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Abstract: We present a novel excitation-emission multiplexed fluorescence 
lifetime microscopy (FLIM) method that surpasses current FLIM 
techniques in multiplexing capability. The method employs Fourier 
multiplexing to simultaneously acquire confocal fluorescence lifetime 
images of multiple excitation wavelength and emission color combinations 
at 44,000 pixels/sec. The system is built with low-cost CW laser sources 
and standard PMTs with versatile spectral configuration, which can be 
implemented as an add-on to commercial confocal microscopes. The 
Fourier lifetime confocal method allows fast multiplexed FLIM imaging, 
which makes it possible to monitor multiple biological processes in live 
cells. The low cost and compatibility with commercial systems could also 
make multiplexed FLIM more accessible to biological research community. 

© 2014 Optical Society of America 
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1. Introduction 

Fluorescence lifetime microscopy (FLIM) is a powerful tool for functional imaging of 
biochemical environments and molecular interactions in biological specimens [1]. Existing 
FLIMs techniques can be grouped into two categories: full-frame 2D FLIM based on gated or 
modulated cameras, and point-scanning 3D FLIM. 

Full-frame 2D FLIM techniques have faster frame rates than point-scanning FLIM, but 
the gated or modulated cameras carry a high instrument cost for full-frame FLIM systems. 
While recent development of CMOS based single-photon avalanche diodes [2, 3] or 
CCD/CMOS hybrid lock-in imagers [4] may provide a low-cost alternative for image 
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detection in the future, currently the numbers of pixels reported in such detectors are limited 
compared to gated cameras. Furthermore because camera-based epi-detection does not have 
native depth-section ability, for 3D imaging of biological specimen, sophisticated designs 
such as structured illumination [5], spinning disk confocal microscopy [6] or select plane 
illumination [7] are needed with full-frame FLIM systems. 

Point scanning FLIM is compatible with confocal or two photon microscopy that have 
native depth sectioning capabilities for 3D lifetime imaging. Both the frequency domain [8] 
and time domain [9] fluorescence lifetime methods have been widely used in point-scanning 
FLIM. Both methods have their pros and cons, and the choice of a FLIM method often has to 
compromise between speed, accuracy and cost: 

(1) The time-domain method needs less photon counts to achieve the same lifetime 
accuracy [10], however, it has a higher cost due to the picosecond pulsed laser 
source and time-correlated single photon counting (TCSPC) detection system 
needed. The TCSPC system has a limited count rate, which becomes the bottleneck 
for increasing imaging speed. Multi-channel TCSPC can alleviate the count-rate 
limit at the expense of higher instrument cost. 

(2) The frequency-domain method is highly versatile in hardware and can be the lowest-
cost system in all FLIM approaches [11, 12]. The excitation source of the frequency 
domain method can be either low-cost modulated CW source or pulsed laser/LED 
source. The detector can be in either the single photon counting mode or analog 
mode, which does not suffer from the count-rate bottleneck in TCSPC. However, 
due to limitations in light source and RF hardware, existing frequency domain FLIM 
systems cannot easily perform fast measurements at multiple modulation frequencies 
and typically only operate at one or two modulation frequencies. Single or dual-
frequency FLIM can only detect trends of lifetime change [13, 14] and are not 
sufficient for analyzing complex decay models. While multi-frequency 
measurements can be performed with pulsed excitation utilizing higher order 
harmonics of the fundamental pulse frequency [10, 15], such systems require 
picosecond pulsed light source similar in cost to those used in time-domain systems. 

