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Abstract: We implemented the graphics processing unit (GPU) ac-
celerated compressive sensing (CS) non-uniform in k-space spectral
domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB)
function and Gaussian function are used independently as the convolution
kernel in the gridding-based non-uniform fast Fourier transform (NUFFT)
algorithm with different oversampling ratios and kernel widths. Our imple-
mentation is compared with the GPU-accelerated modified non-uniform
discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and
the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It
was found that our implementation has comparable performance to the
GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality
while providing more than 5 times speed enhancement. When compared to
the GPU-accelerated FFT based-CS SD OCT, it shows smaller background
noise and less side lobes while eliminating the need for the cumbersome
k-space grid filling and the k-linear calibration procedure. Finally, we
demonstrated that by using a conventional desktop computer architecture
having three GPUs, real-time B-mode imaging can be obtained in excess of
30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size
2048(axial)×1000(lateral).
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1. Introduction

In the past decade, compressive sensing (CS) [1, 2] has emerged as an effective technique for
sampling a signal with smaller number of measurements than that required by the classical
Shannon/Nyquist theory. For an accurate reconstruction, CS requires that the signal is sparse
in some domain that is incoherent to the sampling domain. In recent years, applications of CS
in the spectral domain optical coherence tomography (SD OCT) have been reported by many
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research groups [3–8] which shows that high-quality SD OCT images can be obtained from
highly under-sampled k-space data.

Most recent studies on CS SD OCT take the uniform discrete Fourier transform (UDFT)
or fast Fourier transform (FFT) as the sensing technique which requires the under-sampled
linear wavenumber spectral sampling as the input data. Special operations are needed for ob-
taining such samplings since in most SD OCT systems, the spectra from the interferometer
are nonlinear in wavenumber. In [3], the k-space grid-filling method is proposed which obtains
the under-sampled nonlinear wavenumber data from the spectra first; then remaps them to the
linear wavenumber grid for the under-sampled linear wavenumber sampling. Another method
based on the pre-calibrated k-linear random mask is proposed in [4] which gets the under-
sampled linear in wavenumber sampling directly from the nonlinear wavenumber spectra. As
stated in [9], these two methods have their own limitations: the previous one requires a compli-
cated and time-consuming spectral calibration with numerical interpolation; the latter one also
demands an inflexible pre-calibration process that needs to be repeated even if a slight change
on the sampling rate is desired. It also has an upper bound on the under-sampling rate because
of the nature of the non-uniformity of the wavenumber in SD OCT.

In [9], it is shown that the under-sampled nonlinear wavenumber sampling can be used
directly in the CS SD OCT by taking the modified non-uniform discrete Fourier transform
(MNUDFT) matrix as the sensing matrix, instead of using UDFT/FFT. Then the input data
for CS can be under-sampled directly from the spectra. The k-space grid filling and k-linear
calibration are no longer needed. The MNUDFT matrix is a modification of the non-uniform
discrete Fourier transform (NUDFT) matrix [10], which has a sparsity problem and cannot be
used as the sensing matrix in the CS SD OCT (refer to [9] for details). The MNUDFT matrix
solves this problem by making the A-scans symmetric while preserving the value of the desired
half. It is also shown that CS SD OCT with the under-sampled nonlinear wavenumber sampling
has better sensitivity roll-off, smaller background noise, and less side-lobes compared to that
using the linear wavenumber sampling. However, CS with the MNUDFT matrix is extremely
time-consuming if the matrix multiplication is used in the iterative reconstruction algorithm,
since the computation complexity of the matrix multiplication is O(N×M) where M and N
(M < N) are the row and column number of the under-sampled MNUDFT matrix, respectively.

The gridding-based non-uniform fast Fourier transform (NUFFT) [11] has been shown to
be a good approximation to NUDFT and offers better performance than the interpolation+FFT
method [12–15]. NUFFT reduces the computation complexity to ∼ O(Nlog(N)) and has al-
ready been adapted for the signal processing of regular SD OCT [12–15]. As shown in Section
2.4, the sparsity problem for the NUDFT matrix that excludes its usage in the CS SD OCT
does not exist for CS with NUFFT. NUFFT is indeed a faster implementation that approxi-
mates MNUDFT when used in the CS SD OCT. By adding the zero-padding/under-sampling
steps to the CS reconstruction procedure, NUFFT can be used in the CS SD OCT with the
under-sampled nonlinear wavenumber sampling.

