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Zerumbone (ZER) is a naturally occurring dietary compound, present in many natural foods consumed today. The compound
derived from several plant species of the Zingiberaceae family that has been found to possess multiple biomedical properties, such
as antiproliferative, antioxidant, anti-inflammatory, and anticancer activities. However, evidence of efficacy is sparse, pointing to the
need for amore systematic review for assessing scientific evidence to support therapeutic claimsmade for ZER and to identify future
research needs.This review provides an updated overview of in vitro and in vivo investigations of ZER, its cancer chemopreventive
properties, and mechanisms of action. Therapeutic effects of ZER were found to be scientifically plausible and could be explained
partially by in vivo and in vitro pharmacological activities. Much of the research outlined in this paper will serve as a foundation
to explain ZER anticancer bioactivity, which will open the door for the development of strategies in the treatment of malignancies
using ZER.

1. Introduction

Medical herbs and plant foods such as fruits, vegetables, and
spices contain many biologically active phytochemicals that
have various health-promoting effects [1]. The Zingiberaceae
family found in tropical and subtropical regions of the world
and approximately 161 species from 18 genera of this family
are found in Peninsular Malaysia [2]. Zingiber zerumbet
(L.) Smith tree (Figure 1(a)), belonging to this family, is
an edible ginger, originating in South-East Asia, and has
been cultivated for thousands of years as a spice and for
medical purposes [3]. Although this plant is known to be
indigenous to India and theMalay Peninsula, it is nonetheless

distributed in many other countries including Indonesia,
China, Bangladesh,Vietnam, Japan, Burma,Nepal, Sri Lanka,
Jamaica, and Nigeria and other parts of the globe [4]. This
herbal plant is popularly referred to as the pinecone, wild
ginger, Asian ginger, or shampoo ginger. It is also called by
many other names in different countries, such as lempoyang
in Malaysia and Indonesia; parsu kedar, ghatian, and yaiimu
in India [5], jangliadah in Bangladesh [6], hong qui jiang in
China, haeo dam in NorthernThailand, awapuhiin in Hawaii,
and zurunbah in the Middle East [3]. Generally, the rhizome
and the leaves are used for spice, tea, beverage, and medical
purposes, while the milky, mucilaginous substance of the
inflorescences (pinecones) (Figure 1(b)) is famously used as a

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 920742, 20 pages
http://dx.doi.org/10.1155/2014/920742

http://dx.doi.org/10.1155/2014/920742


2 BioMed Research International

(a) (b)

Figure 1: Zingiber zerumbet tree (a) and inflorescences (b).

(a) (b)

Figure 2: Zingiber zerumbet rhizome (a) and essential oil (b).

shampoo and natural hair conditioner, especially in Asia and
Hawaii [7, 8].

Zingiber zerumbet contains several types of phytochem-
ical and is considered as one of the most widely used tradi-
tional dietary condiments in various cuisines and beverages
throughout Asia, although the essential oil is also used as
perfume and in other toiletry articles [9]. Besides its extensive
use as a spice, the rhizome particularly has been used in
traditional oriental medicine for many human disorders,
especially in the treatment of a variety of digestive conditions
[10, 11]. The rhizome and oils from the leaves of Zingiber
zerumbet have been subjected to close chemical scrutiny for
their medicinal value [12].

Ginger is generally recognized as safe and is used tra-
ditionally in local folk medicine for treatment of nausea,
hangovers, asthma, morning and motion sickness, loss of
appetite, dyspepsia, diarrhea, colic, cramp, stomach upset,
sprain, worm infestation in children, cough and cold, flu,

sinusitis, catarrh, congestion, sore throat, migraine headache,
toothache, diabetes, bruising, carbuncles, fracture, swelling,
rheumatism, arthritis, and chills and fever [13–15].

Presently, rhizome’s extract has been extensively studied
for its effectiveness in a broad range of biological activi-
ties including antimicrobial [16], antipyretic [17], antispas-
modic and anticonvulsant [3], antiulcer [18], antioxidant [19],
antidiabetic [20], antitumor [21], anticancer [22, 23], anti-
inflammatory [24, 25], antinociceptive and analgesic [26,
27], antiallergenic [28], antiangiogenic [29], antidipogenetic
[30], antiplatelet aggregation and anticoagulant [31], and
hepatoprotective effects [32]. Other studies have shown that
consuming the rhizome also exhibits hypolipidemic effect by
reducing intestinal cholesterol absorption, which makes it
useful for treating heart diseases [33, 34].

The essential oil of Zingiber zerumbet rhizome (Fig-
ure 2(a)) contains approximately 86% sesquiterpenoids [35]
while the leaf and rhizome oils (Figure 2(b)) of this plant
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Figure 3: Zerumbone pure crystals (a) and chemical structure (b).

contain a complex mixture of 29 and 30 compounds, respec-
tively [6]. Many of these compounds are in trace amounts
with great variations in their chemical compositions.

Zerumbone (Figure 3(a)) was first isolated from the
essential volatile oil of rhizomes of Zingiber zerumbet in
1956 [36], while its chemical structure (Figure 3(b)) was
determined in 1960 and later characterized by NMR and
X-ray [37]. Zerumbone possesses three double bonds, two
conjugated and one isolated, as well as double conjugated
carbonyl group in the 11-membrane ring structure [38]. The
chemical characteristics of ZER are presented in Table 1 [39–
43].

2. Plant Sources of Zerumbone

Early investigations in different parts of the world showed
that 12.6 to 73.1% of ZER in Zingiber zerumbet is in the
rhizome oils [44]. The Kerala state in the South Indian
accessions reported that inZingiber zerumbet 76.3 to 84.8% of
its ZER content is also in the rhizome oils [44]. On the other
hand, a silviculture farm in India reported that 1.81% ZER
content was found in the rhizome, 0.16% in the root, 0.09%
in the leaf, and 0.03% in the flower of Zingiber zerumbet [5].
The PenangMalaysian accession recorded the content of ZER
in the plant at 68.9% [44]. Another study conducted in the
state of Selangor, Malaysia, showed that the ZER content of
Zingiber zerumbet is 1.3 g/kg rhizome [23].Theoils ofZingiber
zerumbet from Tahiti Island and Vietnam were also found
to be rich in ZER at 65.3 and 72.3, respectively [45, 46]. In
Vietnam, ZER was also isolated from the rhizomes of the
Vietnamese Curcuma zedoaria (Berg.) Roscoe [47]. Other
reports on the ginger plant include that by Chane-Ming et
al. [48] and Bhuiyan et al. [6] each showing the rhizome
to contain approximately 37% of the plant ZER content.
The differences in ZER content in the plant are not due to
geographic or ecological variations but instead because of
differences in ZER chemotype [3].

Other ginger plant species with ZER among their con-
stituents include theZingiber amaricans [49],Zingiber ottensii
Valeton [50], Zingiber aromaticum (17.72%) [51], Zingiber
cassumunar Roxb. (1%) [52], Zingiber ottensii [53], and
Zingiber montanum [18]. Various other plants also contain
ZER; among themareCurcuma amadaRoxb. [35] from India,
Alpinia galanga from Sri Lanka [54], and Xylopia aethiopica
from Ibadan, Southwest Nigeria [55].