In recent years, FLIM has seen significant improvement in instrumentations including 
light sources [16, 17], detectors [3, 18, 19] and experimental and data analysis schemes [12, 
15, 20]. However one limitation persists in FLIM, which is the inability to perform paralleled 
detection on multiple excitation wavelengths. Fluorescence imaging at multiples excitation 
wavelengths, FLIM or not, are generally carried out in sequential excitation multiplexing, 
where different excitation wavelengths are switched on one at a time and the sample is 
imaged sequentially. As the result, the total image acquisition speed is decreased. As the 
imaging speed of FLIM is already slower than intensity-only imaging method because it 
needs higher photon counts to extract quantitative information on the fluorescence decay, 
further slowing down the imaging speed with sequential excitation multiplexing may affect 
FLIM’s ability to image live samples. Thus, although emission-multiplexed FLIM systems 
are frequently reported in literature, only few excitation-multiplexed FLIM systems exist [17, 
21]. 

Parallel excitation multiplexing FLIM had been previously demonstrated with multiple 
electro-optical modulators, each modulating an excitation laser at a unique frequency [22, 
23]. The parallel multiplexing is achieved by the frequency multiplexing principle similar to 
Frequency Division Multiple Access (FDMA). However, in previous systems only one 
modulation frequency was measured per excitation line, which is not sufficient for complex 
decay analysis. 

Our previous work [24] demonstrated that the Fourier transform fluorescence lifetime 
spectroscopy allows rapid parallel excitation-multiplexed lifetime measurements at 
continuous frequency points by modulating multiple laser lines with a fast frequency-
sweeping Fourier transform interferometer. The parallel excitation-multiplexing is achieved 
by modulating multiple laser lines via interference, which create wavelength-encoded 

#207405 - $15.00 USD Received 28 Feb 2014; revised 14 Apr 2014; accepted 14 Apr 2014; published 21 Apr 2014
(C) 2014 OSA 5 May 2014 | Vol. 22,  No. 9 | DOI:10.1364/OE.22.010221 | OPTICS EXPRESS  10223



modulation frequency vω λ= . The velocity of the interferometer delay line v changes 

linearly, creating wavelength-encoded modulations sweeping from 0 to >150 MHz in 23 μs, 
allowing nanosecond lifetime measurements with continuous frequency sampling at multiple 
excitation wavelengths simultaneously at 44,000 sample/s. 

A Fourier lifetime confocal microscope based on the Fourier transform fluorescence 
lifetime technique would be able to perform raster-scanning lifetime measurements at a high 
pixel rate of 44,000 pixels/sec, suitable for volumetric confocal laser-scanning imaging in live 
specimens. With multiple emission detectors, the system would be able to simultaneously 
image all possible excitation-emission channels. The approach would dramatically increase 
FLIM’s spectral multiplexing capability. Furthermore, the Fourier lifetime confocal 
microscope would use low-cost CW lasers and regular analog PMTs commonly used in 
confocal microscopes, so that it could potentially be implemented as an add-on to existing 
confocal microscopes with minimal additional cost. The continuous multi-frequency 
measurements on fluorescence lifetime responses could facilitate analysis of complex 
fluorescence decay behaviors [25]. 

However, the previous Fourier lifetime fluorometer is not compatible with confocal 
imaging due to the following reasons: (1) The fluorometer acquires lifetime data via 
multichannel GHz digitalization. The data rate is unsustainable and impractical in imaging 
mode at multiple excitation-emission wavelengths combinations; (2) Small beam walk-off 
exists in the laser excitation of the fluorometer, which is caused by the single-pass polygon 
optical delay line used by the interferometer. The unwanted beam walk-off leads to lifetime 
and intensity artifacts in confocal images of heterogeneous samples. 

Furthermore, as FLIM needs thousands of photons per pixel to accurately measure 
lifetimes, the imaging speed of FLIM is often limited by the brightness of fluorescent 
biological samples, not the hardware acquisition speed. Theoretical analysis and experimental 
tests are needed to prove that the full hardware speed of a lifetime spectroscopic method can 
be realized in live imaging of biological samples. 

The purpose of this paper is to address these challenges and questions, and to report a 
Fourier lifetime confocal microscopy instrument as a novel, accurate and low-cost solution to 
excitation-emission multiplexed 3D FLIM. 