Compared to the reconstruction of regular OCT image, CS SD OCT takes significantly more
time which hinders its applications in the surgical conditions. CS SD OCT is usually solved
by an iterative algorithm that requires numerous matrix-vector computation, which is compu-
tationally complex and time-consuming if solved on the CPU based systems. However, such
computation is ideal for parallel processing which can significantly reduce the computation
time. As a highly effective massively parallel processor, a graphics processing unit (GPU) has
been widely used in processing the regular SD OCT signals [14,16–18] which achieves a speed
of more than 320k Ascans/s with A-scan size 2048. GPU has also been adapted for the accel-
eration of CS reconstruction of various signals [19–21]. GPU-accelerated FFT-based CS SD
OCT is studied in [22], which demonstrates real-time B-mode imaging at excess of 70 fps with
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frame size 2048(axial)×1000(lateral) on a conventional desktop computer architecture having
three GPUs.

In this work, we implemented the GPU-accelerated NUFFT-based CS SD OCT on the same
triple-GPUs architecture as [22] and demonstrated that real-time B-mode imaging can be re-
constructed at more than 30 fps with frame size 2048(axial)×1000(lateral). Both Kaiser-Bessel
(KB) and Gaussian function are tested independently as the convolution kernel for NUFFT
with different over-sampling ratios and kernel widths. The computation speed is evaluated in
both the pre-computed mode and the on-the-fly mode. We also implement the GPU-accelerated
MNUDFT matrix-based CS SD OCT as a comparison for speed and image quality. The exper-
imental results show that GPU-NUFFT-CS is a good approximation to the GPU-MNUDFT-CS
in terms of the image quality while providing more than 5 times speed enhancement. Compared
to GPU-FFT-CS, GPU-NUFFT-CS has improved sensitivity roll-off, better signal-to-noise ra-
tio, and less side-lobes while eliminating the need for the cumbersome k-space grid filling and
the pre-calibration process.

The organization of the rest of this paper is as follows: Section 2 demonstrates the math-
ematical background of MNUDFT-CS and NUFFT-CS with both KB function and Gaussian
function; implementation of GPU-MNUDFT-CS and GPU-NUFFT-CS is described in Section
3; the sensitivity roll-off and speed of different implementations are compared in Section 4; in
vivo SD OCT imaging with GPU-NUFFT-CS are shown in Section 5, with the conclusion in
Section 6.

2. Theory

2.1. CS OCT with under-sampled nonlinear wavenumber sampling

CS OCT theory states that A-scan images (denoted as x) can be reconstructed with high accu-
racy from the under-sampled nonlinear wavenumber sampling (denoted by yu) by solving the
following unconstrained nonlinear convex optimization problem:

minimize
x

1
2
‖Fux−yu‖22 + τ‖Φx‖1 (1)

Φ is the sparsifying operator which is chosen as the identity matrix in our work because OCT
signal is usually sparse enough in spatial domain [3, 4, 22]. τ controls the sparsity of the re-
constructed A-scan. The notation ‖ • ‖1 is the l1-norm and ‖ • ‖2 is the l2-norm. Fu is the
under-sampled transformation matrix.

2.2. MNUDFT-CS

In regular SD OCT, the non-uniform discrete Fourier transform (NUDFT) matrix [10] is used
to transform the full-length non-linear wavenumber spectral data y (yu is a subset of y) to the
A-scan image, x. However, as stated in [9], NUDFT matrix cannot be used as the sensing matrix
in CS SD OCT because its resulting A-scan has much lower sparsity compared to the sparsity
of the A-scan obtained with FFT. The sparsity here indicates the number of coefficients that
represent the signal that is close to 0. According to CS theory, it will require a much higher
sampling rate than the FFT-based CS.

The modified NUDFT (MNUDFT) matrix is proposed in [9] to promote the sparsity of the
resulting A-scan obtained from the nonlinear wavenumber sampling. MNUDFT preserves the
first half of the displayed A-scan and makes the other half have a low sparsity and symmetric to
the first half, as can be seen by comparing Figs. 1(a) and 1(b). The MNUDFT matrix is shown
in Eq. (2) and can be used in CS SD OCT with the under-sampled nonlinear wavenumber
sampling: h(p,q)= exp(iωp×q). p,q∈ [0, . . . ,N−1]. N is the size of the full-length spectra. i is
the imaginary unit. ωp = 2π/ΔK×(kp−k0). k= [k0,k1, . . . ,kN−1] is the nonlinear wavenumber
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corresponding to the full-length spectra. ΔK = kN−1− k0. h(p,q)∗ is the conjugate of h(p,q).
⎡
⎢⎢⎣

h(0,0) . . . h(0,N/2−1) h(0,N/2) h(0,N/2−1)∗ . . . h(0,1)∗

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
h(N−1,0) . . . h(N−1,N/2−1) h(N−1,N/2) h(N−1,N/2−1)∗ . . . h(N−1,1)∗

⎤
⎥⎥⎦ (2)

Compared to CS SD OCT using FFT and the under-sampled linear wavenumber sampling,
MNUDFT-CS has better sensitivity roll-off, larger signal-to-noise ratio, and less side lobes.
Also, MNUDFT-CS can more readily obtain the under-sampled nonlinear wavenumber data
since the grid filling [3] or k-linear mask pre-calibration [4] required by FFT-CS is no longer
needed.