3. Anticancer Properties of Zerumbone

Several researchers have reported that ZER has both in
vitro (Table 2) and in vivo (Table 3) anticancer properties
at different concentrations and doses [56]. Zerumbone pos-
sesses antiproliferative properties towards several cancer cell
lines with minimal effect on normal cells [57–59]. Among
the effects of ZER is induction of high intracellular redox
potential that can inhibit proliferation of cancer cells [60].
The cytotoxic effect of ZER on the cancer cells appears
to be attributed to the versatile 𝛼,𝛽-unsaturated carbonyl
group in its structure, which plays an important role in
the interaction of the compound with the most biologically
active molecules. Clearly the carbonyl group is important for
biological activity because 𝛼-humulene, also found in ginger,
lacking in this functional group is virtually and consistently
pharmacological inactive [61]. The 𝛼,𝛽-unsaturated carbonyl
group in ZER effectively removes the intracellular glutathione
(GSH) through the formation of Michael adducts, thus
enhancing the potential of intracellular redox (E), resulting
in the inhibition of spread of cancerous cells. However,
the average intracellular redox potential of normal cells
differs from that of cancerous cells; this difference could be
the reason for ZER not inducing proliferation of normal
cells [60, 61]. Because there is a close link between tumor
promotion, inflammation, and oxidative stress, the anti-
inflammatory and/or antioxidant compounds could also act
as an anticarcinogenic agent [62]. Although the stimulation
of neoplastic cell death by ZER was reported to be through
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Table 1: Characteristic features of zerumbone.

Characters Description
Natural occurrence Zingiber species
Chemical class Sesquiterpene

Chemical formula
(2E, 6E, 10E)-2,6,9,9-

tetramethylcycloundeca-2,6,10-
trien-1-one

Molecular formula C15H22O

Chemical structure

Three-double bond (two
conjugated and one isolated),
𝛼,𝛽-unsaturated carbonyl group,

and a double conjugated
carbonyl group in 11-membered

ring structure
Molecular weight 218.3 dalton
Flashing point 272∘F
Boiling point 321-322∘C at 760mmHg
Melting point 65.3∘C
Vapor pressure 0.000295mm/Hg at 25∘C
Purity 92–100%
Appearance Solid white crystals or powder
Short term storage +4∘C

Stability Stable for at least 2 years when
stored at −20∘C

Solubility

Completely soluble in ethanol,
DMSO, while solubility in water
is approximately 1.296mg/L at

25∘C

Extraction

Mainly isolated from fresh
rhizomes by hydrodistillation

(steam distillation) and
recrystallization methods

Usage
For researches and medical
purposes, not for flavor or

fragrance

the mitochondrial pathway of apoptosis [47], it also exhibits
antiproliferative and anti-inflammatory activities through the
modulation of NF-𝜅B activity. Zerumbone inhibits NF-𝜅B in
association with the sequential suppressions of I𝜅B𝛼 kinase
activity, phosphorylation, and degradation. This compound
also inhibits NF-𝜅B-dependent reporter gene expression
activated by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK
but not by the p65 subunit of NF-𝜅B. Zerumbone also down-
regulates NF-𝜅B-regulated gene products, including cyclin
D1, COX-2, MMP-9, ICAM-1, c-myc, survivin, IAP1, IAP2,
XIAP, Bcl-2, Bcl-xL, Bfl-1/A1, TRAF1, and FLIP. These effects
lead to the potentiation of apoptosis induced by cytokines
and chemotherapeutic agents. The inhibition of these NF-
𝜅B-regulated genes expression is in association with the
suppression of TNF-induced cancer invasiveness. Thus, it is
hypothesized that inhibition of NF-𝜅B and NF-𝜅B-regulated
gene expression induced by carcinogens may also represent
the molecular basis for cancer prevention and treatment by
ZER [63]. Furthermore, it was shown that ZER is a novel
inhibitor of CXC chemokine receptor-4 (CXCR4) expression,

which mediates homing of tumor cells to specific organs
during metastasis, suggesting the potential of the compound
in the suppression of metastasis [64]. This receptor has been
identified in various tumors including those in the breast,
ovary, prostate, gastrointestinal tract, head, neck, bladder,
brain, and skin.

3.1. Blood Cancer (Leukemia). It has been shown that
ZER effectively suppresses the tumor promoter 12-O-
tetradecanoylphorbol-13-acetate- (TPA-) induced superoxide
anion (O

2

−) generation from NADP oxidase in dimethyl
sulfoxide- (DMSO-) differentiated human acute promyelo-
cytic leukemia (HL-60) cells [60]. One study determined
the effect of diethyl ether extract of Zingiber zerumbet fresh
rhizome on cultured P-388D1 cells and in P-388D-bearing
CDF mice. This study showed that the extract could induce
DNA fragmentation in P-388D1 cells in vitro and significantly
prolonged the life of P-388D1-bearing CDF mice. The same
result was obtained when the activity of ZER isolated from
the same extract was examined in vitro and in vivo [69].
The study further found that ZER inhibited the growth of
HL-60 cells, in time- and concentration-dependent manner.
HL-60 cell cycle analysis after treatment with ZER showed
induction of G2/M arrest and decreased cyclin B1/CDK1
protein level. Using CEM-ss cells as targets, it was shown
that ZER increased the number of TUNEL-positive cells and
cellular caspase-3 level; the hallmarks of apoptosis [65]. The
anticancer effects of ZER seem boundless when it was shown
that it inhibits the proliferation of NB4 cell line, derived from
acute promyelocytic leukemia cells, through the induction
of G2/M phase cell cycle arrest associated with a decline
of cyclinB1 protein and phosphorylation of ATM/Chk1. The
study indicated that ZER induction of NB4 cell apoptosis
was initiated by the expression of Fas (CD95)/Fas ligand
(CD95L), concomitant with the activation of caspase-8. At
the same time, they found that ZER induced cleavage of
Bid, Bax, and Mcl-1 proteins, phosphorylation of Cdc25C
and Cdc2 at theThr48 andThr14/Tyr15 residues, respectively,
degradation of the proteolytic poly-(ADP-ribose) polymerase
(PARP), and triggering of cytochrome c release into the
cytoplasm [69]. On leukemic cells, ZER is cytotoxic to human
myeloid (KBM-5) [67], mouse myelomonocytic (WEHI-3B)
[126], and human acute lymphoblastic leukemic (Jurkat) cell
lines [66]. Zerumbone also regulates expression of apoptotic
biomarkers in BALB/c mice model of acute myelocytic
leukemia via the mitochondrial intrinsic pathway [70].

3.2. Skin Cancer. Zerumbone suppressed 7,12-dimethyl-
benz[𝛼]anthracene- (DMBA-) and TPA-induced initiation
and promotion of skin tumors in female ICR mice. Using
RT-PCR, it was shown that ZER enhances expression of
manganese superoxide dismutase (MnSOD), glutathione
peroxidase-1 (GPx-1), glutathione S-transferase-P1, andNAD
(P) H quinine oxidoreductase (NQO1) mRNA in the epider-
mis while diminishing TPA-induced COX-2 protein expres-
sion and phosphorylation of extracellular signal-regulated
kinase 1 and 2 (ERK1/2) [127]. The phorbol ester-induced
papilloma formation in mouse skin can also be inhibited by
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Table 2: In Vitro biological effects of zerumbone.

