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Background and Purpose—Elevated homocysteine (tHcy) levels are known to be associated

with increased risk of ischemic stroke (IS). Given that both tHcy and IS are heritable traits, we

investigated a potential genetic relationship between homocysteine levels and stroke risk by

assessing 18 polymorphisms previously associated with tHcy levels for their association with IS

and its subtypes.

Methods—Previous meta-analysis results from an international stroke collaborative network,

METASTROKE, were utilized to assess association of the 18 tHcy associated SNPs in 12,389 IS

cases and 62,004 controls. We also investigated the associations in regions located within 50kb

from the 18 tHcy related SNPs, and the association of a genetic risk score including the 18 SNPs.

Results—One SNP located in the RASIP1 gene and a cluster of three SNPs located at and near

SLC17A3 were significantly associated with IS (P<0.0003) after correcting for multiple testing.

For stroke subtypes, the sentinel SNP located upstream of MUT was significantly associated with

SVD (small vessel disease) (P=0.0022), while one SNP located in MTHFR was significantly

associated with LVD (large vessel disease) (P=0.00019). A genetic risk score including the 18

SNPs did not show significant association with IS or its subtypes.

Conclusions—This study found several potential associations with IS and its subtypes: an

association of an MUT variant with SVD, an MTHFR variant with LVD, and associations of

RASIP1 and SLC17A3 variants with overall IS.
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Introduction

The relationship between plasma homocysteine (tHcy) levels and stroke risk has been

investigated by numerous observational studies, which together provide compelling

evidence that elevated homocysteine levels are associated with an increased risk of ischemic

stroke (IS).1 However, residual confounding and reverse causation impair causal inference

from the results of observational studies.2 Mendelian randomization studies investigating a

potential causal relationship between tHcy and IS risk have yielded inconclusive results.3

Recent studies showed that lowering homocysteine levels through vitamin B (folic acid and

vitamin B12) intervention reduced the risk of stroke in patients with normal renal function

and with normal vitamin B12 metabolism.4-6 These findings may explain the negative

results obtained by earlier studies7, 8 where renal function and vitamin B12 metabolism

status were not taken into account. In addition, the folic acid fortification of grains in the US

and some European countries may have also reduced the benefit of folic acid intervention

trials.9 Thus, the relationship between stroke and homocysteine is complex and careful

consideration is required in designing future clinical trials.10

Recently, a genome-wide association study (GWAS) meta-analysis of plasma homocysteine

levels in 44,147 individuals of European ancestry identified 13 associated genetic loci at

genome-wide significance (P<5×10−8).11 Within the 13 associated loci, this meta-analysis

Cotlarciuc et al. Page 2

Stroke. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



identified 18 independent single-nucleotide polymorphisms (SNPs) explaining 6% of

variation in tHcy levels.

Since both tHcy and IS have a genetic component, the reported association between tHcy

and stroke risk may result from shared genetic risk factors. Thus, we investigated the 18

SNPs previously associated with homocysteine levels for their association with IS and its

subtypes: large-vessel (LVD), small-vessel (SVD) and cardioembolic (CE) stroke. We also

evaluated association of a genotype risk score (GRS) including the18 tHcy-associated SNPs

for association with IS and its subtypes.

Materials and Methods

Study Population

The study population included 12,389 IS cases and 62,004 controls of European ancestry

from 15 cohorts contributing to the METASTROKE collaboration12. Details of the study

designs for each participating study are included in the Online Supplement (Please see http://

stroke.ahajournals.org).

SNP selection

Plasma homocysteine associated SNPs reaching genome-wide significance (P<5×10−8) in a

published meta-analysis of GWAS11 were selected for inclusion. In total, 18 independent

SNPs (r2<0.2) were found to be significantly associated with tHcy at a P<5×10−8 and

selected for assessment in and its subtypes (Supplementary Table I). As a secondary

analysis, to account for potential population differences in linkage disequilibrium (LD)

between functional and tag-SNPs, we included additional SNPs located ± 50kb around the

18 tHcy associated SNPs, and a total of 3160 SNPs were selected out of which 166 variants

were independent (r2<0.2).

Statistical analysis

Summary statistics for association of the 18 tHcy associated SNPs with IS and its subtypes

were provided by METASTROKE consortium. Details on genotyping, imputation and

quality control methods are provided in Supplemental Methods. Logistic regression was

performed to test association of individual SNPs with IS and its subtypes assuming an

additive model, and adjusting for study-specific covariates age, sex and ancestry principal

components (Supplemental Methods).