2.3. NUFFT

MNUDFT-CS enables accurate reconstruction of the SD OCT image from the under-sampled
nonlinear wavenumber sampling. It is extremely time-consuming, however, if the matrix multi-
plication is used in the reconstruction process, since the computation complexity of the matrix
multiplication is O(N ×M) where M and N are the row and column number of the under-
sampled MNUDFT matrix, respectively. This will limit its application for clinical use that typ-
ically requires either real-time or immediate image reconstruction.

The gridding-based NUFFT is a fast algorithm that approximates NUDFT [11] and has been
shown to offer better performance than the interpolation+FFT method [12–15]. Two different
kinds of NUFFT will be discussed in this paper. Following the definition in [11], they are
called type-1 and type-2 NUFFT. The type-1 NUFFT transforms the nonlinear wavenumber
data to a linear spatial representation while type-2 NUFFT transforms the linear spatial data to
a nonlinear wavenumber representation. They are a mutually inverse transformation.

The computation steps for type-1 NUFFT are summarized in the following:
(1) Compute the new coefficients on an over-sampled uniform grid by convolution with a

kernel function:
Fr(k̂i) = ∑

n
F(kn)G(k̂i− kn), i = 0, . . . ,Mr−1 (3)

where k̂ = [k̂0, . . . , k̂Mr−1] is the uniform grid covering the same range as k. Fr(k̂i) is the new
coefficient with linear wavenumber while F(kn) is the nonlinear wavenumber data. G(κ) is the
kernel function. Mr = R×N is the size of linear wavenumber grid. R is the over-sampling ratio.
Usually, Eq. (3) is evaluated within a window defined by the kernel width W for each k̂i: the
range of n satisfies |kn− k̂i|/δ k̂ ≤W/2, δ k̂ = ΔK/Mr.

(2) Apply regular FFT to the new coefficients Fr(k̂).
(3) Deconvolve the resulting signal by a division of the Fourier transform of the kernel func-

tion:
f̃r(xm) = fr(xm)/g(xm),m = 0, . . . ,Mr−1 (4)

where fr(x) and g(x) are the Fourier transform of Fr(k̂) and G(κ), respectively.
(4) Truncate the signal to the original size.
The computation steps for type-2 NUFFT are also summarized:
(1) Zero-pad the signal to the length of the over-sampling grid.
(2) Deconvolve the signal by a division of the Fourier transform of the kernel function (Eq.

(4)).
(3) Apply regular FFT to the resulting signal.
(4) Compute the coefficients with nonlinear wavenumber using the kernel convolution:

F(kn) = ∑
i

Fr(k̂i)G(kn− k̂i),n = 0, . . . ,N−1 (5)
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The same as Eq. (3), Eq. (5) is usually evaluated within a window with the same width W for
each kn.

Both the Gaussian function [13,14] and Kaiser-Bessel (KB) function [12,15] have been used
as the convolution kernel in the processing of the regular SD OCT signal with NUFFT. KB
kernel is found to be a better choice in terms of image quality [12, 15, 23] while Gaussian
kernel offers a better accuracy-speed trade-off [15]. The definition of the Gaussian kernel and
its Fourier transform are [11, 13–15,23]:

G(κ) = exp(−κ2

4θ
) (6)

g(xm) =
√

2θ exp(−x2
mθ) (7)

The optimal value for θ is [11]:

θ =
1

N2

π
R(R−0.5)

W
2

(8)

The definition of KB kernel and its Fourier transform are listed as follows [15, 23, 24]:

G(κ) = I0

(
β
√

1− (2κ/W )2

)
/W (9)

where I0(κ) is the zero-order modified Bessel function of the first kind.

g(xm) =
sin

(√
(mπW/Mr)2−β 2

)
√
(mπW/Mr)2−β 2

(10)

The optimal value for β is given by [23, 24]:

β = π
√

W 2

R2 (R−0.5)2−0.8 (11)

The over-sampling ratio R and kernel width W influence not only the computation complexity
or the speed, but also the accuracy of the reconstruction, regardless of the kernel used. Increas-
ing R and W will reduce the truncation error introduced by using a finite width window [15]. It
has been reported [23, 24] that R between 1 and 2 is allowed, which shows the potential to re-
duce the computation time while retaining the image quality. In this paper, NUFFT-CS is tested
independently using both the Gaussian and KB function with different sampling ratios (R=1.5
and 2) and kernel widths (W=3 and 5).

