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Abstract

An important, yet under-explored, problem in speech processing is the automatic assessment of

intelligibility for pathological speech. In practice, intelligibility assessment is often done through

subjective tests administered by speech pathologists; however research has shown that these tests

are inconsistent, costly, and exhibit poor reliability. Although some automatic methods for

intelligibility assessment for telecommunications exist, research specific to pathological speech

has been limited. Here, we propose an algorithm that captures important multi-scale perceptual

cues shown to correlate well with intelligibility. Nonlinear classifiers are trained at each time scale

and a final intelligibility decision is made using ensemble learning methods from machine

learning. Preliminary results indicate a marked improvement in intelligibility assessment over

published baseline results.

Index Terms
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1. Introduction

Speech production is an intricate process of motor coordination, requiring muscle groups

from many subsystems, including respiration, phonation, resonance, and articulation. In

healthy individuals, the planning and implementation of these motor movements is fluently

and accurately executed in time and space, resulting in a clear speech output. It follows that

disruption to any of the aforementioned subsystems required for speech will manifest as

degradations at different time scales in the speech output. Assessing the severity of

intelligibility reduction due to speech output degradation has been a longstanding problem in

the field. Most often this is done by subjective assessment by an expert in the area.

Subjective tests are inherently inconsistent, costly and, oftentimes, not repeatable. In fact,

research has shown poor inter- and intra-rater reliability in clinical assessment [1, 2].

Furthermore, clinicians working with clients form a bias based on their interactions,

resulting in unreliable intelligibility assessment [2]. As such, a set of valid, reliable,

objective, and sensitive metrics of speech intelligibility are desired.

Unfortunately, procedures that would enhance validity and reliability of subjective

evaluation (e.g., sizeable listener panel, inclusion of anchor conditions, etc. [3, 4, 5]) are

costly and time consuming. Over the past several decades, research has begun to capitalize

upon computer-based evaluations, with the goal to offer a repeatable, reliable assessment

with minimal cost. Two major approaches are utilized: 1) reference-based intelligibility
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estimations, which measure deviation from a “clean” reference signal, and 2) blind

assessments, which measure a variety of speech features, irrelevant of the intended target.

A number of reference-based approaches rely on estimating subjective intelligibility through

the use of pre-trained automatic speech recognition (ASR) algorithms [6]. More specifically,

these algorithms are trained on healthy speech and the error rate on pathological speech

serves as a proxy for estimating the intelligibility decrement [6].

In addition to ASR-based approaches, other reference-based approaches quantify perceptual

differences between the distorted signal and an “oracle” clean signal [7, 8, 9, 10, 11]. The

metrics rely on simplified psychoacoustic models that mimic human perception to measure

perceptual errors. Although these algorithms have been shown to correlate well with

subjective assessment, their utility in assessing pathological speech is limited because of the

requirement for a reference signal. In contrast to these reference-based approaches, we

propose an algorithm that operates only on the degraded speech and generates an estimate of

intelligibility.

Research in blind algorithms for intelligibility assessment has been more limited. In

telecommunications, the ITU-P.563 standard has been shown to correlate well with speech

quality, however this is not optimized for pathological speech [12]. In [13], [14] and [15],

the authors attempt to estimate dysarthric speech intelligibility using a set of selected

acoustic features. Although the algorithms have shown some success in a narrow context,

the feature sets used in these papers do not make use of long-term rhythm disturbances in

the signal, common in the dysarthrias. In contrast to this, the algorithm we propose here

makes use of acoustic cues at different time scales that capture short-term voicing problems

and long-term rhythm problems.