Organ Cell line Biological effect of ZER

Blood

Human acute lymphocytic leukemia
(CEM-ss) [65]

Induces apoptosis and DNA internucleosomal degradation activate
caspase-3

Human acute lymphoblastic leukemia
(Jurkat) [66]

Induces G2/M cell cycle arrest
Induces intrinsic apoptotic pathway via activation of caspase-3 and
caspase-9, cytochrome c release from mitochondria, and PARP cleavage

Human chronic myeloid leukemia (KBM-5)
[63] Induces cytotoxicity

Human acute promyelocytic leukemia
(HL-60) [61, 67]

Suppresses TPA-induced superoxide anion generation from NADPH
oxidase
Induces G2/M cell cycle arrest in time- and concentration-dependent
manner
Decreases cyclin B1/CDK1 protein level

Human acute promyelocytic leukemia
(NB4) [67]

Induces G2/M cell cycle arrest associated with decline of cyclin B1
protein and phosphorylation of ATM/Chk1, induced apoptosis via
expression of Fas (CD95)/Fas ligand (CD95L), with the activation of
caspase-8

Human acute myelocytic leukemia (U937)
[67]

Antagonizes action of DDT and TCDD by upregulating the expressions
of COX-2 and VEGF mRNA

Human acute lymphoblastic leukemia
(MOLT4), human acute lymphocytic
leukemia (OKM-2T), and human chronic
myelocytic leukemia (K562 and KT-1) [67]

No cytotoxicity at concentration of 10𝜇M

Human peripheral blood multiple myeloma
(U266) [68] Suppresses CXCR4 expression

Murine lymphoid neoplastic (P-388D1) [69] Causes DNA fragmentation and growth inhibition
Murine acute myelocytic leukemia
(WEHI-3B) [70] Induces G2/M cell cycle arrest and apoptosis

Normal human umbilical vein endothelial
cell (HUVEC) [67] Does not inhibit proliferation at concentration of 10 𝜇M

Normal human primary mononuclear cells
(PBMCs) [71, 72]

No cytotoxicity (1–100 𝜇g/mL)
Cytotoxic at high doses (40–80 𝜇M)

Mice thymocytes and splenocytes human
PBMC [73]

Stimulates time- and dose-dependent proliferation of mice cells and
human PBMC
Upregulates human cytokine (interleukin, IL-2 and IL-12)
immunomodulatory

Human peripheral blood lymphocytes
(PBL) Al [74]

Cytotoxic but not clastogenic at 40 and 80 𝜇M,
Does not induce chromosomal aberration and micronuclei formation

Lymphoblastoid (Raji) cells Suppresses tumor promoter 12-O-tetradecanoylphorbol 13-acetate-
(TPA-) induced activation of Epstein-Barr virus

Human monocyte-like cells (THP-1) [75]

Suppresses TPA-induced LOX-1 mRNA expression
Attenuates expression of SR-A, SR-PSOX, and CD-36 and led to block
DiI-AcLDL uptake
Inhibits AP-1 and NF-𝜅B transcriptional activity

Normal murine macrophages 9RAW264.7)
[68]

Markedly diminishes inducible nitric oxide synthase (iNOS) and
cyclooxygenase (COX)-2 expression
Suppresses free radical generation and inhibits tumor necrosis factor
(TNF)-𝛼 release
Induces phase II drug metabolizing enzymes GSTP1 and NQO1 mRNA
expressions

Immortalized mouse embryonic fibroblasts
(SV40) [76] Not cytotoxic

Human whole blood [31] Inhibits platelet aggregation induced by arachidonic acid (AA), collagen,
and ADP
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Table 2: Continued.

Organ Cell line Biological effect of ZER

Skin

Human melanoma (WM1552C) [77] Induces apoptosis and autophagy
Murine melanoma (B16-F0) [77] Induces apoptosis and autophagy
Normal human dermal fibroblast (2F0-C25)
[77] Not cytotoxic at a concentration of 13 𝜇M

Murine epidermal cells (JB6 Cl41) [78] Induces heme oxygenase-1 expression through activation of Nrf2

Liver

Human liver adenocarcinoma (HepG2) [79]
Induces apoptosis via up- and downregulation of Bax/Bcl-2 proteins
independent of functional p53 activity
Induces DNA fragmentation

Human hepatoma (HTC) [80, 81] Cytotoxic

Murine hepatoma cells (Hepa1c1c7) [82–84]

Marked upregulation of multiple HSPs, such as HSP40 and HSP70HSPs
Increases proteasome activity with upregulation of 𝛽5, a
major proteasome functional protein
Upregulates expressions of several proautophagic markers, including
p62 and microtubule-associated protein 1 light-chain 3 (LC3)-II
Suppresses cellular protein modifications by 4-hydroxy-2-nonenal
(HNE)
Confers resistance to toxicity of HNE via p62 induction
Induces ubiquitination and aggregation of cellular proteins
Activates ubiquitin-proteasome system and autophagy

Normal human liver cells (Chang) [79] Inhibits cell growth with an IC50 value of 10.96 ± 0.059 𝜇g/mL

Normal rat liver epithelial cells (RL34) [85]
Activates phase II drug metabolizing enzymes, such as GST (glutathione
S-transferase), epoxide hydrolase, and hemeoxygenase via the
transcription factor Nrf2 dependent pathway

Normal human liver cells (WRL-68) [86] Not cytotoxic

Cervical Human cervical cancer (HeLa) [87–89]
Causes growth inhibition and induces apoptosis
Decreased level of IL-6 secretion and membrane bound IL-6 receptor
Induces G2/M cell cycle arrest

Colon

Human colonic adenocarcinoma (Caco-2,
Colo320DM, and HT-29) [61]

Markedly induces expressions of interleukin (IL)-1𝛼, IL-1𝛽, IL-6, and
tumor necrosis factor (TNF)-𝛼

Human colonic adenocarcinoma (LS174T,
LS180, COLO205, COLO320DM) [61] Inhibits cell proliferation in dose-dependent manner

Normal human colon fibroblast
(CCD-18Co) [61] Not cytotoxic at a concentration of 13 𝜇M

Colorectal
Human colorectal carcinoma (HCT116)
[90, 91]

Enhances TRAIL-induced apoptosis
Causes activations of caspase-8, caspase-9, caspase-3 and PARP in
combination with TRAIL
Induces expression of TRAIL receptors DR4 and DR5
Downregulates expression of antiapoptotic protein c-FLIP
Causes activation of ERK in time-dependent manner

Human colon carcinoma (HCT-116) [76] Induces apoptosis

Bile duct

Poorly differentiated adenocarcinoma
(KKU-100), squamous cell carcinoma
(KKU-M139), moderately differentiated
adenocarcinoma (KKU-M156),
adenosquamous carcinoma (KKUM213),
and moderately differentiated
adenocarcinoma (KKU-M214) [92]

ZER derivatives (5, 10, 14, and 20) showed antiproliferative activity

Breast

Human breast adenocarcinoma cell lines
(MCF-7 and MDA-MB 231) [68, 90]
Human breast benign cell line (MCF-10A)
[76]

G2/M phase cell cycle arrest
Downregulates cyclin B1, cyclin-dependent kinase 1, Cdc25C, and
Cdc25B and Bax/Bak-mediated apoptosis
Induces significant expression of DR4
Activation of Bax and Bak
Not cytotoxic
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Table 2: Continued.