2.4. NUFFT-CS

To incorporate NUFFT into CS reconstruction, two issues need to be resolved: the first one is
that CS demands the under-sampled version of NUFFT. Both the input and output signals of
type-1 and type-2 NUFFT have the length N. Thus, during the CS reconstruction, we cannot
apply type-1 NUFFT to yu for FT

u yu or type-2 NUFFT to x for Fux. FT
u is the adjoint matrix of

Fu. Instead of computing the under-sampled versions of type-1 and type-2 NUFFT, we use a
similar procedure as in [22] to solve this. Denote I as the sampling mask corresponding to yu.
Fux is computed in two steps: (1) apply the type -2 NUFFT to x, denote the result as t; (2) under-
sample t with I. FT

u yu is computed in a similar way: (1) zero-padding yu to length N according
to I, denote the result as yz; (2) apply the type-1 NUFFT to yz. Clearly, this implementation
does not change the result of Fux and FT

u yu. In fact, this implementation can be considered as
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a convenient interface for incorporating any transformation into CS reconstruction. No under-
sampled version of that transformation needs to be computed. It is especially useful in some
cases like NUFFT: the under-sampled version of the transformation may not exist or its closed
form is difficult to compute.

Another issue for NUFFT-CS is to check to see whether NUFFT has a similar sparsity prob-
lem as NUDFT [9]. NUFFT is a good approximation to the NUDFT. If its resulting A-scan has
a similar A-scan sparsity as the one from NUDFT, NUFFT cannot be applied to CS reconstruc-
tion. We compared the A-scans obtained by applying NUDFT, MNUDFT, type-1 NUFFT to a
full-length nonlinear wavenumber data (belonging to a multi-layer polymer phantom scanning)
and FFT to the full-length linear wavenumber data (obtained from the full-length nonlinear
wavenumber data using cubic interpolation). The results are shown in Fig. 1.
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Fig. 1. Sparsity comparison of A-scans by applying (a) NUDFT, (b) MNUDFT, (c) type-1
NUFFT to the full-length nonlinear wavenumber spectral data, and (d) FFT to the full-
length linear wavenumber spectral data.

The A-scan obtained from NUFFT has similar sparsity as the A-scans from MNUDFT and
FFT. All of them are much higher than the sparsity of the A-scan using NUDFT. In SD OCT,
only the left half of the A-scan is displayed. The displayed halves of Figs. 1(a)–1(c) are very
close. However, for the right half, the NUFFT result has much higher sparsity than NUDFT and
is symmetric to the left half, which is the same as MNUDFT. The reason is that NUFFT is based
on FFT. If the input data is in real number, after the computation step (1) and (2), the data is still
real. Symmetric structure signal will be achieved when applying FFT to real number vector, as
described in step (3). Step (4) simply removes some redundant data; thus, its resulting signal
will be symmetric. There is no sparsity problem for NUFFT-CS. In fact, it is easy to figure out
that NUFFT is a good approximation to MNUDFT in this application, not NUDFT. Although a
special case is used in Fig. 1, the same phenomenon will happen when applying the above four
transforms to other SD OCT data.

Thus by adding the zero-padding/under-sampling steps to the CS procedure, NUFFT can be
used in CS SD OCT with the under-sampled nonlinear wavenumber sampling.

3. GPU-MNUDFT-CS and GPU-NUFFT-CS

In this section, we describe the implementation of the GPU-accelerated NUFFT-based CS re-
construction, as well as the GPU-accelerated MNUDFT-based CS reconstruction for the pur-
pose of comparing the image quality and speed. All the programs are implemented through
NVIDIA’s Compute Unified Device Architecture (CUDA) technology [25].
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3.1. SpaRSA

The selected CS reconstruction algorithm is SpaRSA [26]. It tries to solve the CS problem in
Eq. (1) through an iterative strategy in which the new iterate xp+1 is obtained by solving an
optimization subproblem with the current iterate xp:

xp+1 = min
z

1
2
‖z−up‖22 +

τ
α p ‖z‖1 (12)

for some α p > 0. up = xp−(1/α p)FT
u (Fuxp−yu). Equation (12) can be viewed as the quadratic

separable approximation of Eq. (1) [26] and can be solved separablely in the component of z:

xp+1
i = min

zi

1
2
(zi−up

i )
2 +

τ
α p |zi|= soft(up

i ,
τ

α p ) (13)

for i ∈ [0,1, . . . ,N − 1]. soft(x,a)=̂max{|x| − a,0} × x/max{|x| − a,0} is the complex soft-
threshold function. α p is chosen as the approximation of the Hessian FT

u Fu [26, 27]:

α p = ‖Fusp‖22/‖sp‖22 (4)

where sp = xp−xp−1.
The reconstruction procedure for a B-scan using one GPU is listed in the next page. L is

the number of A-scans in one B-scan. The reconstructions of A-scans are independent in CS
SD OCT with SpaRSA. To obtain a bigger acceleration, we reconstruct the A-scans in one
B-scan together. It can be easily figured out that the computation procedure works for parallel
reconstruction of arbitrary number of A-scans. Higher acceleration can be achieved with a
bigger L. L is chosen as the number of A-scans in one B-scan to smooth the B-mode display.

The stopping criterion in our implementation is different from that used in [26]. The recon-
struction stops when the predefined stopping iteration number η is achieved. As stated in [22],
this modification will smooth the reconstruction rate since the reconstruction time is determined
by η and is independent of the input data as well as other parameters. Choosing η is a trade-off
between the computation speed and image quality. Usually, setting η to 10-20 is enough for a
high-quality reconstruction.

τ determines the sparsity of the A-scan. Bigger τ is desired for SpaRSA for a high-quality
reconstruction [20, 26]; however, it will also lead to more loss of the low-contrast features.
Thus, τ should be chosen according to the image quality. How to optimize τ is still an open
field in the CS reconstruction of real signals. Please refer to [22] for the influence of η and τ
on the image quality and computation time.

The l2-norm operator in the CUBLAS library [28] does not provide a batched operation that
computes the l2-norm of multiple A-scans simultaneously. We implement an l2-norm operator
that can compute the l2-norm of arbitrary number of A-scans simultaneously. It is based on the
tree-based reduction in shared memory, as advocated in [29]. Our implementation is more than
100 times faster than computing the l2-norm of multiple A-scans sequentially using the l2-norm
operator in CUBLAS.

The thread number in our implementation is 128. It is tuned using the NVIDIA’s Visual
Profiler [30] for the highest reconstruction speed. The block number is chosen based on the
size of the data. For example, for the operation in line 15 of the computation procedure, the
block size will be the smallest integer bigger than 2048×1000/128. Here, 2048 is the size of
the A-scan; 1000 is the number of A-scans in one B-scan. Thus, the block number changes for
different operations in our implementation.

GPU-accelerated CS reconstruction based on different transformations can be realized by re-
placing Fux and FT

u r in the computation procedure with the instance of sensing transformation.
There is no difference between the result obtained using GPU-accelerated CS reconstruction
and that using the CS reconstruction with MATLAB or C++.
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Computation procedure of SpaRSA for a B-scan on one GPU
Input:

y1
u, . . . ,y

L
u # under-sampled data for each A-scan

I or Fu # sampling mask or the sensing matrix
η # stopping iteration number
τ # CS regulation parameter

Output:
(x1)η , . . . ,(xL)η # (xi) j is the j-th iterate of the i-th A-scan

1: Initialization: set (α1)0, . . . ,(αL)0, (x1)0, . . . ,(xL)0

2: copy y1
u, . . . ,y

L
u , I or Fu to GPU

3: p← 0
4: for all j ∈ [1, . . . ,L] do in parallel
5: (r j)0 = Fu(x j)0−y j

u

6: end for
7: while p 	= η do
8: for all j ∈ [1, . . . ,L] do in parallel
9: (u j)p = (x j)p− (1/(α j)p)FT

u (r
j)p

10: end for
11: for all i ∈ [0, . . . ,N−1] and j ∈ [1, . . . L] do in parallel

12: (x j
i )

p+1 =soft
(
(u j

i )
p,τ/(α j)p

)
# x j

i is the i-th component of x j

13: end for
14: for all j ∈ [1, . . . ,L] do in parallel
15: (s j)p+1 = (x j)p+1− (x j)p

16: (r j)p+1 = Fu(x j)p+1−y j
u

17: (α j)p+1 = ‖(r j)p+1− (r j)p‖2/‖(s j)p+1‖2
18: end for
19: p← p+1
20: end while
21: Finish: copy (x1)η , . . . ,(xL)η to the host memory

3.2. GPU-NUFFT-CS

The implementation of Fux and FT
u r with NUFFT has been discussed in Section 2.4. The

CUFFT library [31] is used for the batched FFT transform. Another benefit of this implementa-
tion is that instead of the whole sensing matrix only the one-dimensional binary sampling mask
I is stored in the GPU memory, which is more compact.