Motivated by previous research on perceptual correlates to intelligibility and quality [16,12],

we propose a system that extracts features at different time scales (resolution of phonetic,

segmental, and suprasegmental information) and attempts to assess specific challenges to

intelligibility. As mentioned above, the algorithm does not use a reference signal and it

relies on features extracted at multiple scales. Generally speaking, these features measure

distorted rate and timing of speech (sentence level features), unnatural loudness variation

(sentence level features), unnatural pitch/formant variation (vowel/consonant level features),

articulatory imprecision (vowel/consonant level features), and omissions or distortions of

specific consonants and vowels (phoneme level features). See Table 1 for examples of

proposed metrics for each level of analysis. For each scale, we train a classifier, and, as a

result, obtain multiple intelligibility decisions per sentence. A final decision is made using

ensemble learning methods from machine learning. The classifiers are trained on a training

set and tested on a development set. All results are presented for the “NKI CCRT Speech

Corpus” (NCSC) recorded at the Department of Head and Neck Oncology and Surgery of

the Netherlands Cancer Institute.

The rest of this paper is outlined as follows: In section 2, we detail the technical approach,

including a description of the features at different scales and the classification algorithms
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used. In section 3, we provide comparative results using the pathology challenge data. In

section 4, we close with some concluding remarks and outline future work.

2. Technical Approach

A high-level diagram of the proposed approach is shown in Fig. 1. As the diagram shows,

for each speech sentence, x (t), we extract a set of features at three different scales: at the

sentence level, at the vowel/consonant level, and at the phoneme level. Pre-trained SVMs

are used to make an intelligibility decision at each level, then a linear stacking scheme fuses

the individual classifier decisions to form a final hypothesis. In this section, we describe in

detail the main contributions of this paper: the novel feature set and the classification

scheme used to make final intelligibility decisions.

2.1. Features

2.1.1 Sentence Level Features

Baseline: The 6125-dimensional baseline feature set in [17] was used as a starting point. In

an effort to manage the data size and to minimize the effects of the curse of dimensionality,

we use PCA to reduce the dimension of this feature space by retaining the PCA features that

account for 90% of data energy (389 features). We denote the resulting feature set by fbl.

EMS: The envelope modulation spectrum (EMS) is a representation of the slow amplitude

modulations in a signal and the distribution of energy in the amplitude fluctuations across

designated frequencies, collapsed over time. It has been shown to be a useful indicator of

atypical rhythm patterns in pathological speech [16]. The speech segment, x(t), is first

filtered into 7 octave bands with center frequencies of 125, 250, 500, 1000, 2000, 4000, and

8000 Hz. Let hi(t) denote the filter associated with the ith octave. The filtered signal xi(t) is

then denoted by,

(1)

The envelope in the ith octave, denoted by ei(t), is extracted by:

(2)

where, H(.) is the Hilbert transform and hLPF(t) is the impulse response of a 20 Hz low-pass

filter. Once the amplitude envelope of the signal is obtained, the low-frequency variation in

the amplitude levels of the signal can be examined. Fourier analysis is used to quantify the

temporal regularities of the signal. Six EMS metrics were then computed from the resulting

envelope spectrum for each of the 7 octave bands, xi(t), and the full signal, x (t): 1) Peak

frequency, 2) Peak amplitude, 3) Energy in the spectrum from 3-6 Hz, 4) Energy in

spectrum from 0-4 Hz, 5) Energy in spectrum from 4-10 Hz, and 6) Energy ratio between

0-4 Hz band and 4-10 Hz band. This results in a 48-dimensional feature vector denoted by

fEMS.
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LTAS: The long-term average spectrum (LTAS) captures atypical average spectral

information in the signal. Nasality, breathiness, and atypical loudness variation, common

causes of intelligibility deficits in pathological speech, present themselves as atypical

distributions of energy across the spectrum; LTAS attempts to measure these cues in each

octave. For each of the 7 octave bands, xi(t), and the full signal, x (t) we extract 1) Average

normalized RMS energy, and 2) RMS energy standard deviation, 3) RMS energy range, and

4) pairwise variability of RMS energy between ensuing 20 ms frames. This results in a 28-

dimensional feature vector, denoted by fLTAS.

Combining all three sentence-level feature sets into one vector, we obtain the following 465-

dimensional feature vector:

This becomes the input of our sentence level SVM classifier.

