisitions were acquired with a 32 channel head coil on a modified 3T Siemens Skyra

with TR = 720 ms, TE = 33.1 ms, flip angle = 52°, BW = 2290 Hz/Px, in-plane FOV = 208

× 180 mm, 72 slices, 2.0 mm isotropic voxels, with a multi-band acceleration factor of 8

(Ugurbil et al., 2013). Data were collected over two days. On each day 28 minutes of rest

(eyes open with fixation) fMRI data across two runs were collected (56 minutes total),

followed by 30 minutes of task fMRI data collection (60 minutes total). Each of the 7 tasks

was completed over two consecutive fMRI runs. Resting-state data collection details for this

dataset can be found elsewhere (Smith et al., 2013), as can task data details (Barch et al.,

2013).

Data preprocessing

In brief, the 64-task dataset preprocessing consisted of standard functional connectivity

preprocessing (typically performed with resting-state data), with several modifications given

that analyses were also performed on task-state data. Resting-state and task-state data were

preprocessed identically in order to facilitate comparisons between them. We performed

slice timing correction, motion correction, removal of the first five volumes of each run,

normalization to a Talairach template, within-run intensity normalization to a whole brain

mode value of 1000, linear trend removal for each run, regression of nuisance variables (24

motion parameters, ventricle, whole brain, and white matter signals, along with signal

derivatives) using linear regression, and spatial smoothing (6-mm full width at half

maximum). Note that results were similar with and without whole brain (global) signal

regression. Unlike standard resting-state functional connectivity preprocessing a low-pass

temporal filter was not applied, given the possible presence of task signals at higher

frequencies than the relatively slow resting-state fluctuations. Data volumes with high

motion were censored to reduce potential motion artifacts (Power et al., 2013). We used a

framewise displacement threshold of 0.5, above which a given volume would be removed.

This threshold was chosen to be similar to previously chosen thresholds, while also allowing

at least 5 volumes per subject for most tasks. Note that most tasks included well above this

number of volumes, and only one task (for one subject) was removed from further analysis

because the number of remaining volumes fell below 5.
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We sought to preprocess the 7-task dataset in a similar fashion as the 64-task dataset, though

some differences were necessary due to differences in data collection methods. For instance,

non-linear warping was required to correct spatial distortions in this dataset. This and related

corrections (spatial normalization to a template, motion correction, intensity normalization)

were already implemented in a minimally processed version of the 7-task dataset described

elsewhere (Glasser et al., 2013). With the volume (rather than the surface) version of the

minimally preprocessed data, we used AFNI (Cox, 1996) to additionally remove nuisance

time series (motion, ventricle, whole brain, and white matter signals, along with their

derivatives) using linear regression, remove the linear trend for each run, and spatially

smooth the data (4-mm full width at half maximum). Unlike the 64-task dataset, motion

censoring was not applied given relatively minimal movement by participants and a desire to

see if replication of results would be possible without motion censoring. In order to make

this dataset comparable to the 64-task dataset the data were temporally downsampled (as the

last step of preprocessing) by averaging data from every three consecutive volumes (making

a 2160 ms TR, close to the 2000 ms TR in the 64-task dataset). This had an effect similar to

a mild low-pass temporal filter on the data (removing frequencies above 0.46 Hz).

Note that we performed the main multi-task FC to rest FC comparison (Figure 4) without

downsampling the 7-task dataset as described above, indicating that the downsampling

preprocessing step had only minimal effect on the results. Specifically, the resting-state FC

matrix comparison to the multi-task FC matrix involved almost identical results with

(r=0.89899) and without (r=0.89872) downsampling. Further confirming this conclusion, the

resting-state FC matrix was highly similar with and without downsampling (r=0.995). This

was also true for the multi-task FC matrix (r=0.991).

Data were sampled from a set of 264 brain regions (rather than individual voxels) in order to

make inferences at the region and systems level. This particular set of regions was used

rather than anatomically defined sets of regions in order to reduce the chance of combining

signal from multiple functional regions (Wig et al., 2011). These brain regions were

identified using a combination of resting-state functional connectivity parcellation (Cohen et

al., 2008) and task neuroimaging meta-analysis (Power et al., 2011). A consensus partition

across the originally reported threshold-specific partitions was used (Cole et al., 2013). Data

were summarized for each region by averaging signal in all voxels falling inside each

region.