2. Microscope system 

2.1 System scheme: eliminate beam walk-off and perform confocal laser scanning imaging 

The schematic of the microscope is shown in Fig. 1(a). Similar to the fluorometer we 
previously reported, the system has four excitation laser lines (405, 488, 561 and 640 nm) to 
perform parallel multi-excitation lifetime imaging. All lasers are directed into a Michelson 
interferometer with a scanning optical delay line, which produces frequency sweeping 
interferometric modulations on all laser lines with modulation frequencies inversely 
proportional to laser wavelengths (Figs. 1(b) and 1(c)). 

To eliminate beam walk-off, the delay line in the confocal microscope employs a double-
passed geometry (Fig. 1(b)) [26] instead of the single-pass geometry used previously. The 
change also removes beam spot movements caused by mechanical vibrations of the spinning 
polygon mirror. A 48-facet 55,000 rpm polygon mirror scanner (23 μs per facet, Lincoln 
Lasers) is used in the double-pass optical delay line. An IR laser at 780 nm wavelength is 
placed at the side of the polygon mirror scanner in order to provide an optical trigger signal of 
the facet spinning. 

Modulation frequencies of visible lasers sweep from 0~150 MHz twice within 23 μs (Fig. 
1(c)). The modulation frequency is highly repeatable due to the small motor speed instability 
(0.03%), which corresponds to frequency variations less than 45 kHz during the sweep. The 
frequency instability does not cause detectable lifetime artifacts because: (1) the frequency 
instability is small in comparison to the typical nanosecond lifetime and the 1 MHz detection 
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bandwidth, and (2) the emission signal is demodulated in reference to the real-time laser 
modulation signal in a way similar to lock-in detection. 
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Fig. 1. Schematics of Fourier confocal FLIM. (a) Schematic of the optical and signal 
acquisition system. (b) Fourier transform interferometer with double passed delay line. The 
interferometer has a 23 μs scan repetition time and no beam walk-off. (c) Wavelength-
dependent interference modulation sweep twice between 0 to 150 MHz within 23 μs. 

The modulated laser output from the interferometer is split by a beam pick-off. A small 
portion of the output is sent to a series of amplified photodetectors to monitor the interference 
modulations of individual excitation lasers. The majority of the output is directed to a 
confocal microscope built on an inverted microscope frame (Olympus IX71). The excitation 
beam passes through a pinhole and is focused onto the sample through a 60X NA1.4 oil 
objective lens. A pair of close-loop x-y galvanometer mirrors (Thorlabs) scans the laser focus 
across the sample. Confocal scanning is performed in the one-directional scan mode with fast 
pull back. Typically a 400-by-400 pixel scan at 44,000 pixel/s takes a total time of 4 seconds. 
The typical excitation power used for live cell imaging is 10 to 200 μW per laser line. 
Fluorescence emission is spatially filtered by the same pinhole and separated from the 
excitation by a quad-band dichroic mirror (Semrock Di01-R405/488/561/635). The emission 
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is further split into multiple spectral bands and detected by multiple photomultiplier tube 
detectors (PMTs, Hamamatsu H7422). The typical PMT gain setting is 500 to 600 Volts 
(maximum gain setting is 1000 Volts). 

2.2 Analog-digital hybrid signal processing enable sustainable 4-by-4 lifetime EEM imaging 

The Fourier lifetime fluorometer we previously developed records high frequency excitation 
and fluorescence modulations at their native frequencies simultaneously with a GHz digitizer, 
creating an unsustainable data rate and an extreme large volume of data that needs to be 
processed digitally. To apply the Fourier lifetime method in a continuous-imaging mode, an 
analog-digital hybrid signal processing and lifetime analysis method was developed for 
Fourier lifetime confocal imaging. The new method decreases the data rate per channel and 
allows simultaneous acquisition of lifetime imaging in up to 4-by-4 excitation-emission 
wavelength combinations, which form a lifetime excitation-emission matrix (EEM) image. 