For SD OCT, the nonlinear wavenumber k is static. The value of G(κ) and g(x) can be pre-
computed. Also, the indices of the uniform grid (range of n) for each k̂i in Eq. (3) and the indices
of the nonlinear wavenumber (range of i) for each kn in Eq. (5) can be obtained before-hand.
The computation time then is independent of the choice of kernel function.

Although our program is tested on the reconstruction of SD OCT signal, it can also be used
in the swept source OCT (SS OCT) that has nonlinear wavenumber. In the case that frequency
jitters or low repeatability of frequency scanning happens in SS OCT, pre-computation of the
NUFFT parameters are not feasible and will degrade the reconstruction accuracy if they are
used in the reconstruction. Instead, the NUFFT parameters should be computed on-the-fly.
In this work, the GPU-NUFFT-CS with the Gaussian kernel is implemented in both the pre-
computed mode and on-the-fly mode while that with the KB kernel is only implemented in the
pre-computed mode because the zero-order modified Bessel function of the first kind has not
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been incorporated to CUDA. The results obtained in the pre-computed mode and on-the-fly
mode are the same for GPU-NUFFT-CS with the Gaussian kernel.

3.3. GPU-MNUDFT-CS

The implementation of Fux and FT
u r with the MNUDFT matrix is straightforward. MNUDFT

matrix should be under-sampled according to the sampling mask first before being transferred
to the GPU. The matrix multiplication operator in CUBLAS [28] is used in the program.

4. Sensitivity roll-off and speed comparison

Our methods are evaluated using the spectral data from an SD-OCT system. A superlumines-
cent laser diode (SLED) with a center wavelength of 845 nm and a bandwidth of 105 nm is
used as the light source. The spectrometer contains a 12-bit CMOS line scan camera (EM4,
e2v, USA) with 2048 pixels at 70 kHz line rate. The beam scanning speed in our experiment is
70mm/s. The experimental axial resolution of the system is 4.0 μm in air and the transversal
resolution is approximately 12 μm. The sensitivity of our system is 92.5dB, which is tested
by placing a mirror as a sample at the position of 80μm from the zero-delay (corresponding
to the first peaks in Figs. 2(a)-2(f)) and a ND filter (-35.5dB) in front of the mirror while the
reference level was set at the level for shot-noise limited detection. It is computed using the
method in [32]. For all experiments, the power of light incidents on the samples is 3.7mW,
which is conformity with the American National Standard Institute (ANSI) standard for safe
use of lasers [33] on the experimental samples in our work.

The experimental data in this section is measured on a workstation with an Intel Xeon CPU
(3.46 GHz), 16 GB memory and a NVIDIA GeForce GTX 580 GPU with 512 stream pro-
cessors, 1.5 GHz processor clock and 1.5 GB global memory. The under-sampled nonlinear
wavenumber spectral data used in the CS reconstruction is obtained by sampling from the pre-
generated k-space data set using a variable density sampling mask [6] and stored in the host
memory of the computer. This is consistent with the desired practical application in which the
under-sampled k-space data will be grabbed from the camera, transferred, and stored in the
RAM of the computer. The under-sampling rate is chosen to balance the image quality and
input data size.

The following processing methods are compared using the same input data (yu): (1) GPU-
MNUDFT-CS; (2) GPU-NUFFT-CS with different kernel functions (KB and Gaussian), over-
sampling ratios (R = 1.5 and 2) and kernel widths (W = 3 and 5). For comparison, the data
obtained by applying NUDFT to the 100% spectra (denoted as “NUDFT” in Fig. 2) and GPU-
FFT-CS [22] on the same amount of under-sampled linear wavenumber spectral data are also
displayed. The same parameters τ and η are used in the CS experiments. The starting values
are set as x0 = 0 and α0 = 1. These two starting values do not show obvious influence on the
image quality and computation time.

4.1. Sensitivity roll-off

The point spread function (PSF) and sensitivity roll-off with different processing methods are
presented in Figs. 2(a)–2(f). Here 128 A-scans each with 2048-pixel were averaged for each
position. CS reconstruction uses 30% spectral data. τ = 3. η = 15. As can be seen from Figs.
2(e) and 2(f), there are only subtle observation differences between the data with the same
kernel but different R and W ; thus, only three NUFFT-CS results are displayed: “NUFFT-CS
Gaussian R2 W5”, “NUFFT-CS KB R1.5 W3”, and “NUFFT-CS KB R2 W5”.