Organ Cell line Biological effect of ZER

Ovarian
Human ovarian cancer (Caov-3) [59]

Causes growth inhibition and induces apoptosis
Decreases level of IL-6 secretion and membrane bound IL-6 receptor
Induces G2/M cell cycle arrest

Normal Chinese hamster ovarian cells
(AS52) [61]

Suppresses tumor promoter 12-O-tetradecanoylphorbol-13-acetate-
(TPA-) induced superoxide anion (O

2

−) generation from xanthine
oxidase (XO)

Normal Chinese hamster ovary cells (CHO)
[93]

High concentrations produce genotoxic and cytotoxic effects
(40–80𝜇M)

Pancreatic

Human pancreatic carcinoma (PaCa) [94] Novel inhibitor of Jak2/Stat3, which inhibits promigratory gene
expression, growth, and migration of pancreatic cancer cells

Human pancreatic cancer (PANC-28, MIA
PaCa-2, and AsPC-1) [64] Inhibits CXCL12-induced invasion of pancreatic tumor cells

Human pancreatic carcinoma (PANC-1 and
SW1990) [95] Time-dependent inhibition of cell viability induces apoptosis

Human pancreatic carcinoma (PaCa) [96] Inhibits PaCa-associated angiogenesis through the inhibition of NF-𝜅B
and NF-𝜅B-dependent proangiogenic gene products

Lung
Human nonsmall cell lung carcinoma
(H1299 cells) [63, 90]

Enhances TNF-induced cytotoxicity and potentiates apoptosis
Inhibits TNF-induced I𝜅B𝛼 protein degradation and phosphorylation
Inhibits TNF-induced phosphorylation of p65 protein
Suppresses TNF-induced invasion activity

Human small cell lung carcinoma
(NCI-H187) [97]

Inhibits monomeric form of the HSP 27 protein
ZER derivative (parent alcohol 8) induces strong cytotoxicity

Kidney

Human embryonic kidney carcinoma cell
line (A293 cells) [63] Inhibits cell growth

Bovine normal kidney cell line (MDBK) [79] Inhibits cell growth with an IC50 value of 10.02 ± 0.03 𝜇g/mL

Human kidney embryonic cells (HEK 293)
[98]

ZER derivative (parent alcohol 8) could protect irradiation induced cell
apoptosis and DNA damage, at least partly, via activation of
Keap1/Nrf2/ARE pathway

Normal African green monkey kidney cells
(Vero) [97] Nonsignificant cytotoxicity with IC50 of 30 𝜇M.

Brain
Human brain malignant glioma (GBM8401)
[99]

Induces human glioblastoma multiforme cell apoptosis via inhibition of
the IKK𝛼-Akt FOXO1 cascade and activation of caspase-3

Human brain malignant glioma (U87MG)
[99] Significantly decreases cell viability at the concentration of 30 and 50 𝜇M

Prostate Human adenocarcinoma (DU145) [90]
Induces cytotoxicity and significant PARP cleavage
Effectively blocks Jak2/STAT3-mediated signaling pathways
Induces nonsignificant expression of DR4

Human adenocarcinoma (PC3) [90] Induces nonsignificant expression of DR4

Stomach Human gastric adenocarcinoma (AGS) [100] Inhibits tumor angiogenesis via reduction of VEGF production and
NF-𝜅B activity

Oral Human oral cancer (KB) [97] ZER derivative (parent alcohol 8) induces strong cytotoxicity

Headand neck
Human squamous cell carcinomas (SCC4)
[64] Suppresses CXCR4 expression and cancer invasion and metastasis

Human squamous cell carcinoma
(LICR-LONHN5) [63]

Inhibits activation of NF-𝜅B and NF-𝜅B regulated
gene expression
Suppresses I𝜅B𝛼 kinase activity, phosphorylation, and degradation
Suppresses p65 phosphorylation, nuclear translocation, and acylation

Pharynx Human squamous cell carcinoma (FaDu)
[63]

Inhibits NF-𝜅B and I𝜅B𝛼 kinase activation
Suppresses antiapoptotic and metastatic gene expression
Upregulates apoptosis and downregulates cancer invasion



8 BioMed Research International

Table 2: Continued.

Organ Cell line Biological effect of ZER

Bone Mouse macrophage (RAW 264.7) [68]

Inhibits RANKL-induced NF-𝜅B activation through inhibition of
activation of IKBA kinase, IKBA phosphorylation, and IKBA
degradation
Suppresses RANKL-induced differentiation of an osteoclast precursor
cells to osteoclasts
Inhibits osteoclastogenesis induced by RANKL and tumor (RAW264.7)
cells after incubation in the presence of MDA-MB-231 cells or U266 cells
for 24 h, then exposed to ZER for 5 days, and finally stained for TRAP
expression)
Potential therapeutic agent for osteoporosis and cancer-associated bone
loss

ZER [110]. Recently, it was found that ZER induces heme
oxygenase-1 expression in female HR-1 hairless mouse skin
and cultured murine epidermal (JB6 Cl4) cells, through the
activation of Nrf2 [78]. More recently, ZER was found to
induce apoptosis and autophagy in human (WM1552C) and
murine (B16-F0) melanoma cell lines [128]. Zerumbone also
significantly reduced tumor mass and lung metastasis in B16-
F0 bearing C57 BL/6male mice through the activation of Akt
and MAPK and suppression of NF-𝜅B activation [77].

3.3. Liver Cancer. Zerumbone was also found to inhibit
the proliferation of nonmalignant Chang liver cell line
[129], while being innocuous to the normal human liver
(WRL-68) cells [86]. DNA fragmentation and apoptosis
induced by ZER is by way of up- and downregulation of
Bax/Bcl-2 proteins independent of functional p53 activity
in the liver adenocarcinoma (HepG2) cell lines. In vivo,
ZER inhibits diethyl nitrosamine (DEN) and dietary 2-
acetylaminofluorene- (AAF-) induced Sprague Dawley rat
hepatocarcinogenesis.This effect was suggested to be through
the reduction of oxidative stress, inhibition of cancer cell pro-
liferation, and induction of mitochondria-regulated apopto-
sis of liver cancers [105].

3.4. Cervical Cancer. Zerumbone is known to exhibit an
antiproliferative effect on human cervical cancer (HeLa) cell
line [87]. In diethylstilboestrol- (DES-) inducedmice cervical
interepithelial neoplasia (CIN), ZER caused overexpression
of proapoptotic protein, Bax [88, 130].

When ZER and cisplatin were used in combination, the
cervical cancer in BALB/c mice was suppressed through the
modulation of serum interleukin-6 [131]. One experiment
was conducted on pregnant BALB/c rats treated with DES
to develop cervical intraepithelial neoplasia. When the pro-
genies were treated with different doses of ZER, histological
examination revealed that ZER had inhibited the cervical
dysplasia from developing into more severe dysplasia [89].

