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Abstract

Optimization models explain many aspects of biological goal-directed movements. However, most

such models use a finite-horizon formulation which requires a pre-fixed movement duration to

define a cost function and solve the optimization problem. To predict movement duration, these

models have to be run multiple times with different pre-fixed durations until an appropriate

duration is found via trial and error. The constrained minimum time model directly predicts

movement duration; however, it does not consider sensory feedback and is thus only applicable to

open-loop movements. To address these problems, we analyzed and simulated an infinite-horizon

optimal feedback control model, with linear plants, that contains both control dependent and

independent noise and optimizes steady-state accuracy and energetic costs per unit time. The

model applies the steady-state estimator and controller continuously to guide an effector to, and

keep it at, target position. As such, it integrates movement control and posture maintenance,

without artificially dividing them with a precise, pre-fixed time boundary. Movement pace is

determined by the model parameters and the duration is an emergent property with trial-to-trial

variability. By considering the mean duration, we derived both the log and power forms of Fitts’s

law as different approximations of the model. Moreover, the model reproduces typically observed

velocity profiles and occasional transient overshoots. For unbiased sensory feedback, the effector

reaches the target without bias, in contrast to finite-horizon models that systematically undershoot

target when energetic cost is considered. Finally, the model does not involve backward and

forward sweeps in time, its stability is easily checked, and the same solution applies to movements

of different initial conditions and distances. We argue that biological systems could use steady-

state solutions as default control mechanisms and might seek additional optimization of transient

costs when justified or demanded by task or context.
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1. Introduction

Many optimization models for goal-directed movement control have been proposed (Flash

and Hogan, 1985; Uno et al., 1989; Harris and Wolpert, 1998; Todorov and Jordan, 2002;

Scott, 2004; Todorov, 2004; Diedrichsen et al., 2010). Despite their enormous success in

explaining motor behaviors, these models adopt a finite-horizon formulation by optimizing a

cost function whose definition requires specifying the movement duration in advance.

Consequently, they pre-fix duration instead of predicting it (Tanaka et al., 2006). Some

models have been extended to predict duration and simulate Fitts’s law (Harris and Wolpert,

1998; Guigon et al., 2008), the empirical characterization of speed-accuracy trade-off in goal

directed movements (Fitts, 1954). However, they have to be run many times with different

pre-fixed durations until an appropriate duration, according to some criteria, is found. This

procedure assumes that motor systems run trial-and-error internal simulations using

complete knowledge of the control problem. For feedback models, this knowledge includes

both actual and estimated system states, which is unrealistic and defeats the purpose of

estimating states in the first place. Alternatively, motor systems would need to store or

approximate all durations for all possible movements, sensory feedback conditions, system

initial conditions (position, velocity, acceleration, etc.), target distances and widths, and

update this information whenever plant or noise parameters change (e.g., change of clothes

or fatigue). As these possibilities appear implausible or inefficient, Tanaka et al. (2006)

proposed a constrained minimum time model, which directly predicts movement duration

[see also related work by Harris (1998) and Harris and Wolpert (2006)]. However, that

model does not consider sensory feedback and is thus only applicable to fast or open-loop

movements.

To address these fundamental limitations, we propose an alternative framework based on

Phillis’s (1985) infinite-horizon optimal feedback control model that includes both control-

dependent and independent noise. Unlike finite-horizon formulations, this model considers

steady-state costs per unit time, rather than transient costs integrated over a pre-fixed period,

thus eliminating the need to know movement duration in advance. To relate this model to

biological motor control, we hypothesized that motor systems apply steady-state solutions

continuously to estimate system state, execute movements, and maintain posture. Movement

duration is an emergent property of the model. Huh et al. first discussed infinite-horizon

optimal control for goal-directed movements in an abstract (Huh et al., 2010a) and a

conference paper (Huh et al., 2010b). Independently, we reported some preliminary results

in a conference paper (Jiang et al., 2011). These studies share infinite-horizon framework

but differ considerably in formulation, solution, and analysis. For example, Huh et al.

assumed that system state is known exactly whereas we estimated the state by combining

internal prediction and partial observations and thus solved for coupled optimal estimator

and controller. Huh et al. investigated relationships among different models and simulated

Fitts’s law and motor motivation (Mazzoni et al., 2007) whereas we analyzed Phillis’s

(1985) solution to examine its stability and to derive, as well as simulate, both the log and

power forms of Fitts’s law (Meyer et al., 1988; MacKenzie, 1992; Tanaka et al., 2006).
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2. Theory

We applied Phillis’s (1985) infinite-horizon, optimal feedback control model to goal-

directed movements. Similar to other linear models of stochastic optimal feedback control

[e.g., Todorov (2005)], we consider a system governed by stochastic differential equations

(Phillis, 1985):

(1)

(2)

where x is the state n-vector, u is the control m-vector, and y is the sensory-feedback k-

vector (observations). The first component of x is the position of the end effector (e.g., hand)

being controlled. For one-dimensional movements that follow second-order Newtonian

dynamics and a second-order equation relating neural control signal u to muscle force

(Winters and Stark, 1985), x has a dimension of n=4 (Todorov and Jordan, 2002; Tanaka et

al., 2006). β and γ are scalar Wiener processes, and ω and ζ are n- and k-vector Wiener

processes; they model noise in control and sensory feedback. All the Wiener processes and

their components are independent of each other. They are standardized so that over a time

step dt, the corresponding Gaussian white-noise processes have a variance dt. A, B, C, D, F,

G, and Y are constant matrices of proper sizes. A and B define the motor plant according to

Newtonian mechanics and the muscle-force equation; an example is Eq. 23 below. C is the

observation matrix whose rank can be less than n to include partial observation cases and D

determines observation noise. The F and Y terms are, respectively, the state- and control-

dependent noise, also known as multiplicative noise or signal-dependent noise, and the G

term represents control-independent noise. (We modified Phillis’s notations slightly here

and below to avoid notational conflicts.)