2.1.2 Vowel/Consonant Level Features—A voice-activity detector (VAD), followed

by a voicing detector is used to locate all active voiced speech frames. The VAD operates on

4ms frames and is based on an iterative adaptive thresholding approach, similar to that in

[12]. The voicing detector, followed by an autocorrelation-based pitch estimator on 64ms

frames is used to determine pitch marks, for the pitch-synchronous features described below.

For the specifics of the pitch marking algorithm, we refer the reader to [12]. This

preprocessing is required for extracting the salient features for intelligibility assessment. For

all active frames, we calculate some basic descriptors of the speech signal and some more

advanced speech statistics. For all voiced frames, we track the vocal tract statistics. We

describe the features in detail below.

Basic Speech Descriptors: For all active speech frames, we calculate a series of features

that describe the basic properties of the speech signal. More specifically, we calculate 1) the

average pitch, 2) an estimate of pitch variance, 3) the average signal level, and 4) the signal

level variance for active frames, and 5) the signal level variance for voiced frames. The

resulting 5-dimensional vector is denoted as fbasic.

Speech Formant Statistics: It has been shown that the kurtosis and skewness of the speech

formant structure serve as good cues for unnatural speech [12, 17]. For each active speech

frame, we calculate the 21st-order LPC and cepstral coefficients. Then for each set of

coefficients, we calculate the per-frame kurtosis (κ) and skewness (ζ) of the LPC and

cepstral coefficients, using (3) and (4) below:

(3)
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(4)

where P is the order of the formant analysis and σcoeff is the standard deviation of the

coefficients. The average and standard deviation of these values over the entire active

speech signal serve as the salient speech statistics for unnatural speech detection. The

resulting 4-dimensional vector is denoted by fstat.

Vocal Tract Statistics: In an attempt to directly estimate physical properties of the speaker

vocal tract, we model the vocal tract as a set of tubes of time-varying cross sectional area

[12]. The area is estimated using the reflection coefficients from pitch-synchronous

windows. Pitch-synchronous analysis allows for windows that are synchronized with the

human speech production system. We calculate the 8th order reflection coefficients from the

LPC coefficients for each window and then calculate the tube areas using the following

equation

(5)

The tube areas are then combined into a set of features representing the rear (S1, S2, S3),

middle (S4, S5, S6), and front (S7, S8) articulators for every voiced frame. For each speech

segment, we calculate the following features 1) The maximum value of S1 over the voiced

sections of the speech signal, 2) The average value of S8 over the voiced sections of the

speech signal, 3) The averaged cross-sectional area of the rear articulators over the speech

signal, 4) An estimate of the correlation between the cross-sectional area of the rear and

middle articulators 5) The average of the derivative of the position of the maximum cross-

sectional area of all eight tubes (this measures the consistency with which the tube changes

over time), 6) The ratio of voiced frames in the speech signal over all active speech frames.

The resulting 6-dimensional vector is denoted by fVT.

Combining all three feature sets into one vector, we obtain the following 15-dimensional

feature vector:

This becomes the input of our vowel/consonant level SVM classifier.

2.1.3 Phonemic Level Features—The phonemic information file for the data in [17] is

used to segment the sentences into their composite phonemic parts. For each phoneme in a

sentence, we extract the features described below. The features become inputs to different

classifiers, each trained on specific phonemes, and an intelligibility decision is formed for

each phoneme present in a given sentence. The features are described below.
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Phoneme Duration: The duration of each phoneme is readily available from the phonemic

information file. The duration is indicative of rhythmic problems in pathological speech.

The duration is denoted by fPD.

Phoneme Bandwidth: The average bandwidth for each phoneme in the sentence is

estimated by computing the frequency range corresponding to 80% of all signal energy. We

denote this feature by fPBW.

Silence Statistics: We calculate the length of the silences and their normalized position in

the speech signal. More specifically, for each sentence, we calculate the average duration of

each silence and the average normalized position. The duration is readily available from the

phonemic information file. The normalized position is calculated by dividing the midpoint

of each silence segment by the total duration of the speech signal. The resulting 2-

dimensional vector fsil is used to

Combining all feature sets into one vector, we obtain the following 4-dimensional feature

vector:

This becomes the input of our phoneme level SVM classifier.