To process a lifetime information in the ijth Ex-Em channel, the signal of the jth emission 
spectral channel (Fig. 2(a)) is heterodyne down-mixed with the delayed reference modulation 
signal of the ith laser line (Fig. 2(a)) by an RF mixer (Mini-Circuits ZX05-1L-S + ) (Fig. 

2(b)). Because the modualtion of ith laser modulation exi
i

tαω λ= is linearly sweeping, the 

time delay tΔ  between excitation and emission signals corresponds to a constant frequency 

shift exi
i

tαω λ
ΔΔ = . The mixed signal is 

 ( )sin .ex em ex em
ij i i i jI I t Iω ω− = + Δ ×     (1) 

The signal in the jth emission channel em
jI is excited by multiple excitation lines 

 ( ) ( )sin .em ex
j kj k kj k k kj k

k

I I m tβ ω ω ϕ ω = +   (2) 

where kjm and kjϕ  are the modulation and phase of the fluorescence lifetime frequency 

response of the kjth Ex-Em channel, and kjβ  is the brightness of the Ex-Em channel. The 

signal after mixer is 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2
sin sin

sin sin .

ex em ex
ij i ij ij i i i ij i

ex ex
i i i kj k kj k k kj k

k i

I I m t t

I t I m t

β ω ω ω ω ϕ ω

ω ω β ω ω ϕ ω

−

≠

 = + Δ +    
 + + Δ × +    


 (3) 

Because 0j kω ω− >>  when k i≠ , after low-pass filtering, only emission signal that is 

excited by the ith laser line remains 

 ( ) ( ) ( )2
sin .ex em ex

ij i ij ij i ij iI I m tβ ω ω ϕ ω−  = Δ + 
  (4) 

The mixing and low-pass filtering procedure allows all combinations of Ex-Em channels to 
be acquired independently in parallel. 

The carrier frequency ωΔ  of the down-mixed signal is set at 200~300 kHz by adjusting 
the time delay between the emission and reference signals. An increase in the differential 
delay between the emission signal and the reference signal will increase the down-mixed 
frequency, and vice versa. 
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Fig. 2. Analog-digital hybrid data processing of Fourier confocal FLIM. (a) Frequency-
sweeping laser excitation and fluorescence emission signals from the sample. (b) Down-mixed 
emission signals. (c) Measured modulation and phase signal of GFP in comparison to those of 
fluorescein. 

The down-mixing process allows the digitalization rate to drop from the previous 750 
MHz per Ex-Em channel to 2 MHz, which is sustainable with a typical PC. In our system, up 
to 4-by-4 Ex-Em channels are digitalized by a multi-channel high-speed digitizer (NI 
5752&7962) at 2 MHz. 40 frequency points are sampled during each round trip frequency 
sweep and treated as a single pixel multi-frequency measurement. The confocal scanning is 
controlled by a multi-function DAQ (NI 6115). Confocal scanning and data acquisition are 
synchronized by the optical trigger signal from the polygon scanner. 

The RF response of each Ex-Em channels are corrected by measuring established 
frequency-domain lifetime standards [14, 27]. Coumarin 6 (2.5 ns), fluorescein (3.9 ns) and 
Rhodamin B (1.8 ns) are used for Ex-Em channels with 405 nm, 488 and 561 nm excitations 
respectively [28]. The correction factor is calculated by 

 ( ) { }
( ) ( )

( )
.

exp

ex em
ij i

ij i st st
i i

I
C

m i

ω
ω

ω φ ω

−

=
  

H  (5) 

where H  refers to the Hilbert transform, ( )stm ω and ( )stφ ω are modulation and phase 

responses of the lifetime standard calculated from its known lifetime. The correction factor 
needs to be re-measured if the optical system is realigned or any electronic component is 
changed. 

3. Multi-label 3D lifetime imaging 

3.1 Lifetime analysis method 

The modulation and phase response of an Ex-Em channel m(ω), φ(ω) is recovered by 
correcting the down-mixed signal at each pixel with the prerecorded correction factor. 