The actual state x is not directly available for control but has to be estimated according to the

linear equation:

(3)

where the first term on the right is the prediction based on an internal model of the system

dynamics and an efference copy of the control signal, and the second term is the correction

according to the difference between the received and expected sensory feedback.  is an

unbiased estimator of x if the sensory feedback is unbiased. The control signal is assumed to

be a linear function of :

(4)

The goal is to determine the Kalman gain matrix K and the control law matrix L by

optimizing certain costs (see below).

Phillis (1985) studied both a finite- and an infinite-horizon formulation. Since the former has

the same problem of pre-fixing movement duration as discussed in Introduction, we focused
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on the latter. As no terminal time is pre-specified, Phillis defined the estimator cost as the

steady-state variance of the estimation error :

(5)

and the controller cost as the steady-state cost per unit time according to:

(6)

where matrices U,Q,and R are constant and symmetric; they are assumed to be positive

definite (Phillis, 1985) presumably for stability considerations although our simulations

show that some of them can be positive semi-definite. In the Results section, we will discuss

a criterion for checking control-system stability. The target state is always defined to be x =

0 so that x really represents the difference between the current and the target state. This

relative representation agrees with the fact that biological systems are more sensitive to

relative than absolute quantities. The first term in Eq. 6 measures the accuracy of reaching

the target. The second term is the energetic cost that measures effort.

To solve the problem, Phillis (1985) first defined:

(7)

where X is an extended state vector, and transformed the system equations to:

(8)

With the further definitions:

(9)

(10)

where P is the covariance matrix of X (with respect to target X=0, not the mean of X), the

system equations and the total cost are transformed to:

(11)

(12)
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where tr represents matrix trace. Because of the signal-dependent noise, the estimator and

controller cannot be solved separately, so their costs are combined. The problem becomes

optimizing Eq. 12 under the constraint of Eq. 11. Importantly, the original stochastic system

equations have been converted to a deterministic equation of covariance P, and the

optimization problem can be solved with Lagrange multiplier method. For steady states,

, J = tr(VP), and the solution is (Phillis, 1985):

(13)

(14)

(15)

(16)

where

(17)

contains Lagrange multipliers. Note that unlike typical algebraic Riccati equations, Eqs. 15

and 16 only contain linear terms of S and P, and can be written in the standard form of a

matrix multiplying a vectorized S or P by using Kronecker products. Also note that in

addition to the steady-state cost and solution considered above, one could use other costs,

such as an integration of temporally discounted cost terms, in an infinite-horizon framework.

We simulated and analyzed the steady-state solution to explore its implications for

biological motor control. The steady-state L, K, P, and S are constant matrices and their

computation from Eqs. 13-16 does not involve backward or forward sweeps in time.

Although steady state P is constant, P evolves in time according to Eq. 11 in the process of

reaching its steady-state value.

Our key assumption is that biological systems apply the steady-state estimator (K) and

controller (L) continuously for both transient movements and steady-state posture

maintenance without pre-specifying an artificial time boundary between these two

processes. Therefore, steady-state K and L are used in ,  and  matrices of Eq. 11 to

determine the time course of P.

For simulations, we used the following numerical procedure (Jiang et al., 2011):

1. Initialize L and K

2. Solve S and P according to Eqs. 15 and 16
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3. Update L and K according to Eqs. 13 and 14

4. Go to step 2 till convergence

We simulated single-joint movements of the forearm at the elbow with plant dynamics and

parameters as in Tanaka et al. (2006) and different from Jiang et al. (2011). The elbow angle

θ satisfies the Newtonian equation:

(18)

where I is the moment of inertia and b the intrinsic viscosity (damping). The net muscle

torque τ is related to a scalar control signal u according to:

(19)

where ta and te are muscle activation and excitation time constants (Winters and Stark,

1985). We combine Eqs. 18 and 19 to obtain:

(20)

where:

(21)

Defining the state vector with angular position, velocity, acceleration, and jerk as

components:

(22)

we thus obtain linear system dynamics in the form of Eq. 1 with:

(23)

As in Tanaka (2006), we let I=0.25 kg m2, b=0.2 kg m2/s, ta=0.03 s, and te=0.04 s. The

noise parameters in Eq. 1 were F=0, Y=0.02B, G=0.03I4, where I4 is the four-dimensional

identity matrix. The parameters for sensory feedback Eq. 2 were:

(24)

This C matrix assumes that the fourth component of the state vector is unobservable

(Todorov, 2004). The parameters for the cost functions were Q = diag(1, 0.01, 0, 0), R =

0.0001, and U = diag(1, 0.1, 0.01, 0).
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For the ease of the following presentation, we always convert the elbow angle θ to the end

effector (“hand”) position s along the movement path by multiplying θ with the forearm

length (L0=0.35 m). This is equivalent to using a state vector  and multiplying

the D and G matrices by L0.