The NUFFT-CS results in Figs. 2(d), 2(e), and 2(f) show flatter sensitivity roll-off with
a smaller background noise and side-lobes at larger image depths than the FFT-CS result

#209081 - $15.00 USD Received 27 Mar 2014; revised 2 May 2014; accepted 3 Jun 2014; published 10 Jun 2014
(C) 2014 OSA 16 June 2014 | Vol. 22,  No. 12 | DOI:10.1364/OE.22.014871 | OPTICS EXPRESS  14880



in Fig. 2(b). Compared to the NUDFT result on 100% spectral data in Fig. 2(a), NUFFT-
CS results exhibit lower background noise, which is approximately -70dB against -60dB for
NUDFT. NUFFT-CS provides a similar performance to MNUDFT-CS, as shown in Fig. 2(c).
The NUFFT result using KB kernel with R = 2 and W = 3 is added to Figs. 2(g)–2(h) to il-
lustrate the influence of W on the image quality. The comparison between PSFs at an imaging
depth of 0.85 mm is presented in Fig. 2(g). The intensity of each A-scan is normalized. FFT-CS
shows large side-lobes while NUFFT-CS, MNUDFT-CS and NUDFT have relatively flat back-
ground and no noticeable side-lobes. Compared to NUDFT, NUFFT-CS and MNUDFT-CS
have much lower background noise. The maximum amplitude of PSFs from different methods
is exhibited in Fig. 2(h). MNUDFT-CS and NUFFT-CS show a very close sensitivity roll-off
to NUDFT while FFT-CS has much faster sensitivity attenuation as the image depth increases.
Figure 2(i) shows the SNR versus axial position for various processing methods with the SNR
definition in [23]. All CS methods have a very close SNR at the imaging depth less than 0.8 mm,
while the SNR of FFT-CS becomes lower as the image depth increases. Compared to NUDFT,
CS methods usually show better SNR since CS is effective in reducing noise [3, 5].

All NUFFT-CS implementations reconstruct the peak of PSFs successfully. NUFFT-CS with
KB kernel shows better denoising effect compared to the one with Gaussian kernel. Bigger
over-sampling ratio R and kernel width W result in better suppression of the background noise
level. Figures 2(g) and 2(i) show that the “NUFFT CS KB R2 W5” result is very close to the
result of “NUFFT CS KB R2 W3”. Both of them have a lower background noise than “NUFFT
CS KB R1.5 W3” result. R shows bigger influence on the image quality than W .

4.2. Speed comparison

The averaged computation time for a single A-scan using GPU-NUFFT-CS is listed in Table
1. The time is averaged based on 100 runs of B-scan reconstruction. The size of B-scan is
2048(axial)×1000(lateral) pixels. As stated above, the computation time of our implementation
is determined by the stopping iteration number which is set as η = 15. The pre-computed mode
is tested for both the Gaussian and KB kernel while only the Gaussian kernel is evaluated in
the on-the-fly mode since the modified Bessel function has not been incorporated into CUDA.
In both modes, the kernel width W has more influence on the processing speed compared to the
over-sampling ratio R. For comparison, the averaged computation time of GPU-MNUDFT-CS
and GPU-FFT-CS is 626.67 μs and 47.2 μs, respectively.

Table 1. Computation time (μs) for an A-scan

NUFFT-CS

pre-computed mode on-the-fly mode
Gaussian and KB Gaussian

R=1.5 R=2 R=1.5 R=2

W=3 W=5 W=3 W=5 W=3 W=5 W=3 W=5
99.17 122.27 100.03 122.87 154.47 199.92 167.15 223.84

The time for transferring the under-sampled spectral data from host to device and the image
result from device to host is contained in the time listed in Table 1. In fact, the time listed in
Table 1 is the integration of the time for data transferring, CS reconstruction, and data con-
version. We measured the data transferring time by running experiments using 50% spectral
data. The time required to transfer the under-sampled spectral data of a B-scan from host to de-
vice is 346.93μs where the size of the under-sampled spectral data of one B-scan is 1.953MB
(1024×1000×2 Bytes) with data type being unsigned short. The time required to transfer the re-
constructed image from device to host is 314.59μs where the size of the image is also 1.953MB
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Fig. 2. Sensitivity roll-off of different processing methods: (a) NUDFT on 100% data; (b)
FFT-CS; (c) MNUDFT-CS; (d) NUFFT-CS with Gaussian kernel (R=2, W=5); (e) NUFFT-
CS with KB kernel (R=2, W=5); (f) NUFFT-CS with KB kernel (R=1.5, W=3). (g) com-
parison of PSFs at a certain image depth using different processing methods; (h) maximum
amplitude of PSFs using different processing methods; (i) SNR versus image depth for
different processing methods.