3.5. Colon Cancer. Zerumbone was shown to inhibit the
proliferation of human colonic adenocarcinoma (LS174T,
LS180, COLO205, and COLO320DM) cell lines in a dose-
dependent manner, while the growth of normal human colon

(CCD-18Co) fibroblasts and normal human dermal (2F0-
C25) cells was less affected [90, 110]. The effect of ZER on
human colorectal cancer (HCT116) cells was via potentiation
of TRAIL-induced apoptosis [90, 91] as indicated by the
expression of TRAIL death receptor (DR) 4 and 5. The
subsequent effects were activations of caspase-8, caspase-
9, and caspase-3 and PARP and downregulation antiapop-
totic protein c-FLIP expression and activation of ERK in
a time-dependent manner. The RT-PCR assay showed that
ZER markedly induced the expressions of IL-1𝛼, IL-1𝛽, IL-
6, and TNF-𝛼 in human colon adenocarcinoma (Caco-2,
Colo320DM, and HT-29) cell lines, in concentration- and
time-dependent manners [110]. Developing azoxymethane-
(AOM-) induced rat colonic aberrant crypt foci (ACF) in
male F344 rat can be significantly inhibited by ZER treatment
through suppression of COX-2 expression, cell spreading
activity of colonic mucosa, and induction of phase II detox-
ification enzymes [104]. Similarly, using ACF as a preneo-
plastic marker, ZER was shown to suppress AOM-induced
colon cancer in male Sprague Dawley rats [101]. Zerumbone
inhibited themultiplicity of colonic adenocarcinoma induced
by AOM, potentiated apoptosis, and suppressed NF-𝜅B and
HO-1 expressions in male ICR mice [102].

3.6. Bile Duct Cancer. Amine 5 derived from ZER showed
potent antiproliferative activity against cholangiocarcinoma
(CCA) cell line and poorly differentiated adenocarcinoma
(KKU-100). However, amine 5 and other ZER derivatives (10,
14, and 20) (Figure 4) showed lesser cytotoxicity toward other
CCA cell lines including squamous (KKU-M139) cell car-
cinoma, moderately differentiated adenocarcinoma (KKU-
M156), adenosquamous carcinoma (KKUM213), and moder-
ately differentiated adenocarcinoma (KKU-M214) [92].

3.7. Breast Cancer. In breast cancers, ZER caused G2/M
phase cell cycle arrest associated with downregulation
of cyclin B1, Ddk1, Cdc25C, and Cdc25B and Bax/Bak-
mediated apoptosis in human breast cancer (MDA-MB-231
and MCF-7) cells and retarded growth of MDA-MB-231
xenografts in vivo [76]. In addition, its derivative, parent alco-
hol 8 (2E,6Z,10E)-13-Hydroxy-2,9,9-trimethylcycloundeca-
2,6,10-trienone (Figure 5(a)) significantly displayed antipro-
liferative effect towards human breast cancer (MCF-7) cell
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Table 3: In Vivo biological effects of zerumbone.

Organ Animal model ZER route Biological effect of ZER

Cervix Female BALB/c mice
[88, 89] Intraperitoneal injection

Suppresses cervical intraepithelial neoplasia in female
Balb/c mice prenatally exposed to diethylstilbestrol (DES)
Reduces the expression of cell proliferation marker PCNA
in dose dependent manner
Causes overexpression of proapoptotic protein Bax
Suppresses Bcl-2 specific mRNA expression
Inhibits progression of cervical dysplasia from becoming
more severe dysplasia (CIN 3) and suppresses level of
serum IL-6

Colon

Male Sprague Dawley
rats [101] Oral dose Suppresses azoxymethane- (AOM-) induced colon cancer

using aberrant crypt foci (ACFs) as a preneoplastic marker

Male ICR mice [102] Oral dose

Inhibits multiplicity of colonic adenocarcinomas induced
by azoxymethane (AOM)
Suppresses colonic inflammation in dose-dependent
manner
Inhibits cancer proliferation, potentiates apoptosis, and
suppresses NF-𝜅B and HO-1 expressions

Female ICR mice
[103] Oral dose

Suppresses acute ulcerative colitis (UC) induced by
dextran sodium sulfate (DSS)
Significantly lowers levels of inflammatory biomarkers
IL-1𝛽, TNF-𝛼, and PGE2 in colonic mucosa
Suppresses expression of inflammatory cytokines, TNF,
and IL-1𝛽 in LPS/IFN-𝛾

Male F344 rats [104] Oral dose

Reduces development AOM-induced colonic aberrant
crypt foci
Reduces expression of COX-2 and prostaglandins in
colonic mucosa
Reduces number of AgNORs in colonic crypt cell nuclei

Liver

Male Sprague Dawley
rats [105] Intraperitoneal injection

Protects rat liver from carcinogenic effects of DEN and
AAF
Lowers serum ALT, AST, AP, and AFP concentrations
Lowers concentration of GSH in hepatic tissue
Lowers expression of PCNA in the rat liver
Increases Bax and decreases Bcl-2 protein expression in
the liver

Male Sprague Dawley
rats [106, 107] Oral dose

Suppresses fatty liver formation induced by overdosage of
ethanol
Prevents necrosis of liver tissues after administration of
overdosage of paracetamol
Reduces levels of liver ALT, AST, and ALP at 24 h after
administration of overdosage of paracetamol

Male golden Syrian
hamsters [108] Oral dose

Attenuates nonalcoholic fatty liver disease
Improves insulin sensitivity, decreases lipogenesis, and
increases lipid oxidation

Male Sprague Dawley
rats [82] Oral dose Upregulates heat shock protein expressions in the liver

Confers thermoresistant phenotype

Lung Female A/J mice [102] Oral dose

Significantly inhibits multiplicity of lung adenomas
induced by
4-(Nmethyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone
(NNK)
Inhibits cancer proliferation, potentiates apoptosis, and
suppresses NF-𝜅B and HO-1 expressions
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Table 3: Continued.

Organ Animal model ZER route Biological effect of ZER

Breast

Female Sprague
Dawley rats [109] Intraperitoneal injection

Inhibits tumor growth via Wnt pathway in LA-7 bearing
rats

Female severe
combined immune
deficient (SCID) mice
[76]

Intraperitoneal injection
Retards growth of orthotopic MDA-MB-231 xenografts in
association with apoptosis induction and suppression of
cell proliferation (Ki-67 expression)

Female BALB/c nu/nu
mice [68] Intraperitoneal injection

Decreases osteolytic bone metastasis in MDA-MB-231
bearing athymic nude mice dose dependently

Blood
WEHI-3B bearing
male BALB/c mice
[70]

Oral dose
Induces apoptosis via the mitochondrial intrinsic pathway
Increases expression of Bax, Cyt-c, and PARP and
decreases the expression of Bcl-2

CDF mice [69] Intraperitoneal injection Significantly prolongs life of P-388D1-bearing CDF mice

Skin

C57 BL/6 male mice
[77] Intraperitoneal injection

Significantly reduces tumor mass and lung metastasis in
B16-F0 bearing mice through the activation of Akt and
MAPK and inhibition of NF-𝜅B activity

ICR mice [110] Topical application

Suppresses 7,12-dimethylbenz[𝛼]anthracene (DMBA) and
TPA-induces initiation and promotion of skin tumor
formation
Enhances expression of antioxidative and phase II
xenobiotics metabolizing enzymes manganese superoxide
dismutase (MnSOD), glutathione peroxidise-1 (GPx-1),
glutathione S-transferase-P1 (GST-P1), and NAD (P) H
quinine oxidoreductase (NQO1) mRNA in the epidermis
Suppresses TPA-induced COX-2 expression and
phosphorylation of ERK1/2
Suppresses TPA-induced leukocyte maturation and dermal
infiltration as well as activation stages of skin tumors

Female HR-1 hairless
mice [78] Topical application Induces HO-1 expression through activation of Nrf2

Paw Mice [24] Intraperitoneal injection

Inhibits carrageenan-induced paw edema dose
dependently
Suppresses granulomatous tissue formation in cotton
pellet-induced granuloma test

Eye ICR mice [111, 112] Oral dose

Protects mouse cornea from ultraviolet B- (UVB-)
induced inflammatory photokeratitis
Inhibits NF-𝜅B, iNOS, and TNF-𝛼 expressions
Abrogates nuclear translocation of NF-𝜅B
Reduces malonyldialdehyde (MDA) accumulation and
increases GSH and glutathione reductase levels
Protects mice cornea from UVB-induced cataractogenesis

Pancreas

Male Wistar rats [113] Oral dose

Suppresses cholecystokinin octapeptide- (CCK-8-)
induced acute pancreatitis
Significantly reduces serum amylase and lipase activities
Reduces cytosolic IL-6 and TNF-a and increases cytosolic
IáťŃB𝛼 concentration
Reduces iNOS and Mn- and Cu/Zn-superoxide dismutase
activities
Significantly reduces pancreatic weight to body weight
ratio



BioMed Research International 11

Table 3: Continued.