We have obtained similar results with other parameter sets. The Matlab code is available

from NQ upon request. The convergence of the numerical procedure depends on the

parameters but is generally fast. For our standard parameter set, the convergence typically

occurred within 20 iterations when L and K were initialized to random numbers. The

convergence was even faster (within 10 iterations) if L and K were initialized to a previous

solution for a different parameter set.

We finally note that the estimator matrix K and the controller matrix L can be computed

before a movement starts whereas the control signal u(t) can only be determined during a

movement because it depends on the estimated state vector, which in turn depends on

sensory feedback. In this sense, the model involves both pre-planning and online processing.

However, in the special case where K is set to zero so as to ignore sensory feedback, the

state estimation (Eq. 3) relies on efference-copy-based internal prediction alone, and the

entire control-signal sequence can be pre-computed before movement onset. Under this

open-loop condition, because accumulation of noise over time is not corrected by sensory

feedback, the variance of the state with respect to the mean grows monotonically with time.

For typical reaching movements, however, the variance of the hand position with respect to

the mean is smaller at the end of a movement than during the movement (cf. Fig. 5b),

suggesting that the motor system uses feedback when it is available (Woodworth, 1899;

Meyer et al., 1988; Todorov and Jordan, 2002).

3. Results

We considered Phillis’s exact steady-state solution to an infinite-horizon optimal feedback

control model, which includes both signal dependent and independent noise (see Methods).

We first applied the model to arm movements directed to a target and demonstrate that the

model captures key characteristics of biological reaching movements without pre-specifying

movement duration. Some of these characteristics are not shared by finite-horizon control

models. We then analyzed system stability and derived both the log and power forms of

Fitts’s law (MacKenzie, 1992; Tanaka et al., 2006) as different approximations of the model.

Finally, we validated our analysis numerically.

3.1 Movement profiles

We considered single-joint reaching movements. We numerically obtained optimal steady-

state estimator (K) and controller (L) and then applied the results to move the hand toward a

target (whose position is defined as 0) according to system dynamics. The hand position and

speed as a function of time are shown in panels a and b of Fig. 1, respectively. In each panel,

the curves represent results from 20 sample trials. The model correctly moved the hand to

the target and produced velocity profiles similar to those observed experimentally (Morasso,

1981; Cooke et al., 1989). Importantly, movement duration was not pre-fixed. Instead, the
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steady-state estimator and controller act continuously to move the hand toward, and keep the

hand on, the target, without specifying when the transient movement ends and the posture

maintenance begins. Fig. 1c shows the control signal u (Eq. 4) as a function of time, with a

biphasic profile; the net torque τ (not shown) is a double low-pass filtered version of u (Eq.

19).

We have run additional simulations to examine how control-dependent noise (Y), control-

independent noise (G), and the relative importance of the accuracy and energetic costs (R)

affect movement. We scaled each of these qualities by five folds while keeping all other

parameters constant. Increasing the control-dependent noise decreased the peak speed,

increased the movement duration and variability, but had little effect on the final, steady-

state variability. This is because the control signal, and thus the control-dependent noise,

were large only during the movement. In contrast, increasing the control-independent noise

increased the final, steady-state variability, as expected. Surprisingly, this change also

increased the peak speed and reduced the movement duration a little; the reason is that a

larger steady-state variability called for a larger control signal u (via a larger L) to improve

accuracy. Increasing the importance of the energetic cost (larger R) relative to the accuracy

cost reduced the peak speed and increased movement duration. Interestingly, none of these

manipulations had significant impact on the skewness of the speed profile.

3.2 Transient energetic cost and the steady-state-control hypothesis

Fig. 1 reveals that during transient movements, the hand either gradually approaches the

target (from the negative starting position to 0 target position in Fig. 1a) or slightly

overshoots (above 0 in Fig. 1a) and then returns to the target. These features match

experimental data well (Morasso, 1981; Cooke et al., 1989). Since the system operates

continuously, the hand always reaches, or fluctuates slightly around, the target, provided that

the sensory feedback is unbiased. Interestingly, these features are not shared by finite-

horizon feedback control models that also include accuracy and energetic costs; rather, those

models systematically under-shoot the target at the end of movements despite unbiased

sensory feedback (Todorov and Jordan, 2002; Todorov, 2005; Liu and Todorov, 2007). The

reason is simple: the optimization is a compromise between accuracy and energetic costs

over a fixed time period, and this compromise produces an accuracy bias at the end of the

fixed time. Other things being equal, an under-shoot bias requires less energy than an over-

shoot bias of the same magnitude, and is thus optimal according to finite-horizon models.

The infinite-horizon model does not have this undershoot bias mainly because transient

energetic cost does not affect steady-state solution, which drives the hand toward target

constantly. This can be seen by re-writing Eq. 6 as:

(25)

Thus, transient behavior within any finite time t0 does not affect steady-state cost or

solution. To uniquely specify transient behavior, we hypothesize that biological control
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systems parsimoniously apply the same steady-state solution to both transient movements

and steady-state posture maintenance. Fig. 1 shows that this steady-state-control hypothesis

reproduces typical movement profiles without pre-fixing movement duration or

systematically under-shooting the target.