 ( ) ( ) ( ) ( )
( )

exp .
ex em
ij iCor

ij i ij ij i ij i
ij i

I
I m i

C

ω
ω β ω ϕ ω

ω

−   ∝ = 
H

  (6) 

where ( ) ( )expij i ij im iω ϕ ω    is the complex phasor [29]. The intensity-weighted phasor 

response ( )Cor
ij iI ω  of each pixel is fitted with appropriate frequency domain fluorescence 

lifetime models [24, 25]. Typically the intensity weighed phasors at 40 frequency points, 
measured within a 20 μs frequency-sweep, is fitted with a single-exponential complex model 
to extract the lifetime at each pixel (Fig. 2(c)). The emission intensity image is calculated as 
the root square power of the down-mixed signal for each pixel. All images presented in this 
paper are acquired at full pixel rate (44,000 pixels/sec) without averaging. 
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3.2 3D confocal lifetime image of triple stained tissue: observe FRET in co-localized labels 

To demonstrate the multiplexed 3D lifetime imaging capability of the microscope, cryostat 
section of mouse kidney stained with Alexa Fluor 488 wheat germ agglutinin, Alexa Fluor 
568 phalloidin and DAPI (FluoCells prepared slide #3, Invitrogen) was scanned in 0.2-μm z-
step with three lasers at 405, 488 and 561 nm simultaneously. Blue, green and red emissions 
are detected by three PMTs and down-mixed with three laser reference signals, respectively. 

 

Fig. 3. 3D confocal lifetime image of triple-labeled mouse kidney slice. (a) False color 
intensity image of an x-y plane slice. (b) Lifetime x-y slice image of DAPI. (c) Lifetime x-y 
slice image of Alexa488 WGA. (d) Lifetime x-y slice image of Alexa568 phalloidin. (e) 
Sample x-z section. Top row: false color intensity image, showing co-localization of Alexa488 
WGA and Alexa568 phalloidin at the basal area of proximal tubules. 2nd row: lifetime image 
of DAPI. 3rd row: lifetime image of Alexa488 WGA, showing decreased lifetime in the basal 
area of proximal tubules due to FRET between Alexa488 and Alexa568. Bottom row: lifetime 
image of Alexa568 phalloidin. The image size is 800-by-800 pixels with 0.15 μm pixel size, 
acquired at the full 44,000 pixel/s speed and processed without average. The full 3D data set is 
shown in Media 1. Scale bar 20 μm. 

Figure 3 shows a confocal image slice (800x800 pixels, 0.15 μm per pixel) of 3D triple-
channel confocal lifetime images of the above mentioned mouse kidney slide. Full 3D image 
set is provides in Media 1. Triple-channel fluorescence intensity (Fig. 3(a)) and lifetime 
images (Figs. 3(b)–3(d), false-colored in a 0 ns to 3 ns color scale) were acquired within a 
single scan. DAPI (blue in Fig. 3(a)) labels all nuclei. Alexa488-WGA (green in Fig. 3(a)) 
specifically stains the apical and basal area of proximal tubules, and basement membrane side 
of distal tubules [30]. Alexa568 phalloidin (red in Fig. 3(a)) stains actin filament of all cells. 
DAPI (blue in Fig. 3(a)) changes its lifetimes depending on its binding state to DNA, thus a 
highly heterogeneous lifetime distribution was observed (Fig. 3(b)). Alexa488 lifetimes (Fig. 
3(c)) in the basal area of proximal tubules are shorter than lifetimes in the apical area of 
proximal tubules and basement membrane side of distal tubules. The lifetime shortening is 
likely due to co-localization of Alexa488 WGA and Alexa568 phalloidin, which generates 
Föster resonant energy transfer (FRET). The co-localization and FRET effect are more 
evident in Fig. 3(e), which show a cross section of the 3D confocal images. The lifetime of 
Alexa568 is uniform across the sample (Fig. 3(d)). 
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4. Sensitivity and accuracy analysis 