Considering that stroke subtypes are independent of each other12-16, we pre-specified a

Bonferroni-adjusted significance threshold of α=0.0027 (where α=0.05/18 SNPs) to adjust

for primary analyses testing 18 independent SNPs for association with IS and its subtypes.

For the secondary analysis of SNPs located within ±50kb of the 18 tHcy related SNPs we

specified a Bonferroni-adjusted significance threshold of 0.0003 (α=0.05/166=0.0003, for

166 independent SNPs tested).
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We then tested the association between an additive genotype risk score (GRS) of the 18

homocysteine associated SNPs and increased risk of IS and its subtypes. The GRS was

calculated using a previously described method17 (Supplemental Methods).

Using the CATS genetic power calculator18, our study had 80% power to detect odds ratios

(OR) of 1.06–1.11 for IS, and subtype-specific OR of 1.13–1.23 for variants with allele

frequency 10– 50% at a Bonferroni-corrected threshold of 0.0027 (α=0.05/18).

Results

Study population characteristics

The discovery meta-analysis of IS studies included 12,389 cases and 62,004 controls of

European descent. Stroke subtypes CE, LVD and SVD accounted for 19% (n=2,365), 17.4%

(n=2,167) and 15.2% (n=1,894) respectively, of all IS cases. Detailed characteristics of the

participating studies have been summarised previously.12

Association of tHcy associated SNPs with Overall IS

Firstly, we assessed the association of each tHcy associated SNP with IS risk, and

subsequently with its subtypes. Then, we tested the combined effect of the 18 sentinel tHcy

associated SNPs on risk of IS and its subtypes.

For overall IS, the OR for the 18 tested SNPs ranged from 0.96–1.04 (Supplementary Table

II). Of the 18 SNPs tested, two SNPs located at/near FUT1 (rs838133, OR 1.04; 95%CI

1.00– 1.07; P=0.013) and CPS1 (rs7422339, OR 0.96; 95%CI 0.92–0.99; P=0.045) were

associated with IS at a nominal P-value (P<0.05), but did not pass Bonferroni corrected P-

value of 0.0027 (P=0.05/18).

The combined GRS including the 18 independent tHcy SNPs did not show a significant

association with IS (OR 1.02; 95%CI 0.91–1.15; P=0.63) (Supplementary Table III).

Association of tHcy associated SNPs with IS Subtypes

Next, we investigated the association of the tHcy related SNPs with IS subtypes. For SVD,

two SNPs located near MUT (rs9369898, OR 1.12; 95%CI 1.04–1.21; P=0.0022) and FUT1

(rs838133, OR 1.07; 95%CI 1.00–1.15; P=0.04) respectively, were nominally associated at a

P-value <0.05 (Supplementary Table IV). The variant located near MUT (rs9369898) also

passed Bonferroni corrected P-value of 0.0027. The major allele A of rs9369898 associated

with higher tHcy levels was also associated with increased risk of SVD. There was no

evidence of between study heterogeneity for rs9369898 (I2=7.4%; P-het=0.37). The GRS

including the 18 independent tHcy SNPs did not show an association with SVD risk (OR

1.1; 95%CI 0.85– 1.42; P=0.43) (Supplementary Table III).

For LVD, one SNP (rs838133, OR 1.08; 95%CI 1.01–1.16; P=0.018) located near FUT1

gene was associated at a nominal P-value (P<0.05), but did not pass Bonferroni correction

for multiple testing (Supplementary Table V). The GRS of the 18 independent tHcy SNPs

did not show an association with LVD risk (OR 1.06; 95%CI 0.82–1.35; P=0.64)

(Supplementary Table III). None of the tested SNPs were associated with CE risk even at a
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nominal P-value (P<0.05) (Supplementary Table VI). In addition, the GRS of the 18

independent tHcy SNPs did not show an association with CE risk (OR 0.9; 95%CI 0.71–

1.14; P=0.4) (Supplementary Table III).

Investigation of associations in regions located ±50kb around the 18 tHcy associated
SNPs

As a secondary analysis, we assessed the associations with IS and its subtypes for SNPs

located within ±50kb of the 18 tHcy associated SNPs.