3.3 Broad applicability of the steady-state solution

Another advantage of our steady-state-control hypothesis is that once the optimal estimator

and controller are obtained, they are applicable to movements of any distances, target

widths, initial conditions or perturbations of the state, and durations because the steady-state

solution does not depend on those parameters but only on the plant and cost parameters. To

illustrate, we repeated Fig. 1 simulations with one change: the hand was no longer stationary

at the starting point but had an initial velocity either away from (−1 m/s) or toward (+1 m/s)

the target. The results shown in Figs. 2 and 3 were obtained with exactly the same estimator

and controller as for Fig. 1. When the initial velocity was away from the target (Fig. 2), the

system used a larger control signal to turn the hand around, producing a larger control-

dependent noise, larger variation among individual trials, and a longer time to converge on

the target. The opposite was true when the initial hand velocity was toward the target (Fig.

3). A finite-horizon model would have to know different movement durations for different

initial conditions first and then perform different optimization to produce different time-

dependent solutions. None of these is necessary for steady-state solutions of infinite-horizon

models as long as the motor plant and cost function do not change. Even when these latter

parameters do change, it is much easier to re-compute the new steady-state estimator and

controller than the transient ones (see Methods).

3.4 Fitts’s law and system stability

Since no termination time is specified in infinite-horizon formulations, we assume that when

the hand-position variation with respect to target is comparable to the target width (specified

by Eq. 30 below) for the first time, the target is reached, as suggested by experimental data

(Meyer et al., 1988). We used this assumption to derive Fitts’s law. Using the first (i.e.,

shortest) time is consistent with the constrained minimum time model (Tanaka et al., 2006).

Note that unlike finite-horizon models, this assumption does not affect the control process in

any way and is used to read off, instead of pre-specifying, mean movement duration. (One

could also use a single-trial-based assumption to read off movement duration in each trial.)

Eq. 11 governs how the covariance matrix (P) of the extended state vector X evolves in time.

Since the steady-state estimator (K) and controller (L) are applied at all time, they are used

in , , and  matrices of Eq. 11 to determine the time course of P. Consequently, Eq. 11 is

linear in P with all the other quantities constant. We can vectorize P by stacking its columns

(with the first column on top for convenience) to form vector p, and re-write Eq. 11 as:

(26)

where  (I2n is the 2n-dimensional identity matrix

and ⊗ represents Kronecker product) and g is the vectorized form of GGT. (If x is n

dimensional, then X is 2n dimensional, p is 4n2 dimensional, and M is 4n2 × 4n2.)
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By definition, the first component of p [i.e., the (1, 1) element of P] is the variance of the

hand position with respect to the target position at zero. Its solution from Eq. 26 can be

written as:

(27)

where μi’s are the eigenvalues of M. (For degenerate cases of repeated eigenvalues, there

will be terms of the form th eμt; this will not affect the approximations below because

exponentials dominate.)

Obviously, p1(t) converges to p1(∞) (i.e., the hand moves to the target) if and only if Re μi <

0 for all i (where Re indicates the real part of a complex number). This provides a simple

stability condition for the control system. Using the parameters for simulations in Fig. 1, we

computed the eigenvalues of M and the results are shown in Fig. 4. Since M is real, the

eigenvalues are either real or form conjugate pairs. The negative real parts of all the

eigenvalues guarantee that this particular control system is stable for movements of any size

and duration. The imaginary parts are much smaller than the real parts in magnitude (notice

the different scales for the real and imaginary axes in Fig. 4). Therefore, oscillations are

much slower than exponential decays, and the variance must decrease with time nearly

monotonically. The black curve in Fig. 5a shows p1(t) calculated according to Eq. 26 with

the same model parameters as for Fig.1. We also calculated p1(t) using trajectories of 50

sample trials and the result (not shown) is virtually indistinguishable from the black curve in

Fig. 5a. These and other simulations confirm that the position variance with respect to the

target indeed decreases nearly monotonically, and oscillations are usually small. [When the

hand has an initial velocity opposite to the target location (Fig. 2), the hand position variance

with respect to the target briefly increases and then decreases; this is not the condition for

typical Fitts’s experiments.] Note that p1(t) is the position variance with respect to the target;

the position variance with respect to the mean path is far from monotonic but peaks during

the movment (Fig. 5b, also see the sample trajectories in Fig. 1a), consistent with the

minimum intervention principle (Todorov and Jordan, 2002).

For stable systems, Eq. 26 (or Eq. 16) indicates:

(28)

The stability condition above guarantees that M is invertible because negative real parts for

all eigenvalues ensure no zero eigenvalue. The steady-state position variance p1(∞) equals

the first component of (−M−1g). Therefore, p1(∞) depends on GGT, the covariance matrix of

the signal-independent noise over unit time. This noise keeps the hand jitter a little around

the target state, and the system maintains the posture via continuous sensory feedback and

small corrective control. Since the hand does not jitter much when it is not moving, p1(∞)

must be very small.

Suppose that the hand starts at a certain position with a steady-state variance p1(∞) from a

previous movement. The system then plans to move a distance d to reach a new target of

width w. The initial condition for p1(t) of the pending movement is thus:
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(29)

As noted above, we assume that the target is reached at time tf when:

(30)

where k specifies how reliably the system wants to hit the target (smaller k for greater

reliability). The product kw can also be viewed as the effective target width that a subject is

aiming at. Obviously, (kw)2 has to be larger than p1(∞) or the target is never considered as

reached.