Lifetime imaging of live cells with fluorescent protein labels is much more challenging than 
imaging stained tissue. On one hand, live cell imaging methods need to be fast in order to 
detect dynamic changes and avoid artifacts due to cell movements. On the other hand, the 
image speed is limited by two factors: (1) genetically labeled live cells are much dimmer than 
stained tissue, and (2) fluorescence proteins in general are less photostable than dye stains and 
are prone to photobleaching. As FLIM require a minimum number of photons to accurately 
resolve lifetime, the speed of live cell FLIM is often not limited by the hardware but by the 
photon budget available from the sample. 

The imaging speed of a FLIM method is affected by two parameters: (1) the minimum 
number of photons needed to accurately measure the lifetime, which can be theoretically 
calculated, and (2) the available fluorescence photon flux at the detector, which depends on 
many factors, including the excitation power without excess photobleaching, the maximum 
count rate of the detector, and the detection duty cycle. 

Our analysis shows that Fourier lifetime confocal imaging method has a typical photon 
number requirement similar to all frequency domain lifetime method using modulated CW 
sources, and the photon flux under typical confocal live cell imaging condition is higher than 
the minimal requirement. 

4.1 F-number analysis of minimal photon counts for lifetime measurements 

Following the methods in Ref [10], we calculated that in an ideal shot-noise limited situation, 
the 0-150 MHz multi-frequency heterodyne lifetime measurement and the complex phasor 
lifetime fitting used in our approach requires a similar number of photons as the tradition 
single-frequency homodyne frequency domain FLIM to achieve the same accuracy level. 

 

Fig. 4. Monte Carlo simulation of F factor for heterodyne Fourier confocal FLIM compared to 
single frequency homodyne frequency domain lifetime method, at 100% and 80% excitation 
modulation depth. For 1~4 ns lifetimes Fourier confocal FLIM requires 5,000~1,0000 photons 
to achieve 10% lifetime accuracy. Homodyne lifetime F-factor curves are recalculated with 
same parameters as in Ref [10]. 

Figure 4 plots the F-factor of lifetime fitting for the two methods. The figure of merit F of 
a lifetime method is defined as 

 .
N

F
N

τ
τ

Δ Δ=  (7) 

where τ is the lifetime, Δτ is the lifetime accuracy, N is the number of detected photons and 
ΔN is the photon RMS noise. The F-factor is independent to the number of photons collected. 
With the multi-frequency heterodyne frequency-domain lifetime method, the photon 
efficiency is similar to the conventional single frequency homodyne frequency domain 
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lifetime method, as shown in Fig. 4. The complex phasor fitting requires slightly less photons 
than modulation or phase-only fittings because both modulation and phase information are 
used. For fluorescence lifetimes in the range of 1~4 ns, approximately 5,000~10,000 photons 
are needed to resolve fluorescence lifetimes within 10% accuracy. 

FLIM imaging speed is often limited by the detected photon flux not by hardware speed. 
In time-domain FLIM, the photon flux is likely limited by the power and repetition rate of the 
pulsed excitation, the TCSPC count rate or loss of photons outside of the detection time-gate. 

In comparison to time-domain lifetime methods whose F-factors are lower, frequency 
domain methods in general require more photons to resolve lifetime to the same accuracy. 
Thus the photon flux requirement is higher for frequency domain FLIM operating at the same 
imaging speed. 

Fortunately, frequency-domain FLIM using modulated CW excitation and analog 
detectors can detect a higher photon flux than time-domain FLIM. The higher photon flux is 
due to three factors: (1) CW laser has a higher excitation duty-cycle than pulsed laser and can 
excite more photons without saturation, (2) analog PMTs can detect continuous photon flux 
without saturation, and (3) analog PMTs operate under constant gain and high detection duty-
cycle. 