Preprocessing was carried out using Freesurfer and custom code in MATLAB 2012b

(Mathworks) for the 64-task dataset, and AFNI (Cox, 1996) for the 7-task dataset (using the

minimally preprocessed version of the data (Glasser et al., 2013)). Further analysis was

carried out with MATLAB 2012b (Mathworks) and R 2.15.1 (The R Foundation for

Statistical Computing).

FC estimation

We estimated FC using Pearson correlations between time series from all pairs of brain

regions (all computations used Fisher’s z-transformed values, which were reconverted to r-

values for reporting purposes). This was straightforward for resting-state data, as there were

no additional steps after preprocessing prior to calculating these correlations. For task data,
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we sought to suppress or remove influences of (across-trial mean) task-related activations on

task-related changes in functional connectivity. This involved standard general linear model

regression of task events, followed by use of the residuals from these regression models for

estimating task FC, as done previously (Cole et al., 2013; Fair et al., 2007). Note, however,

that we found this task regression step had only minimal effects on the results. See the

Supplemental Experimental Procedures for details.

Multislice community detection

The categorical version of a multislice community detection algorithm (Jutla et al., 2011;

Mucha et al., 2010) was applied to each subject’s set of task FC matrices. This version of the

algorithm considers each state of the modeled graph categorically (each network is an

independent sample) rather than in a sequential order (wherein each network is related to the

other networks by an ordinal variable like time). The algorithm was applied with a default

structural resolution parameter of 1, and the inter-task coupling parameter was varied from 0

to 2 (in 0.2 increments; for methodological and algorithmic details, see (Bassett et al.,

2013a)). Similar to previous applications to neuroimaging data sets, the algorithm was run

with 100 random optimizations each time (Bassett et al., 2011; 2013a; 2013b; Doron et al.,

2012). To identify a representative partition, several consensus algorithms exist (Bassett et

al., 2013a; Doron et al., 2012; Lancichinetti and Fortunato, 2012). Similar to Doron, et al.

(2012), we identified the optimization most similar (as defined by the maximum pairwise z-

score of the Rand coefficient; (Traud et al., 2011)) on average to the other 99 optimizations

used for subsequent analysis. We then plotted the similarity (Traud et al., 2011) of each

community partition to a previously-defined resting-state FC community partition (Cole et

al., 2013; Power et al., 2011) for each inter-task coupling parameter (Figure 2B).

Partition similarity ANOVA

An ANOVA was run on the partition similarities estimated when the coupling parameter

was 0. The dependent variable was partition similarity (i.e., the partition similarity z-scores

(Traud et al., 2011)), while the categorical variables were task number (N=64) and subject

number (N=15). Task number was a fixed effect, while subject number was a random effect.

We reported the main effect of task number.

Multi-task FC estimation

This analysis involved removing all inter-block rest periods from all regions’ time series,

followed by computing pairwise temporal correlations across all concatenated task periods.

Multi-task modal FC estimation involved calculating FC for each task separately, rounding

functional connections to the nearest 0.01, and then identifying the most frequent FC value

across the tasks for each connection. Modal values that occurred only once across tasks for a

given subject were removed, and any ties (i.e., values with the same frequency) were

resolved by taking the median of the tied values. Modal values were then averaged across

subjects for reporting. The modal analysis can be interpreted as asking: “If FC values

repeated across tasks, did they tend to look like resting-state FC values?”
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FC matrix comparison

We compared FC matrices by taking the upper triangle of each matrix (i.e., excluding self-

connections and redundant connections), applying a Fisher’s z-transform to the FC values,

and computing a Pearson’s correlation on the resulting vectors of FC values.

Static community detection

See Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• There is an “intrinsic” functional network architecture present across many tasks

• The intrinsic architecture is highly similar to the resting-state architecture

• Tasks modify the intrinsic architecture to produce “evoked” network

architectures

• Task-evoked changes common across tasks form a task-general network

architecture
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Figure 1. Testing multiple tasks per subject
A, The first fMRI dataset involved 64 distinct tasks, composed of unique combinations of

task rules (Cole et al., 2010). Each subject (N=15) performed all 64 tasks. B, The second

dataset involved 7 tasks chosen to elicit the involvement of all major cognitive domains and

brain systems (Barch et al., 2013). Each subject (N=118) performed all 7 tasks.
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Figure 2. Multislice community detection reveals a network architecture across tasks similar to
an independently-identified resting-state network architecture
A, Multislice community detection identifies clusters of highly connected nodes, either

separately (low coupling parameter) or jointly (high coupling parameter) across multiple

states. Adapted from Mucha et al. (2010). B, The community partition identified by Power,

et al. (2011) using independent resting-state data, color-coded by community assignment. C,

Similarity of each task partition to the resting state partition reported in Power, et al. (2011).