To derive the log and power forms of Fitts’s law (Meyer et al., 1988; MacKenzie, 1992;

Tanaka et al., 2006), we consider two different approximations of Eq. 27. First, let us

assume that one of the eigenvalues μj dominates the decay. This can happen if the

corresponding coefficient bj is very large, or if (−Re μj) is the smallest among all

eigenvalues (the rightmost point in Fig. 4). Then, Eq. 27 can be approximated as:

(31)

Using Eqs. 29 and 30 and assuming p1(∞) is very small, we obtain the log form of Fitts’s

law:

(32)

An alternative approximation of Eq. 27 is inspired by the mathematical result that sum of a

large number of decaying exponentials can approximate a decaying power function for t

larger than a small t0 (Beylkin and Monzón, 2010). Thus, we may approximate Eq. 27 as:

(33)

where a and μ are positive. By using t0 as the initial time, we obtain the power form of

Fitts’s law:

(34)

Since the power function Eq.33 diverges at t=0, a better approximation is the modified

power function:

(35)

This also leads to the power form of Fitts’s law:
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(36)

where we assume that the distance is usually much larger than the effective width.

We checked how well the exponential function (Eq. 31) and the modified power function

(Eq. 35) fit the position variance with respect to the target and the results are shown in Fig.

5a. The modified power function (dotted curve) fits the variance curve (solid gray) better

than the exponential function (dashed curve) does; both functions fit the variance well when

the first 0.5 s is excluded (inset of Fig. 5). The modified power function has one more free

parameter than the exponential function. To match the number of free parameters, we also

used a modified exponential function of the form:

(37)

as suggested by degenerate eigenvalues. It is better than the exponential but still not as good

as the modified power function (results not shown). More importantly, our focus here is not

on curve fitting per se but on approximating Eq. 27 to derive Fitts’s law. Eq. 37 and many

other functions (e.g., sum of two exponentials) may fit the variance data fine but do not

allow derivations of either form of Fitts’s law. Also note that both the log and power forms

of Fitts’s law have two free parameters.

Finally, we numerically simulated movement duration (tf) for various d and w, using a k=0.5

in Eq. 30. Fig. 6 shows the results from simulations where we let w=0.04 m (circles) or 0.02

m (crosses), and for each w, we varied d from 2w to 32w. In Fig. 6a, we plotted tf as a

function of log2(2d/w) so that the log Fitts law predicts a straight line. In Fig. 6b, we plotted

ln(tf) as a function of ln(d/w) so that the power Fitts law predicts a straight line. We fitted the

w=0.04 m results (circles) with a straight line in each panel. As expected from the above

analysis, the power form is a little more accurate, in agreement with curve fitting of

experimental data (Meyer et al., 1988; MacKenzie, 1992; Tanaka et al., 2006).

In particular, Tanaka et al. (2006) fitted both the log (Eq. 32) and power (Eq. 36) forms to

Fitts’s original data (Fitts, 1954) and found residual errors of 0.012 and 0.005, respectively.

Incidentally, the power index given by the slope of the fitted line in Fig. 6b is 0.46, close to

0.5 of the square-root power law (Meyer et al., 1988). Schmidt and Lee (1998) found a

power index of 1 but they trained subjects to use a fixed movement duration.

Experimental data (Fitts, 1954; Welford et al., 1969) also indicate that for a same d/w ratio,

movements with small w (and d) take longer time than those with large w (and d). Our

simulations show the same w-dependence (cf. circles and cross in Fig. 6). The reason is that

when w is very small, p1(∞) in the above analysis cannot be neglected, and according to

Eqs. 34 and 36, this term increases movement duration. Therefore, the model predicts

stronger w-dependence when (kw)2 gets closer to p1(∞), which, as noted above, depends on

the covariance of the signal-independent noise (the G term in Eq. 1). By varying k, w, and G,

the model can produce various degrees of w-dependence.
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The Fitts law analysis above does not depend on whether or not there is signal-dependent

noise in the control system (the Y term in Eq. 1). We confirmed this assertion numerically in

Fig. 7a by setting Y=0 and doubling the signal-independent noise (G=0.06I4) while keeping

all the other parameters the same as in Fig. 6. Interestingly, the result follows the log Fitts

law better than that in Fig. 6a. This is likely because the signal dependent and independent

noise terms affect movement duration differently, producing a convex-shaped curve when tf
is plotted against log2(2d/w). Consequently, when Y=0 this curve becomes straighter and

better agrees with the log Fitts law. However, the actual data (Fitts, 1954) plotted in the

same way do produce a convex curve as predicted by the simulations with signal dependent

noise included (Fig. 6a). Additionally, movement trajectories without signal-dependent

noise, shown in Fig. 7b, do not show the typically observed variability during movements

(Todorov and Jordan, 2002). These results suggest that signal-dependent noise contribute to

real movements (Meyer et al., 1988; Harris and Wolpert, 1998; Todorov and Jordan, 2002).

The simplicity of the above Fitts-law derivations is consistent with the universality of Fitts’s

law. The derivations only assume that the control system is stable so that the hand position

variance with respect to target decays with time, but are largely independent of other details.

In fact, the derivation holds for any constant estimator (K) and controller (L) matrices (not

just the optimal ones) provided that all eigenvalues of the resulting M matrix have negative

real parts (to ensure stability). Even for non-linear models not studied in this paper, the

position variance relative to the target still has to decay in order for the hand to reach the

target. If this decay could be reasonably approximated by an exponential or power function

(see Discussion), then the log or power form of Fitts’s law would result. The derivations also

explain why the power form is more accurate than the log form (Meyer et al., 1988;

MacKenzie, 1992; Tanaka et al., 2006) because the latter focuses on only one exponential in

Eq. 27. Moreover, the derivations explain why the log form becomes accurate for large

values of movement duration (Fitts, 1954) because that is when the slowest component in

Eq. 27 dominates. Additionally, the derivations suggest that there is no special meaning for

the log or power form in Fitts’s law because the exponential and modified power functions

are just two of many possible ways of fitting the variance data. Finally, the derivations

suggest that by examining how a parameter influences the eigenvalues of the M matrix, we

can predict its effect on movement duration. For example, other things being equal, a

parameter change that makes the eigenvalues more negative (larger magnitudes), and thus

the system more stable, will speed up movements.