With the short-pulsed excitation, the emission photon flux is limited by excitation 
saturation. An 80 MHz pulse excitation can produce at most a photon flux of 80 MHz from a 
single fluorophore, which is about 12~32% of the CW saturation photon flux, estimated to be 
250 MHz to 1GHz considering the typical 1-4 ns lifetime. With a typical 50 μW excitation 
power, the CW excitation intensity in our system is ~5% of the saturation intensity. 
Experimentally less than 1% of GFP bleaching was observed per scan under 50 μW excitation 
power. The typical detected photon flux in our system is about 109 photons/sec. The 
experimentally measured photon flux matches well with an photon flux estimation, assuming 
cells expressing GFP at a typical concentration of 10 μM (approximately 10 times brighter 
than cell autofluorescence [31] and can be easily achieved with a good promoter [32]), under 
typical confocal experimental conditions (50 μW excitation power, 1.4 NA objective, 10% 
total photon collection efficiency and 0.4 PMT quantum efficiency). The photon flux, 
according to Fig. 4, is sufficient for accurately resolving lifetime within 20 μs data 
acquisition. 

In Fourier confocal lifetime imaging, the high photon flux is detected without saturation 
by setting the PMT gain voltage at 60% or less of its full range. In comparison, in TCSPC 
based fluorescence lifetime methods, the photon rate per channel has to be limited to 1% of 
the laser repetition rate to avoid pulse pile up [33]. Under an 80-MHz pulsed laser, a high-cost 
16-channel TCSPC has a maximum count rate of 12.8 MHz, much less than the photon flux 
typical in our system. 

Many FLIM system use gain-gated or gain-modulated detection, which rejects 
fluorescence photons outside of the detection time-gate and causes photon loss. In Fourier 
confocal lifetime imaging, PMTs are running under constant gain with 90% detection duty 
cycle. The only photon loss happens at the two ends of a facet scan where the edges of a facet 
rotate across the incident laser beam, which accounts for a 10% detection duty cycle loss. 

It is worth noting that the above photon flux advantages apply to all frequency-domain 
FLIM methods that use modulated CW excitation and analog PMTs. However, in the past, 
due to limitations in optical modulators, such frequency-domain FLIM systems suffer from 
the inability to perform fast multi-frequency measurements. Single or dual-frequency FLIM, 
although can detect trends of lifetime change [13, 14], are not sufficient for analyzing 
complex decay models. The Fourier confocal FLIM breaks this hardware barrier by using an 
all-optical method to modulate laser intensity into a fast frequency sweep. The lifetime 
measurement is inherently multi-frequency, allowing the analysis of complex decay models 
such as multi-exponential decay and excited state reaction [25]. 
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4.2 Live cell imaging experiments: shot-noise limited performance 

Equation (7) predicts that if a FLIM system is photon shot-noise limited, the lifetime accuracy 
should be inversely proportional to the square root of the emission photon number or the 
square root of the excitation power. Experimental study was performed to prove that the 
Fourier confocal lifetime microscope is indeed shot-noise limited. Live HeLa cells expressing 
GFP were imaged repeatedly with increasing laser excitation power. As shown in Fig. 5, the 
width of GFP lifetime pixel histogram decreases with the increasing laser power (Fig. 5(a)). 
The standard deviation of measured GFP fluorescence lifetime is indeed inversely 
proportional to the square root of excitation laser power in Fig. 5(b), demonstrating that the 
microscope system and the lifetime analysis are limited by photon shot noise. GFP lifetime 
images at 200 μW and 30 μW are shown in Figs. 5(c) and 5(d), with the low excitation power 
image showing more pronounced pixel lifetime variations. The system achieved 10% lifetime 
accuracy in live imaging of GFP with 50 μW excitation power. Based on the average output 
level from the PMT, we estimated that the average photon count is 10,000 per pixel under this 
condition, consistent with previous numerical estimation. Considering the lifetime data 
analysis uses a 2-by-2 pixel data smoothing, the experimental lifetime accuracy matches the 
theoretically estimated lifetime accuracy within a factor of 2. The discrepancy in signal-to-
noise is likely introduced by the reference laser modulation signal in the down mixing 
process, because reference signals are detected laser interference signal, which contain 
additional shot noise. 