Organ Animal model ZER route Biological effect of ZER

Male SPF Wistar rats
[114] Intravenous injection

Attenuates severity of acute necrotizing pancreatitis
induced by sodium taurocholate and pancreatitis-induced
hepatic injury, via inhibition of NF-𝜅B activity and
downregulation of ICAM-1 and IL-1𝛽 expressions

Bone

Male Sprague Dawley
rats [115] Oral dose

Reduces inflammatory process in collagen-induced
osteoarthritis (OA)
Significantly reduces number of major histocompatibility
complex type II cells (MHC) expression in the affected
synovial membrane
Reduces the number of antigen presenting type A cells
presented during arthritis

Male Sprague Dawley
rats [116, 117] Oral dose

Produces chondroprotective effects in MIA-induced knee
osteoarthritis
Improved immunoreactivity of neuropeptides
Improves density of protein gene products (PGP),
calcitonin gene-related peptide (CGRP), and
neuropeptides-Y (NPY) immunoreactive nerve fibers
Reduces the level of PGE2Produces induction of
cytochrome P450 and cytosolic GST

Miscellaneous

Male ICR mice [118] Intraperitoneal injection

Produces pronounced antinociception against chemical
models of nociception through L-arginine-nitric
oxide-cGMP-PKC-K+ ATP channel pathways, the TRPV1,
and kinin B2 receptors

Male BALB/c mice
[119] Intraperitoneal injection

Produces significant peripheral and central antinociceptive
effects when assessed in acetic acid-induced abdominal
writhing and hot-plate test models

Female and male
BALB/c mice [120] Oral dose

No toxic effects to liver and renal tissues
Does not cause significant change in hematological and
serum biochemical parameters

Female and male ICR
mice [121] Intraperitoneal injection

Does not cause mortality or change in the general
condition, growth, organ weights, hematology, serum
biochemistry, or histopathology after a single dosage of
500mg/kg or multiple dosage of f 5, 25, and 50mg/kg for a
period of 28 days

Female Sprague
Dawley rats [122]

Single intraperitoneal
injection

Not toxic to liver and renal tissues at dose of
100–200mg/kg
Produces severe renal and hepatic damage at a dose of
500mg/kg with increased serum creatinine, BUN, liver
enzymes (ALT, ALP, and GGT), and MDA concentrations
Does not cause mortality at 100, 200, 500, and 1000mg/kg
Causes 20 and 40% death for animals receiving 1500 and
2000mg/kg, respectively
Causes 100% death in animals receiving 2500 and
3000mg/kg

Male Sprague Dawley
rats [71, 74] Intraperitoneal injection

Induces significant increase in the frequency of
micronuclei in polychromatic erythrocytes (PCEs) at dose
1000mg/kg after 24-hour injection
Inhibits cell proliferation and causes cytotoxicity in the rat
bone marrow

Female Sprague
Dawley rats [123] Intraperitoneal injection

Beneficial in cisplatin-induced renal dysfunction, toxicity,
and organ damage via preservation of antioxidant
glutathione and prevention of lipid peroxidation
Attenuates cisplatin, decreases renal GSH, and increased
MDA levels
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Table 3: Continued.

Organ Animal model ZER route Biological effect of ZER

Male New Zealand
white rabbits [124] Oral dose

Significantly averts and decreases early atheroma plague
formation and development via reduction in monocytes
and/or macrophages migration, aggregation, and smooth
muscle cells proliferation in rabbits fed on cholesterol-rich
diet
Repairs endothelial dysfunction resulting from
hyperlipidemia in rabbit atherosclerosis model

Male golden Syrian
hamsters [125] Oral dose

Improves dyslipidemia by modulating the genes
expression involved in the lipolytic and lipogenic
pathways of lipids metabolism
Decreases hepatic mRNA levels of fatty acid synthase,
malic enzyme, sterol-regulatory element binding protein,
and 3-hydroxy-3-methyl-glutaryl-CoA reductase

Male Wistar rats [20] Oral dose

Ameliorates streptozotocin-induced diabetic nephropathy
(DN) by reducing the hyperglycemia-induced
inflammatory response
Decreases infiltration of macrophages, IL-1, IL-6, and
TNF-𝛼 produced by p38 mitogen-activated protein kinase
activation
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Figure 4: Zerumbone derivatives. (a) (±)-[6𝐸,10𝐸]-3amino-2,6,9,9-tetramethylcloundeca-6,10-dienone (5), (b) (±)-[6𝐸,10𝐸]-3-butylamino-
2,6,9,9-tetramethylcloundeca-6,10-dienol (10),(c) (±)-[10𝐸]-3-butylamino-6,7-epoxy-2,6,9,9-tetramethylcloundeca-10-enone (14), and (d) (±)-
[2𝐸,6𝐸]-10-cyano-2,6,9,9-tetramethylcloundeca-2,6-dienone (20).

line [97]. The inhibition of mammary tumor growth in LA7-
bearing SpragueDawley rats was viaWnt/𝛽-catenin signaling
pathway [109].

3.8. Ovarian Cancer. The antiproliferative effect of ZER
towards human ovarian cancer (Caov-3) cell line is dose
dependent and time dependent. Zerumbone also effectively
suppressed tumor promoter TPA-induced superoxide anion
(O2
−) generation from xanthine oxidase (XO) in Chinese

hamster ovary (AS52) cells (CHO) [132], while even at high
concentrations it does not adversely affect normal cultured
CHO [93].

3.9. Pancreatic Cancer. Zerumbone is a novel inhibitor of
Jak2/Stat3, which inhibits promigratory gene expression,
growth, and migration of human pancreatic carcinoma
(PaCa) [94]. It also inhibits CXCL12-induced spread of pan-
creatic (PANC-28, MIA PaCa-2, and AsPC-1) tumors [64].

The antipancreatic cancer effect of ZER is facilitated by the
inhibition of cancer angiogenesis through the inhibition of
NF-𝜅B and NF-𝜅B-dependent proangiogenic gene products
[96]. The inhibition and apoptosis of human pancreatic
carcinoma cell lines (PANC-1 and SW1990) were via p53
signaling pathway [95].

3.10. Lung Cancer. The nonsmall lung adenocarcinoma
(H1299) cell can be suppressed by ZER, while its deriva-
tive, the parent alcohol 8 (2E,6Z,10E)-13-Hydroxy-2,9,9-
trimethylcycloundeca-2,6,10-trienone, is one of the most
potent cytotoxic compounds against human small cell
lung carcinoma (NCI-H187) [97]. Zerumbone also effec-
tively inhibited proliferation, multiplicity of lung adenomas
induced by NNK, potentiated apoptosis, and suppressed NF-
𝜅B and HO-1 expressions in female A/J mice [133].