4. Discussion

4.1 Summary of main results

We investigated biological implications of Phillis’s (1985) time-invariant solution for an

infinite-horizon optimal feedback control model that contains both signal dependent and

independent noise and minimizes steady-state accuracy and energetic costs per unit time. To

relate this model to biological motor control, we hypothesize that the optimal steady-state

estimator and controller from this model act continuously to estimate system state, execute

movements, and maintain posture (the steady-state-control hypothesis). Consequently, it is

unnecessary to artificially pre-specify when movements end and posture maintenance
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begins. The model reproduces typically observed position and velocity profiles, including

occasional transient overshoots of targets. The profiles are relative smooth probably because

jerky corrections of deviations from the target increase the steady-state accuracy and

energetic costs. Additionally, the model correctly predicts that the hand eventually reaches,

or fluctuates around, the target if sensory feedback is unbiased. Finally, we semi-analytically

derived both the log and power forms of Fitts’s law (Meyer et al., 1988; MacKenzie, 1992;

Tanaka et al., 2006) as different approximations of how the hand-position variance with

respect to the target position decays with time. This analysis and the related simulations

clarify the relationship between the two forms of Fitts’s law, explain why the power form is

usually more accurate (Meyer et al., 1988; MacKenzie, 1992; Tanaka et al., 2006) and why

the log form is also accurate for large values of movement time (Fitts, 1954). The derivation

holds for any constant estimator and controller (not just the optimal ones) provided that they

ensure system stability and no large oscillations, which can be checked by examining the

eigenvalues of the M matrix. Our work predicts that Fitts’s law per se does not require

signal-dependent noise. However, the discrepancy between the log Fitts law and

experimental data and the variability in movement trajectories are better explained with the

inclusion of signal-dependent noise.

4.2 Other Fitts’s-law derivations and sub-movements

To our knowledge, this is the first derivation of movement duration and Fitts’s law in an

optimal feedback control model. The constrained minimum time model (Tanaka et al., 2006)

shows analytically that movement duration depends on target distance-to-width ratio, but

still resorts to simulations to demonstrate the power function [see also Harris and Wolpert

(1998)]. In addition, that model does not consider sensory feedback, which is important for

typical reaching movements (Woodworth, 1899; Meyer et al., 1988; Todorov and Jordan,

2002). Many models use kinematic properties to predict movement duration. Some of these

(Crossman and Goodeve, 1983) make assumptions that aim specifically at producing Fitt’s

law. Others (Polyakov et al., 2009) are based on general principles that explain a large

number of motor behaviors. Unlike dynamic models such as ours presented here, kinematic

models do not consider how a control system determines appropriate forces, via control

signals, to drive movements according to Newtonian mechanics. On the other hand,

kinematic models provide useful insights when system dynamics is too complex to analyze.

In this sense, dynamic and kinematic approaches are complementary.

Some models rely on sub-movements to derive Fitts’s law. An early model produces the log

Fitts law by assuming that a movement consists of a geometrically decreasing sequence of

sub-movements, and that each sub-movement takes the same time (Crossman and Goodeve,

1983). A later model derives the square-root form of the power Fitts law by assuming

exactly two sub-movements that minimize movement duration (Meyer et al., 1988).

Although real movements often contain irregularities that can be interpreted as corrective

sub-movements (Carlton, 1980; Meyer et al., 1988; Milner, 1992; Novak et al., 2000), such

interpretations require assumptions that are difficult to confirm independently. The issue is

further complicated by the lack of a principled definition or a unique extraction of sub-

movements (Milner, 1992; Novak et al., 2000; Rohrer and Hogan, 2003). Although there is

no explicit sub-movement planning in our model, the transient overshoots and subsequent
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corrections shown in our simulations would be classified as sub-movements (Milner, 1992;

Novak et al., 2000). By increasing the noise in our model, we can produce trajectories with

multiple corrections, and thus multiple sub-movements. Sub-movements can also be

explicitly introduced into optimal feedback control models by assuming that the system aims

at a sequence of positions leading to the target, or on different parts of a target, either

because of sensory errors (e.g., caused by poor peripheral vision) or as a strategy.

4.3 Advantages of the present model

Our infinite-horizon, steady-state model has several advantages. First, it is unnecessary for a

control system to pre-fix movement duration. The model does not need duration information

although the duration can be read off from the model. Second, unlike finite-horizon models

that minimizes transient accuracy and energetic costs, the steady-state model does not

predict an undershoot bias. Indeed, the model matches the intuitive notion that the system

simply keeps moving the effector toward the target until it is reached. This seems more

natural than the implicit assumption of finite-horizon models that the effector should stop at

a pre-specified time even though the target has not been reached. Third, the model integrates

movement control and posture maintenance and may thus help unify these two motor

functions. Fourth, the movement characteristics (including duration) are determined by the

system and task parameters. This is consistent with the notion that biological systems appear

to move at an intrinsic pace (Mazzoni et al., 2007). The fact that we are able to move at

different paces when demanded by tasks or context suggests that the brain could switch

among different steady-state solutions obtained with different cost parameters or even

different cost functions. For example, a reduced energetic cost (smaller R) speeds up

movements. Fifth, Phillis’s (1985) steady-state solution for linear systems is easy to

compute, applicable to different effector states and movement parameters, and amenable to

analysis. Finally, system stability is guaranteed for all movements if all eigenvalues of the M

matrix have negative real parts.