For overall IS, three variants (rs9379800, rs17271121 and rs12664474) located within 50kb

from the tHcy associated polymorphism, rs548987, were associated with IS at P-values

lower than the Bonferroni corrected threshold (P=0.05/166=0.0003) (Table 1). Two SNPs

(rs9379800 and rs12664474) located upstream of SLC17A3 were highly correlated

(r2=0.766) with each other, and moderately correlated with the third SNP, rs17271121

located in an intron of SLC17A3 (r2[rs9379800, rs17271121]=0.306; r2[rs17271121,

rs12664474]=0.545). None of the three SNPs were in LD with the tHcy associated

polymorphism, rs548987 (r2<0.035).

In addition, another SNP rs2287921 located in an intron of RASIP1 gene, within 50kb from

the FUT1 polymorphism, rs838133, was associated with IS at a P-value of 0.0002 (OR 0.94;

95%CI 0.91-0.97), lower than Bonferroni correction for multiple testing (P<0.0003). This

SNP was in moderate LD (r2=0.658) with the sentinel SNP rs838133, which may suggest

that this could be a broader risk region spanning the two neighboring genes RASIP1 and

FUT1.

For LVD, one SNP (rs1801131), a missense variant located in MTHFR gene, near the two

sentinel SNPs in this gene, rs1801133 and rs12134663, was associated with LVD with a P-

value of 1.92×10−4 (OR 1.15; 95%CI 1.06–1.23) lower than the Bonferroni correction for

multiple testing (P<0.0003). This missense SNP was in low LD with the two tHcy sentinel

SNPs (r2[rs1801131, rs1801133]=0.19; r2[rs1801131, rs12134663]=0.268).

For SVD, one SNP (rs566295) located upstream MUT, 44kb from the tHcy associated

polymorphism, rs9369898, was associated with SVD with a P-value of 2.2×10−4 (OR 0.87;

95%CI 0.80–0.93) passing Bonferroni correction for multiple testing. This SNP was in low

LD with the MUT polymorphism, rs9369898 (r2=0.264).

For CE, no significant associations were observed at a threshold exceeding Bonferroni

correction for multiple testing (P<0.0003).

Discussion

This large study of 12,389 IS cases and 62,004 controls, has identified several potential

novel associations with IS and its subtypes by testing previously reported associations with

homocysteine levels in stroke. We found evidence of an association of MUT gene with

SVD, an association of MTHFR gene with LVD, and associations of RASIP1 and SLC17A3

with overall IS.
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Of the 18 tHcy polymorphisms investigated, one polymorphism located upstream of MUT

gene was significantly associated with SVD, while none of the 18 tHcy related SNPs was

significantly associated with LVD, CE or overall IS. The allele correlated with increased

tHcy levels at MUT gene showed to be also associated with increased risk of SVD

suggesting a potential small but significant effect on SVD risk.

On a closer inspection of this region, another SNP located 44kb from the sentinel SNP and

in low LD with the sentinel SNP, was also associated with SVD. This polymorphism was

also significantly associated with homocysteine levels at a genome-wide significance level

(P=2.27E-09)11, but conditional analysis has not been conducted to establish if these two

polymorphisms were independently influencing homocysteine levels. These two

polymorphisms may thus potentially be correlated with either a single, or multiple

regulatory variants in this region that modulate both tHcy levels and SVD risk.

The MUT gene is known to encode the mitochondrial enzyme methylmalonyl Coenzyme A

mutase, a vitamin B12-dependent enzyme. Considering that vitamin B12 is an important

cofactor in homocysteine metabolism, a potential pleiotropic effect of MUT gene on both

plasma homocysteine and vitamin B12 levels was suggested previously.11 In addition,

vitamin B12 deficiency is highly prevalent in SVD and may underlie blood-brain barrier

damage, leading to small vessel dysfunction, especially periventricular white matter

lesions19, suggesting a potential role of MUT polymorphisms in SVD via mechanisms

involving vitamin B12 deficiency.

Moreover, hyperhomocysteinaemia as an independent risk factor for SVD may act via

endothelial dysfunction20, suggesting that homocysteine lowering therapy may be

particularly effective in this stroke subgroup. In support of this, the VITATOPS trial found

that after a 3 year vitamin B supplementation period, the risk of stroke was reduced only in

patients with symptomatic small vessel disease.8 Therefore, considering that in our study the

only homocysteine significant association was with SVD, brings more evidence to support

the hypothesis that homocysteine may be a risk factor in particular to SVD.