3.11. Renal Cancer. Human embryonic kidney carcinoma
(A293) cell [64] and kidney epithelial (MDBK) cell line [129]
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Figure 5: Zerumbone imidazole and ring opening derivatives. (a) Parent alcohol 8 (2E,6Z,10E)-13-Hydroxy-2,9,9-trimethylcycloundeca-2,6,10-
trienone, (b) NH0891 ([2E,6E,10E/Z0]-11-bromo-4,4,7-trimethyl-2,6,10-dodecatrienoic acid), and (c) 4 (10𝐸/10𝑍 = 3/2).

proliferation was found to be inhibited by ZER treatment.
Zerumbone could also protect irradiation-induced cell apop-
tosis and DNA damage, partly through the activation of
the Keap1/Nrf2/ARE pathway in human kidney embryonic
(HEK 293) cells [98]. The ZER derivative, parent alco-
hol 8 (2E,6Z,10E)-13-Hydroxy-2,9,9-trimethylcycloundeca-
2,6,10-trienone, showed nonsignificant cytotoxicity toward
normal monkey kidney (Vero) cell line [97].

3.12. Brain Cancer. Zerumbone can induce human glioblas-
toma multiforme (GBM8401) cell apoptosis via inhibition of
the IKK𝛼-Akt FOXO1 cascade [99].

3.13. Prostate Cancer. Zerumbone induced cytotoxicity and
significant PARP cleavage in human prostate cancer (DU145)
cell line through the inhibition of Jak2/STAT3-mediated
signaling pathways [134].

3.14. Gastric Cancer. Zerumbone inhibits tumor angiogen-
esis in human gastric adenocarcinoma (AGS) cells of via
reduction of VEGF production and NF-𝜅B activity [135].

3.15. Oral Cancer. Parent alcohol 8 (2E,6Z,10E)-13-Hydroxy-
2,9,9-trimethylcycloundeca-2,6,10-trienone is one of the
most powerful compounds inducing cytotoxicity of human
oral cancer (KB) cells [97].

3.16. Head and Neck Cancer. Expression of CXCR4 and inva-
sion and metastasis of human tongue squamous (SCC4) cell
carcinoma can occurwith ZER treatment [64]. Similarly, ZER
inhibited the NF-𝜅B- and NF-𝜅B-regulated gene expression
induced by various carcinogens and inflammatory stimuli,
such as TNF, okadaic acid, cigarette smoke condensate,
phorbol myristate acetate, and H

2
O
2
. It also suppressed

I𝜅B𝛼 kinase activity, phosphorylation, and degradation and
p65 phosphorylation, nuclear translocation, and acylation in
human squamous (LICR-LONHN5) cell carcinoma line [63].

3.17. Pharyngeal Cancer. Zerumbone inhibited NF-𝜅B and
I𝜅B𝛼 kinase, suppressed antiapoptotic and metastatic gene
expression, upregulated apoptosis, and inhibits proliferation
of human hypopharyngeal carcinoma (FaDu) cells [63].

4. Anti-Inflammatory Activity

Zerumbone has been shown to possess anti-inflammatory
properties [25, 26]. Oral ZER treatment suppressed dex-
tran sodium sulfate- (DSS-) induced acute ulcerative colitis
(AUC) in female ICR mice. The anti-inflammatory effect
of ZER was reflected by the significant lowering of the
inflammatory biomarkers, IL-1𝛽, TNF-𝛼, and PGE2 [103].
In a female ICR mouse ultraviolet B (UVB) photokeratitis
and cataractogenesis model, dietary ZER prevented corneal
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damage by inhibiting NF-𝜅B, iNOS, and TNF-𝛼 expression
with concomitant reduction of malondialdehyde (MDA) and
increase of glutathione (GSH) and GSH reductase (GR)
levels [111, 112]. Moreover, ZER inhibited iNOS and COX-
2 expression and release of TNF-𝛼 in a mouse macrophage
(RAW264.7) cell line treated with lipopolysaccharide (LPS)
and IFN-𝛾. Zerumbone also inhibited the NO/O2

− gen-
eration in inflammatory leukocytes [61, 103]. Oral feeding
of ZER compound reduced the inflammatory process in
collagen-induced osteoarthritis (OA) in SpragueDawley rats.
The treatment caused a significant reduction in the number
of major histocompatibility complex (MHC) type II cells
expressions in the affected synovial membrane and thus
reducing accumulation of antigen presenting type A cells in
arthritis [115]. In a rat knee osteoarthritis model, induced
with monosodium iodoacetate (MIA), oral administration of
ZER improved the densities of protein gene products (PGP),
calcitonin gene-related peptide (CGRP), and neuropeptides-
Y (NPY) immunoreactive nerve [116, 117].

In male Wistar rats, ZER suppressed cholecystokinin
octapeptide- (CCK-8-) induced acute pancreatitis with sig-
nificant reduction in serum amylase and lipase, cytosolic
IL-6, iNOS, Mn- and Cu/Zn-SOD activities, and TNF-𝛼
concentration [113]. In these rats ZER treatment attenuates
the severity of acute necrotizing pancreatitis and pancreatitis-
induced hepatic injury via the inhibition of NF-𝜅B and
downregulation of ICAM-1 and IL-1𝛽 expressions [114].

5. Antioxidant Activity

The antioxidant activity of ZER has been reported to occur
through the attenuation of reactive oxygen (RO) and gener-
ation of nitrogen species [136]. Thus, it is plausible that the
potential of ZER as an agent against cancer-related inflam-
mationmay be mediated through its antioxidant activity.The
ability of ZER to stimulate phase II detoxification enzymes
was determined in the RL34 cells, a normal rat liver epithelial
cell line. Induction of phase II enzymes is known to protect
cells and tissues against toxicity and chemical carcinogenesis,
particularly in the early phase. The effect of ZER on the
stimulation of glutathione S-transferase is dose- and time-
dependent and causes considerable increase in the level of
the GSTP1-1 protein. Zerumbone also elicited significant
induction in the nuclear localization of Nrf2, a transcription
factor that binds to the antioxidant response element (ARE)
of phase II enzyme genes, activating expression of phase
II enzyme genes. Among the phase II enzyme involved in
the activation are 𝛾-glutamylcysteine synthetase (GCS), glu-
tathione peroxidase (GPx), andHO-1.These enzyme systems,
through their conjugation reactions, play important roles
in the metabolic inactivation of pharmacologically active
substances, thus minimizing cell damage [85].

6. Immunomodulatory Activity

Zerumbone has effect on the proliferation, cell cycle progres-
sion, and induction of cytokine (IL-2 and IL-12) of immune
cells in vitro.This was shown by the proliferation of ICFmice

thymocytes and splenocytes and human peripheral blood
mononuclear cells (PBMC). Using flow cytometry, ZER treat-
ment was shown to cause the highest population of PBMC
to enter G2/M phase [73]. This study showed prominent
upregulation of IL-2 and IL-12 in activated lymphocytes after
ZER treatment.

7. Other Biomedical Properties of Zerumbone

7.1. Hepatoprotective Activity. Zerumbone was shown to
have hepatoprotective properties in ethanol-induced liver
injury in male Sprague Dawley rats, while ZER pretreatment
extensively reduced fatty liver development in these rats
[106]. Similar ZERhas healing effects in paracetamol-induced
hepatotoxicity in male Sprague Dawley rats as indicated by
the corresponding reductions of alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and alkaline phos-
phatase (ALP) blood concentrations in the treated rats [87].