4.4 Extension to nonlinear case

Although Phillis’s (1985) solution and our analysis are for linear plants, the infinite-horizon

approach should be, in principle, applicable to nonlinear cases, such as multi-joint

movements, via numerical simulations. In practice, however, finding a globally optimal

time-invariant solution for nonlinear systems is computationally intractable. The reason is

that one has to search for the optimal solution numerically by discretizing the entire state

space and will run into the curse-of-dimensionality problem for realistic biomechanical

motor plants (Liu and Todorov, 2007). An alternative would be to approximate a nonlinear

plant with a set of piecewise linear plants via Taylor expansion around the current state as it

evolves, and then apply the infinite-horizon solution for linear systems to each linear

approximation locally. This would yield a locally optimal solution that varies with time as

the state evolves through different linear approximations. This time-dependence makes the

solution more similar to those for finite-horizon models (Todorov, 2005) but the method

would still have the advantage of not requiring pre-specification of movement duration or

involving backward and forward sweeps in time to compute a solution. Furthermore, when a

nonlinear plant gets close to a target, its linear approximation will not change much for the
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rest of the control process, and our analysis of the position variance in this paper might still

apply. Whether and how well this method works is an open question for future research.

4.5 Movement and posture control

Whether the motor system applies common principles to the control of movement and

posture remains unclear (Bullock et al., 1998; Mussa-Ivaldi and Bizzi, 2000; Graziano et al.,

2002; Kurtzer et al., 2005; Feldman and Levin, 2009). Physiologically, partially overlapping

populations of posture- and movement-related cells have been found in primary motor

cortex (Kurtzer et al., 2005), suggesting both separate and shared processing of posture and

movements. On the other hand, microstimulation of primary motor and premotor cortex can

drive the limb to specific postures via apparently natural movements (Graziano et al., 2002),

indicating that a common neuronal network controls both movements and posture. Our

model assumes that the same principle governs movement and posture control. However, the

model is at the computational level and may be compatible with multiple neural

implementations. The integration of movement and posture control in our model is also

reminiscent of the equilibrium point hypothesis (Polit and Bizzi, 1978; Feldman and Levin,

2009). However, in our model the effector’s state is actively estimated and controlled all the

time, and is not the passive consequence of a change in set postures. Our model produces the

movement trajectory at run time rather than explicitly plans the trajectory in advance.

4.6 Extension to multiple targets/movements and first-exit criteria

One might argue that without specifying a movement end time, our infinite-horizon model

would keep the effector at a fixed target position indefinitely. However, like other motor-

control models, our model can be readily extended to multiple target/movement cases. It is

reasonable to assume that a motor system’s desired target is not fixed but changes with time.

While finite-horizon models have to know a new movement duration and compute a new

solution for each target, our infinite-horizon model can be run continuously to reach

successive targets. Specifically, the estimator and controller of the model will always guide

the effector toward the current target which may change with time. If the current target is

reached, the effector will stay there until the system decides to reach a new target. (For

example, a Ping-Pong player may move her hand/racket to a desired position and hold it

there until she decides to serve the ball.) Similarly, a system may want to reach a target

position only briefly and then return to a default state or be within a relatively broad range of

default states. (For example, a Ping-Pong player may reach his hand laterally to hit a ball

and then quickly return the hand to a more central position.) In this case, the default state

may be viewed as the new target right after the first movement. More generally, a system

may terminate the current movement according to a proper criterion (e.g., the current target

is reached or a new target is selected). Liu and Todorov (2007) introduced a first-exit

criterion: a movement terminates when the hand exceeds the horizontal distance of the target

or when the duration exceeds a pre-set maximum value. Similar termination criteria can be

introduced into our infinite-horizon model. In fact, our Fitts’s law derivation and simulations

relied on a first-exit criterion: the mean movement duration is the shortest time at which the

hand variance with respect to the target is reduced to a target-size-related value. As

mentioned before, we could also define a first-exit criterion for individual trials, e.g., when

the hand first touches any part of the target or is within a certain distance of the target center.

Qian et al. Page 16

Neural Comput. Author manuscript; available in PMC 2014 July 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.7 Limitations of the present model

Obviously, any model is only an approximation of reality and has a limited scope. We

discuss some of the many limitations of our model. First, our model only concerns

movement duration but not reaction time. It would be interesting to add a reaction-time

component to optimal feedback control models. Second, we recognize that other factors,

such as reward or value (Xu-Wilson et al., 2009), influences movement duration and should

be incorporated into our framework in future research.

Third, without additional considerations, our model predicts that movements to targets of

different sizes at the same distance have the same trajectory except different degrees of final

convergence (because of the dependence of termination criterion on target size). Although

this prediction agrees with Soechting’s (1984) data (see his Fig. 2 to compare full

trajectories for a large and a small target), it appears problematic in light of other data. For

example, Milner and Ijaz (1990) found lower peak speeds for smaller targets at a fixed

distance. While this problem requires future investigation, we discuss a possible solution.