Our study also found an association with LVD, a missense variant located in MTHFR

(A1298C), 2kb from the well-studied homocysteine associated polymorphism MTHFR

C677T.2, 3 Previous studies showed that A1298C was associated with a decrease in MTHFR

activity, but was not associated with increased homocysteine levels.21 The functional

differences between the two polymorphisms could be explained by their location: C677T is

located within the N-terminal catalytic region, while A1298C is located within the C-

terminal regulatory domain, being involved in enzyme regulation.21

Given that high folate levels have been associated with a reduced effect of MTHFR C677T

on homocysteine levels and stroke22, the non-association of MTHFR C677T with stroke

could be explained by the inclusion in the METASTROKE study of individuals from

countries where folic acid fortification has already been implemented.12 The relationship

between MTHFR A1298C and folate status has not been yet investigated and it is not known

if this polymorphism is influenced by folate levels. However, if this SNP is not influenced or
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influenced at a lesser extent by folate status compared to C677T, may explain why A1298C

polymorphism, and not C677T, was found to be associated with LVD in our stroke cohort.

For overall IS, two highly correlated SNPs located upstream SLC17A3 and one SNP located

in an intron of SLC17A3 were found to be associated with IS after correction for multiple

testing. None of these SNPs were in LD with the sentinel polymorphism suggesting the

presence of another independent potential risk locus in this region.

SLC17A3 encodes a voltage-driven transporter that excretes intracellular urate and organic

anions from the blood into renal tubule cells.23 A significant association between a

polymorphism (rs1165205) located in intron 1 of SLC17A3 and serum uric acid

concentrations has been found by a GWAS study.24 This SNP was located up to 80 kb from

our investigated SNPs, but was in low LD (r2<0.2) with all our SLC17A3 SNPs suggesting.

Therefore, the possibility exists that these polymorphisms are correlated with another variant

that has a causal role on influencing urate levels. Alternatively, there may be several

independent loci associated with urate levels in this region as it has been suggested

previously24, and our investigated SNPs may be correlated with another polymorphism

influencing urate levels independent from the GWAS reported association. Epidemiological

studies have shown that elevated serum uric acid is a strong independent risk factor for

hypertension25, and considering that hypertension is a risk factor for stroke, it has been

suggested that increased uric acid levels may be involved in predicting stroke risk.26

Another association with IS was a variant located in RASIP1 gene. RASIP1 is required for

the proper formation of vascular structures that develop via both vasculogenesis and

angiogenesis.27 As it is well known that insufficient vessel growth or maintenance can lead

to stroke among other disorders28, we provide a possible link between RASIP1 and stroke

risk. Further, this polymorphism has been reported to be significantly associated with retinal

vascular caliber in a previous GWAS.29 Furthermore, considering that changes in retinal

vascular caliber are associated with cardiovascular diseases including IS30, provides more

evidence of a potential role of this gene in stroke.

So far, several GWAS have been conducted on ischemic stroke and its subtypes which have

identified associations of common polymorphisms specific to each stroke subtype12, 16, 31,

endorsing the fact that different stroke subtypes have different risk factor profiles and

pathophysiological mechanisms. Our study supported this hypothesis and identified a

potential association of MUT with SVD, and of MTHFR with LVD. In addition, we also

identified potential associations of RASIP1 and SLC17A3 with overall IS. The reason why

we did not find significant associations of RASIP1 and SLC17A3 with any of the stroke

subtypes could be due to the smaller sample sizes and, thus reduced power of the stroke

subtype cohorts. However, it is important to highlight that our findings need to be validated

by replication in independent cohorts to avoid considering spurious results.

In addition, the combined genetic score of the 18 independent tHcy SNPs did not show a

significant association with overall IS or its subtypes. The low power of our study to detect

small effects, together with the fact that stroke and homocysteine may only partly share their

allelic architecture may explain the lack of association of the tHcy genotype risk score.
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However, our results apply to European population and to countries with established policies

of folic acid fortification of grains. A recent study has shown that in these countries, the

evidence from genetic studies and from randomised trials with folic acid suggested no

benefit from lowering homocysteine levels for stroke prevention.22 Thus, to elucidate the

controversial role of homocysteine in stroke, future studies should be conducted in regions

with low folate levels where homocysteine-lowering interventions may have an important

effect in reducing stroke risk.

To conclude, our study provides evidence of several potential associations with IS and its

subtypes: an association of MUT gene with small vessel stroke, an association of MTHFR

gene with large vessel stroke, and associations of RASIP1 and SLC17A3 with overall IS,

highlighting possible roles of these genes in IS and its subtypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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