a b

c d

2/1−∝ excPτσ

 
Fig. 5. GFP lifetime accuracy in live cell imaging under different laser excitation power. (a) 
Histograms of GFP lifetime distribution narrow with increasing excitation power. (b) The 
standard deviation of GFP lifetime is inversely proportional to the square root of excitation 
power. (c) GFP lifetime image of HeLa cells at 200 μW excitation power. (d) GFP lifetime 
image of HeLa cells at 30 μW excitation power. GFP fluorescence lifetime was measured at 
2.25 ± 0.16 ns at 200 μW excitation power and 2.3 ± 0.3 ns at 30 μW excitation power. Image 
size is 400-by-400 pixels with 0.3 μm pixel size. The image set was acquired at full 44,000 
pixel/s speed. Lifetimes were fitted from data smoothed by a 2-by-2 pixel wide Gaussian 
window. The intensity image was processed at the original resolution without smoothing. 

5. Discussion 

The Fourier lifetime confocal imaging method provides a low cost solution to implement 
excitation-emission multiplexed FLIM as an add-on to confocal microscopes that are widely 
available in most biological research facilities. The multi-line CW laser sources in a standard 
confocal microscope can be converted to modulated light sources by the addition of the 
interferometer. Analog PMTs in standard confocal microscopes can be used without 
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modification. The analog-digital data processing system uses readily available inexpensive 
off-the-shelf components. We estimate the cost different between our multi-channel FLIM 
confocal system and a standard multi-channel confocal microscope is about $30,000, which 
enables a confocal microscope to perform FLIM in 4-by-4 multiplexed excitation-emission 
channels simultaneously. 

The Fourier lifetime method is universally versatile in spectral configuration. Figure 6 
shows lifetime images of TagBFP and mCherry expressing HeLa cells, demonstrating that the 
system can achieve satisfactory lifetime accuracies on the full spectrum of fluorescence 
proteins. Our multiplexed FLIM system had successfully being applied to FRET study of 
protein conformation changes [34]. 

In addition to its fast-speed, low cost and spectral versatility, the Fourier lifetime confocal 
imaging method offers the unique advantage of excitation-emission spectral multiplexing. It 
allows application of multi-line excitation onto the sample simultaneously while still being 
able to differentiate between the excitation contributions from each line, which is not possible 
with any other fluorescence microscopy methods. With our method, imaging of multiple Ex-
Em channels, FLIM or not, can be performed as fast and accurate as single Ex-Em channel 
imaging. 

 

Fig. 6. Lifetime images of HeLa cells expressing fluorescence proteins of blue and red colors. 
(a) TagBFP, 50 μW 405 nm excitation, 457 ± 20 nm emission. The excitation power and 
lifetime accuracy are lower because TagBFP is less photostable than GFP and mCherry; (b) 
mCherry, 200 μW 561 nm excitation, 593 ± 20 nm emission; (c) Lifetime histograms of three 
FPs; (d) Bar chart showing lifetime accuracy of three FPs. TagBFP: 2.79 ± 0.25 ns; GFP: 2.25 
± 0.16 ns; mCherry 1.80 ± 0.09 ns. All lifetimes match with literature values [35–37]. All 
images were acquired at the full 44,000 pixel/s speed. Lifetimes were fitted from data 
smoothed by a 2-by-2 pixel wide Gaussian window. The intensity images were processed at 
the original resolution. Scale bar 20 μm. 

With its low-cost, multiplexed, depth-sectioned live fluorescence lifetime imaging 
capability, the Fourier lifetime confocal imaging method could promote the use of 
multiplexed imaging and FLIM in the study of biomolecular interactions inside living cells 
and tissue. 
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