When the coupling parameter is low, changes in community structure across tasks are

readily apparent, indicating evoked FC changes. In contrast, as the coupling parameter

increases, a consensus partition is identified that is highly similar to an independently

identified resting-state FC partition (Power et al., 2011), suggesting the presence of an

intrinsic network architecture across tasks. Error bars indicate standard errors across

subjects. D, Similar results in the 7-task dataset.
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Figure 3. Multi-task architecture is highly similar to the resting-state architecture, reflecting the
existence of an intrinsic network organization
A, Group-averaged multi-task and resting-state functional connectivity matrices, with brain

regions ordered according to putative functional systems (coded by color bands along the

matrix edges) previously identified from resting-state data (Power et al., 2011). Strong intra-

module FC demonstrates community structure consistent with functional systems. Multi-

task FC (left) reflects the central tendency of inter-regional correlations across tasks, while

resting-state FC (right) reflects inter-regional correlations in spontaneous activity. The high

similarity between these two matrices (Pearson correlation coefficient r=0.90, p<0.00001)

suggests that multi-task and resting-state FC both reflect an intrinsic functional network

architecture. B, A standard community detection approach (Blondel et al., 2008) was used to

partition multi-task and resting-state FC into putative functional brain systems. The

partitions were similar to the independently defined resting-state FC partition (Figure 2B):

z=94 for resting-state, z=79 for multi-task.
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Figure 4. Multi-task intrinsic FC is also highly similar to resting-state FC in the 7-task dataset
The multi-task and resting-state FC comparison analysis was repeated with the 7-task

dataset, with identical conclusions as with the 64-task dataset. Note the high similarity not

only between these two matrices, but also their similarity to the matrices from the 64-task

dataset (Figure 3A).
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Figure 5. Multi-task modal FC matrices
The modal FC values across tasks are visualized for both datasets. This consisted of

identifying the most frequently occurring value across all task states for each functional

connection.
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Figure 6. Comparison of intrinsic FC with individual task FC
Each of the 7-task dataset task FC matrices is visualized along with the multi-task and

resting-state FC matrices. Note that the Pearson correlation coefficients (r) for comparisons

with the multi-task FC matrix were based on 6 tasks: the to-be-compared task was removed

from the multi-task estimates to remove circularity. These results illustrate the presence of

intrinsic FC (a similar FC pattern across all tasks), along with evoked FC changes across

tasks.
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Figure 7. A single principal component accounts for most inter-task network architecture
variance
A, The first principal component across the 7 task FC matrices accounted for 85% of the

inter-task FC matrix variance. B, The first principal component (from panel A) was highly

similar to the resting-state FC matrix (r=0.90). C, Another principal component analysis

additionally included the resting-state FC matrix (for a total of 8 FC matrices). The first

principal component (again accounting for 85% of variance) loaded most heavily on the
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resting-state FC matrix, suggesting this component is most related to the network

architecture at rest (though it was also related to all individual task FC architectures).
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Figure 8. Task-evoked FC changes from rest reveal a task-general dynamic network architecture
A, Each task’s whole-brain FC matrix was compared to the resting-state FC matrix (from

Figure 4). The task order is the same as in Figure 1B. B, All task FC changes from rest are

plotted (across all seven tasks) versus their resting-state FC values. Significant changes from

rest are black, while non-significant changes are grey. Most of the connections (61%) were

non-significant. The correlation between task FC changes and rest FC was negative for all

seven tasks (mean r=−0.49). C, The count of how many tasks involved significant changes

from rest plotted for each connection. Many connections changed for all seven tasks (11% of
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changed connections). D, Differences between the multi-task FC matrix and resting-state FC

matrix (left vs. right sides of Figure 4), summarizing general changes from rest that are

common across tasks. E, The same analysis for the 64-task dataset, on the same scale as

panel D. The matrices in D and E were relatively similar (despite major differences between

datasets): r=0.31, p<0.00001.
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