2.2. Training

Prior to training, all classifier inputs are standardized to mean 0 and standard deviation 1.

The standardization parameters are learned from the training set and applied to the cross-

validation/test set during learning. For all trained SVMs, optimal parameter selection was

done through cross-validation. More specifically, we select initial values of the complexity

parameter and the RBF kernel parameter from the following ranges respectively: C ∈

2[−5:2:15] and γ ∈ 2[−15:2:3] ; this is then followed by a more refined search centered around

the optimal value. The LIBSVM toolbox for Matlab was used for SVM classification [18].

2.3. Ensemble Learning

Motivated by its success in the recent Netflix competition [19], we make use of linear

classifier stacking as a way of combining the scores from multiple classifiers. The base-level

classifiers are individually trained on the training data, each resulting in a different

probability of success (PS) on the development set. We use the normalized PS as weights for

our linear combination scheme, followed by a thresholding operation. Note that not all

classifiers are present for each sentence since each sentence contains different phonemes.

2.4. Results

All results are presented for the “NKI CCRT Speech Corpus” (NCSC) recorded at the

Department of Head and Neck Oncology and Surgery of the Netherlands Cancer Institute

[17]. The corpus contains recordings and intelligibility evaluations of 55 speakers, resulting

in 1647 labeled sentences and 739 unlabeled sentences in the test set. The labeled data is
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further divided into a training set and a development set. Although a partition was provided

for analysis in [17], we noticed significant differences in data statistics between these two

sets. This could be due to different recording conditions, different speakers, different

phrases, etc. As a result, we select a random subset of examples to serve as a new training

set and a new development set. The statistics of the resulting partitions were much more

consistent when compared to the originals.

In Table 2, we show the unweighted and weighted average (UA/WA) recall of the

intermediate SVMs (at the sentence and at the vowel/consonant level) and of the final

ensemble method. These results are compared against the baseline classification results

published in [17]. As the table shows, the proposed approach results in a marked

improvement in recall rate for the development set.

3. Conclusions

The ultimate goal of this work is to develop robust methods for predicting listener

performance with a given pathological speech signal. Toward that end, future analyses will

explore the utility of the proposed approach to predict different dimensions of intelligibility

decrements. Different measurements of “intelligibility,” such as identifying words, word

onsets, and phonemes, that track directly to the acoustic measurements at the sentence,

vowel/consonant, and phoneme level may show a more robust relationship to how this

manifests in a listener's percept. Further, examining this relationship will allow for the

determination of when “degraded” speech becomes problematic for listeners, offering a

quantifiable assessment of the severity of the communication impairment. By examining

aspects of production, more fine- grained measures of perceptual features (i.e., subjective

descriptions vs. binary measures of “unintelligible” or “intelligible”), in tandem with relative

acoustic measurements, we may be able to better understand the process from production to

perception.
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Figure 1.
A high-level diagram of the proposed classification framework. Features are extracted at

three different scales, and a final intelligibility decision is made by combining individual

decisions from each scale.
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Table 1

Perceptual cues previously shown to correlate to decreased speech intelligibility and their respective feature

set proxies.

Level Feature set

Sentence

Rate, rhythm, and prosody EMS

Nasality, breathiness, loudness variation LTAS

Vowel/ Consonant

Unnatural pitch/formant contours Basic speech descriptors

Vowel space reduction Formant structure statistics

Articulatory Imprecision Vocal tract statistics

Vocal quality (nasality and breathiness) Spectral energy distribution

Phoneme

Distortions/substitutions Silence statistics, spectral statistics

Rate and rhythm Duration
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Table 2

Recall rates for the proposed classification schemes compared against the baseline results.

Classifier Development UA (WA)

Baseline – SVM 61.4 (61.3)

Baseline – RF 65.1 (65.1)

SVM – Sentence 79.6 (79.8)

SVM – VC 76.6 (77.3)

Ensemble 84.4 (84.8)
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