Miler and Ijaz’s subjects were instructed not to touch a board when inserting pegs into target

holes on the board. Since smaller holes made it more likely for subjects to hit the

surrounding board, the subjects may have aimed at a shorter, initial distance, producing a

smaller peak speed. The same strategy might be used by subjects in Fitts’s tapping

paradigm: because subjects were not allowed to correct their movements after touching the

surface containing the targets, they may have aimed at a shorter initial distance for smaller

targets to avoid touching extra-target areas. We can thus make a specific prediction: if

subjects are free to touch extra-target areas before converging on the target, then movement

trajectories to targets of different sizes at the same distance will be the same except different

degrees of final convergence. To test this prediction, it would be best to use a planar

movement task in which subjects always touch the surface containing the target and thus are

unlikely to make an implicit assumption that they should avoid extra-target areas. A related

prediction is that even for a fixed target size (and distance), the peak speed should decrease

with increased avoidance of extra-target areas.

A final limitation of our model concerns possible integration of transient and steady-state

costs in some situations, as explained below.

4.8 Optimization of transient and steady-state costs

One may argue that control systems can do better by performing a finite-horizon

optimization instead of applying a steady-state solution to execute movements. This issue

depends on what one means by “better”. In terms of the total cost summed over a fixed

movement duration, a finite-horizon solution that optimizes this transient cost is obviously

better than an infinite-horizon solution that optimizes steady-state cost per unit time.

However, the former approach requires knowing movement durations in advance. As

discussed in the Introduction, in finite-horizon feedback control formulations, this entails

either multiple, trial-and-error internal simulations using complete knowledge of everything

(including actual as well as estimated state vectors), or storage/approximation of movement

durations for all possible movements under all possible situations. In addition to plausibility

and efficiency problems, these options incur additional neural costs not included in the
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optimization process. Moreover, for a given, pre-fixed duration, optimization in finite-

horizon feedback models involves multiple backward and forward sweeps in time (Todorov,

2005) while optimization in infinite-horizon models does not. When these extra costs of the

finite-horizon approach are considered, it is no longer obvious whether it is still “better”

than the infinite-horizon approach. Finally, the occurrence of transient overshoot, the lack of

final undershoot under veridical sensory feedback, and a recent study of Kistemaker et al.

(2010) all suggest that the motor system does not always minimize transient energetic cost.

On the other hand, there are situations where a finite-horizon approach that minimizes

transient costs does seem to be better. One example is periodic movements set by a

metronome. Another example is movements repeated frequently and exactly (e.g., typing on

the same keyboard). In these cases, movement duration is known (from repetition) and the

solution from a single finite-horizon optimization process can be used many times. The total

savings in transient costs over many trials can be substantial enough to justify computing the

finite-horizon solution, which may be learned from movement repetition. Note that even for

these cases, the finite-horizon solution needs to be adjusted to avoid undershooting the

target.

We therefore suggest that biological systems might use steady-state solutions as default

mechanisms both to control movements and to maintain posture, might apply different

steady-state solutions (K’s and L’s corresponding to different cost parameters or cost

functions) to produce different paces for different situations, and might seek additional

optimization of transient costs for movements when time boundaries are known and frequent

use of the solution leads to substantial cost savings.
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Fig.1.
Simulations of reaching movements of 50 cm. (a) position, (b) speed, and (c) control signal

(before adding noise) as a function of time. In each panel, the curves represent 20 individual

sample trials.
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Fig. 2.
Simulations of reaching movements with an initial hand velocity away from the target (−1

m/s). All other parameters were identical to those for Fig. 1. (a) position, and (b) speed as a

function of time. In each panel, the curves represent 20 individual sample trials.
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Fig. 3.
Simulations of reaching movements with an initial hand velocity toward the target (+1 m/s).

All other parameters were identical to those for Fig. 1. (a) position, and (b) speed as a

function of time. In each panel, the curves represent 20 individual sample trials.
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Fig. 4.
Eigenvalues of M with the same parameters as used in Fig. 1 simulations.
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Fig. 5.
Hand position variance defined in two ways. (a) The hand position variance with respect to

the target position was calculated from Eq. 26 (solid gray curve), and fitted with the

exponential (dashed curve) and modified power (dotted curve) functions. The tail of the

solid gray curve was magnified in the inset, and re-fitted with these two functions. (b) The

hand position variance with respect to the mean trajectory was calculated with 50 sample

trials. We also used the same sample trials to calculate the variance with respect to the target

and the result (not shown) is virtually indistinguishable from the solid gray curve in (a).
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Fig. 6.
Log and power forms of Fitts’s law. Circles and crosses represent movement times (tf)

calculated from the model with target widths of 0.04 and 0.02 m, respectively, and various

distances (see text). (a) tf is plotted as a function of log2(2d/w). The log Fitts law predicts a

straight line. (b) ln tf is plotted as a function of ln(d/w). The power Fitts law predicts a

straight line. In each panel, linear fit of the circles, not crosses, is shown. The power index,

given by the slope of the line in panel b, is 0.46.
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Fig. 7.
Simulations without signal-dependent noise and with doubling of signal-independent noise.

(a) Circles represent movement time (tf) calculated from the model with a target width of

0.04 m and various distances. A straight line well fits tf plotted against log2(2d/w). (b) Hand

position as a function of time for 20 individual sample trials.
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