(1024×1000×2 Bytes) with data type being unsigned short, since only half of the B-scan needs
to be displayed. The transfer time introduces a negligible latency to the system and does not
affect the image result.

The comparisons on the sensitivity roll-off and computation time show that NUFFT-CS has
similar performance as the MNUDFT-CS while providing a speed enhancement of more than 5
times when conducted in the pre-computed mode. Compared to FFT-CS, it shows much lower
background noise and less side-lobes at the large image depths which also indicates a higher
local SNR at deeper axial positions. Also, it employs a more flexible and time-saving sampling
pattern than FFT-CS. Compared to NUDFT with 100% data, NUFFT-CS has negligible differ-
ence on the sensitivity roll-off but exhibits better SNR at any image depth using only a portion
of the spectral data.

In the GPU-NUFFT-CS SD OCT, KB kernel is a better choice which offers better image
quality. R has bigger influence on the image quality while W impacts more on the program
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speed. KB kernel with R = 2 and W = 3 would be a good choice for GPU-NUFFT-CS SD
OCT.

5. In vivo SD OCT imaging

In vivo SD OCT imaging of biological samples was conducted to confirm the performance
of GPU-NUFFT-CS. The experiments were executed on the same triple-GPU architecture as
in [22].

The SD OCT images of an orange and human skin obtained with GPU-NUFFT-CS are pre-
sented in Figs. 3(b) and 3(d), respectively. The sampling rate was 40%. τ = 3.0. η = 10. The
KB kernel with over-sampling ratio 2 and kernel width 3 is used in NUFFT. The reconstruc-
tion results by applying NUDFT to 100% data are shown in Figs. 3(a) and 3(c), respectively
as a reference. The images of the same sample are shown in the same dynamic range. Figures
3(a) and 3(b) are the average of 100 frames while Figs. 3(c) and 3(d) are single frame results.
The NUFFT-CS achieves an accurate reconstruction which is very close to the reference image.
Also, smaller background noise is observed in the NUFFT-CS results. The peak signal-to-noise
ratio (PSNR) is computed for Figs. 3(a)–3(d) for a quantitative comparison, with the definition
PSNR= 10log10(max2( f (x))/var). f (x) is the intensity of the B-scan while var is the standard
deviation of the selected background regions outlined by the white dash rectangles in Fig. 3. The
comparison of PSNR is 73.10dB to 79.92dB for Fig. 3(a) to 3(b), respectively and 69.48dB to
76.85dB for Fig. 3(c) to 3(d), respectively. GPU-NUFFT-CS shows an average of 7dB improve-
ment on the SNR. CS tries to maximize the sparsity of the signal in the transformed domain
while preserving the data fidelity in the measurement domain. Higher sparsity indicates that a
larger percentage of the signal coefficients are zero or close to zero. Thus CS has been shown
to be good at reducing background noises [3, 5, 8, 34]. For the same reason, CS reconstruction
also results in loses of low-intensity features of the image.

(a) (b) (c) (d)

Fig. 3. B-scans of an orange: (a) original image; (b) NUFFT-CS reconstruction result see
(Media 1 for real-time imaging display), and human skin: (c) original image; (d) NUFFT-
CS reconstruction result (see Media 2 for real-time imaging display). The scale bars repre-
sent 100 μm. The image size is 900(axial)×950(lateral).

The real-time B-mode imaging display for both samples is screen captured at Media 1 and
Media 2 with frame rate 33.5 fps. The original B-scan size is 2048(axial)×1000(lateral) pixels
and is rescaled to 512(axial)×500(lateral) pixels to accommodate the monitor display. The
video shows the logarithm of the rescaled B-scan and no further processing was applied. These
two results show that the speed of our program is independent of the imaging object which
enables the development of a system that incorporates the NUFFT-CS technique. The sampling
rate is 40%. τ = 3.0. η = 10. For comparison, GPU-MNUDFT-CS on the same architecture has
a speed of 6.5 fps. KB kernel with over-sampling ratio 2 and kernel width 3 is pre-computed
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for NUFFT.

6. Conclusion

In this work, we proposed CS reconstruction of SD OCT image based on NUFFT and non-
linear wavenumber under-sampling, which was successfully implemented on the GPU archi-
tecture. GPU-NUFFT-CS provides a close approximation to the GPU-MNUDFT-CS in terms
of imaging quality but can achieve more than five times speed enhancement. Compared to the
GPU-FFT-CS, GPU-NUFFT-CS has better sensitivity roll-off, higher signal-to-noise ratio, and
smaller side-lobes.
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