7.2. Antiatherosclerotic Activity. Zerumbone is a phytochem-
ical with potential for the regulation of atherosclerosis
because it suppresses TPA-induced oxidized low density
lipoprotein (LDL) receptor-1 (LOX-1) mRNA expression
in THP-1 human monocyte-like cells and in differentiated
colonic adenocarcinoma (Caco-2) cells. A key event in the
development of atherosclerosis is the unregulated uptake of
oxidized LDL via scavenger receptors (SR), which are integral
membrane proteins. Zerumbone reduces the expression of
several subclasses of the macrophage SR such as SR-A, SR-
PSOX, and CD36, leading to the inhibition of uptake of
DiI-acLDL, a modified LDL. Downregulation in the expres-
sion of SR by ZER was postulated to be partly attributed
to the inhibition of transcriptional activities of activator
protein-1 and NF-𝜅B [75]. In rabbits fed cholesterol-rich diet,
oral ZER treatment significantly decreased or averted early
atheromaplague formation anddevelopment via reduction in
monocytes and/or macrophages migration, aggregation, and
smooth muscle cells proliferation. In a rabbit atherosclerosis
model, ZERwas also shown to repair endothelial dysfunction
[124].

7.3. Antinociceptive Activity. Significant antinociceptive
effects of intraperitoneal ZER were observed in adult
male BALB/c mice. The results of this study indicated
that ZER possesses considerable marginal and central
antinociceptive effects at various dosages [27]. The
production of antinociception in the mice model suggests
significant involvement of L-arginine-nitric oxide-cGMP-
PKC-K+ ATP channel pathways, the TRPV1 and kinin B2
receptors [118].

7.4. Antimicrobial Activity. Zerumbone and its derivatives
such as 410𝐸/10𝑍 = 3/2 and NH0891 (Figures 5(b) and
5(c)) were found to be selective inhibitors of gram-positive
bacteria, Bacillus subtilis 168 growth. It was suggested that
the new haloolefinic acids synthesized by the cleavage of the
C1-C2 bone of ZER inhibits growth of gram-positive bacteria
by inhibiting YycG histidine kinase [137, 138]. Zerumbone
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Figure 6: Zerumbone derivatives. (a) Azazerumbone 1, and (b)
azazerumbone 2.

also inhibits Salmonella choleraesuis, a gram-positive bacteria
while not affecting the viability of Escherichia coli [139].
Similarly, ZER and its synthetic analogues (azazerumbone 1
and azazerumbone 2) (Figure 6) exhibited strong protection
against sodium azide-induced mutagenicity of Salmonella
typhimurium (TA 98 and TA 1531) strains. Among the
bacteria tested, Bacillus cereus was most sensitive to these
analogues [140].

Other antipathogen effects of ZER include inhibition
of human immunodeficiency virus (HIV) activity [33] and
antifungal activity towards Rhizoctonia solani, the damping-
off pathogen [52].

Zerumbone was reported to have antimalarial activities
by inhibiting propagation of Plasmodium falciparum [141].
Exposure of the nematode Caenorhabditis elegans to ZER
increased expression of HSP16.41 mRNA, suggesting that
ZER can increase the survival of nematodes after heat-shock
treatment.

In lipid metabolism, ZER improved dyslipidemia by
modulating expression of genes involved in the lipolytic
and lipogenic pathways of a diet-induced hyperlipidemic
animal model [125]. This study suggests that ZER is ben-
eficial to patients with hypercholesterolemia and hyper-
triglyceridemia. Another study showed that ZER attenuated
nonalcoholic fatty liver disease, improved insulin sensitivity,
decreased lipogenesis, and increased lipid oxidation in male
golden Syrian hamster [108]. Zerumbone also seems to
be beneficial in alleviating symptoms of renal dysfunction.
Treatment of female Sprague Dawley rats with cisplatin-
induced renal disease with ZER had reduced toxicity and
organ damage via the preservation of antioxidant glutathione
and prevention of lipid peroxidation [123].

Zerumbone induces genotoxic and cytotoxic effects on
cultured human peripheral blood lymphocytes [71], CHO
cells, and rat bone marrow polychromatic erythrocytes
(PCEs) [74, 142]. In fact highly concentrated ZER could cause
substantial increase in the frequency of micronuclei in these
cells. This study suggests that there are safety issues in the
development of ZER as a potential therapeutic compound,
because very high doses of ZER may produce adverse effects.

Finally, there is evidence that ZER may be useful
in the treatment of Alzheimer’s disease. This was sug-
gested by a recent study that showed ZER inhibits acetyl-
cholinesterase [143]. The enzymolytic effect of ZER towards
AChE (acetylcholinesterase) could be the basis for the devel-
opment of ZER in the treatment of Alzheimer’s disease.

8. Discussion

Many natural compounds possess various and significant
biological activities. Thus traditionally these compounds are
included in the diet of many Asian societies because they are
not only nontoxic but also beneficial to health [144].However,
there is a dearth of scientific and clinical evidence supporting
effectiveness, usefulness, and safety of herbal compound used
in traditional medicine. Because of lacking evaluation of the
toxicity and negative reactions of medicinal herbs, the use of
natural compounds may prove unsafe.

Malaysia, with its tropical rainforests, is blessed with
high biodiversity. The Malaysian forest is an enormous
potential source of chemicals and metabolites that can be
developed into new agents or novel drugs for treatment of
chronic diseases [145]. The jungles of South East Asia have
provided more than 6,500 different plants that have been
used in the treatment of various illnesses particularly cancers
[146]. The South East Asians seemed to have lower risks
for development of cancers including colon, gastrointestinal,
prostate, and breast cancers compared to Westerners [147].
It is probably the practice of regular consumption of natural
plant products that contributes to the lower incidence of these
debilitating diseases in the South East Asians.

Recently, in our laboratory, ZER was made soluble by
incorporating in the cyclodextrin complex.Theproduction of
the ZER-cyclodextrin complex enabled ZER to be formulated
as an encapsulated natural compound ready for use, either
as an injectable solution or delivered orally as an anticancer
product [148, 149]. The usefulness of encapsulated ZER
complex as potential anticancer is worth future exploration
through preclinical and human clinical trials to determine
efficacy and safety of the product for human use. More
recently we also encapsulated ZER into a nanostructured
lipid carrier (NLC) using the high pressure homogenization
(HPH) technique. The physiochemical properties, entrap-
ment efficiency, storage stability, in vitro release, and cyto-
toxic effect of this formulation against human acute lympho-
cytic leukemia (Jurkat) cell line were studied and showed
promising results. Our study also showed that ZER-loaded
NLC can be further developed as a drug delivery system for
cancer therapy [23, 66].This new approach to using a natural
metabolite in innovative delivery systemswould seemingly be
an alternative and new approach in the treatment of cancers
[72].

This review has clearly indicated that ZER from Zingiber
zerumbet Smith possesses various beneficial in vitro and in
vivo biological activities. The findings from all the researches
reviewed in this paper are conclusive evidences that ZER is a
strong potential candidate for anticancer compound.There is
need to conduct animal studies and human clinical trials to
ascertain the efficacy, usefulness, and safety of this compound
as an intended pharmaceutical drug.
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