
Research Article
Performance Studies on Distributed Virtual Screening

Jens Krüger,1 Richard Grunzke,2 Sonja Herres-Pawlis,3 Alexander Hoffmann,3

Luis de la Garza,1 Oliver Kohlbacher,1 Wolfgang E. Nagel,2 and Sandra Gesing4

1 Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen,
Sand 14, 72076 Tübingen, Germany

2 Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany
3 Ludwig-Maximilians-Universität München, Butenandtstr aße 5-13, 81377 München, Germany
4Center for Research Computing, University of Notre Dame, P.O. Box 539, Notre Dame, IN 46556, USA

Correspondence should be addressed to Sandra Gesing; sandra.gesing@nd.edu

Received 6 March 2014; Revised 17 May 2014; Accepted 19 May 2014; Published 17 June 2014

Academic Editor: Ivan Merelli

Copyright © 2014 Jens Krüger et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets
or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed
by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because
individual docking runs are independent of each other.The goal of this work is to find an optimal splitting maximizing the speedup
while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough
performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance
studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used
benchmark datasets for protein kinases. Our performance studies show that docking workflows can bemade to scale almost linearly
up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly.

1. Introduction

Drug discovery is a time-consuming, risky, and expensive
process. In general, it takes about 14 years until a new drug
reaches the market [1]. To shorten the research cycle and
to lower the failure rate, Computer-Aided Drug Design is
applied in the early drug discovery phases. Virtual high-
throughput screening (vHTS) is a method in Computer-
Aided Drug Design that searches libraries of chemical com-
pounds to identify active compounds. Ideally, the search
and analysis are performed efficiently and result in a set
of potential ligands for further experimental validation.
Nowadays, an enormous number of chemical compounds
are available in various databases to aid drug discovery
via virtual screening such as ZINC [2]. Virtual screening
supports parallelization among compounds by splitting data
into distinct screening jobs. For optimal performance on
DCIs, several aspects have to be considered. These can be
divided into general applicable aspects and aspects dependent

on the virtual screening method. The general ones reflect the
users’ environment for virtual screening and include the time
for splitting the datasets, the actual transfer of the chunks
of data to a computing node, and the overhead to manage
parallel jobs. The runtime of the virtual screening method
depends on the simulation method used on the assigned
computing node. Thus, aspects like multicore support and
the complexity of the implemented algorithm determine the
performance.

Docking tools belong to the category of structure-based
virtual screeningmethods and our approach uses the docking
application IMGDock, a tool of the software framework
CADDSuite (Computer-Aided Drug Design) [3]. IMGDock
is a sequential tool, which evaluates ligand-receptor interac-
tions. In this study we consider not only the docking itself,
but also the whole workflow required for a vHTS campaign,
which includes the preparation of receptors and ligands for
the docking process (i.e., defining a binding pocket) and the
parallelization of docking simulations. Docking aims at the

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 624024, 7 pages
http://dx.doi.org/10.1155/2014/624024

http://dx.doi.org/10.1155/2014/624024


2 BioMed Research International

correct placement of a ligand into the binding pocket of
a receptor. The binding energy of the resulting complex is
then estimated, considering the interactions between ligand
and binding site. Over the past decades, several docking
applications have been released and published. They can be
categorized by their placement algorithm and their scoring
functions. AutoDock [4], for example, relies on precomputed
interaction grids and a genetic algorithm [4, 5]. In contrast
FlexX first decomposes the ligand, then places the major
fragment on interaction points inside the binding pocket,
and finally uses a multigreedy heuristic to reconstruct the
ligand [6]. The docking application IMGDock also relies
on precalculated interaction grids and uses a multigreedy
approach for ligand placement [3]. Scoring functions can
generally be divided into three classes, although there is
no strict separation and hybrid functions exist. Examples
for a force field-based scoring would be AutoDock and
CADDSuite. FlexX uses an empirical function, while, for
example, DSX uses a knowledge-based approach [7].

The performance studies have been conducted via the
workflow-enabled science gateway MoSGrid (Molecular
Simulation Grid) [8–10]. It offers intuitive user interfaces
for docking tools amongst other applications for molecular
simulations.The science gateway supports users in managing
the whole process of docking while hiding the complex
underlying DCI from the user. It not only addresses usability
aspects but also increases the complexity of the infrastructure
to be considered in the performance studies. MoSGrid
currently offers access to AutoDock Vina [4], FlexX, and
CADDSuite.

Science gateways are widely used in the life sciences
and chemistry community. A similar approach to MoSGrid
is followed by the AutoDock portal [11], which supports
docking workflows with AutoDock, whereas MoSGrid as
aforementioned allows for the use of AutoDock, FlexX,
and CADDSuite. Both solutions were developed on top
of WS-PGRADE [11], a workflow-enabled science gateway
designed for the flexible support of diverse applications
and DCIs. The generic-purpose science gateway frameworks
EnginFrame [12] and OGCE [13] follow a similar approach
like WS-PGRADE. EnginFrame offers docking workflows
via the GENIUS portal [12]. A drawback for consortiums
with academic and industrial partners is its underlying
business model. The docking portal BioDrugScreen [14] is
developed on top of OGCE and is less flexible in its workflow
support compared to the MoSGrid science gateway. Galaxy
[15] is a further mature workflow-enabled science gateway
but supports fewer DCIs than WS-PGRADE. Furthermore,
libraries or APIs, for example, the Vine Toolkit [16] and
HubZero [17], allow an easy development of DCI-enabled
science gateways including custom user interfaces, but data
and workflow management is often not supported. The
WeNMRportal [18] can be used formolecular simulations for
NMR-based structure elucidation. It provides preconfigured
workflows, interfaces, and applications to handle these use
cases but is not as flexible as the MoSGrid portal for
creating workflows. Besides the aforementioned web-based
solutions, workbenches like Taverna [19] and the Unicore
Rich Client [20] are mature solutions for docking workflows.

However, workbenches require installation of software on the
users’ computers.

Our performance studies examine the overall time from
invoking a docking process via the science gateway up to
receiving the results back in the science gateway in addition
to measuring performance like runtimes on the computing
nodes. This time frame is especially interesting since it is the
time recognized by the users. Furthermore, we did not use
a dedicated local compute resource but resources generally
available via the science gateway to get a realistic assessment
of the time users will have to wait for their results in a typical
real-life setting. To our best knowledge, the investigation of
the performance of the whole science gateway infrastructure
and for docking workflows with split data has not been
performed for other science gateways or docking methods
yet.

2. Materials and Methods

2.1. Selected Structures and Docking Workflow. To study the
computational performance, we used the benchmark dataset
for the tyrosine-protein kinase ABL1 (PDB code 2HZI),
containing 295 known active ligands and 10,885 inactive ones.
DUD-E [21, 22] poses a challenge for each docking tool
currently available.The dataset is of sufficient size to generate
generalized benchmark data in terms of portal-based high-
performance computing. In order to assess the influence of
the target system itself, five smaller test sets from theDEKOIS
[23, 24] test set were used (acetylcholine esterase, 1DX6;
androgen receptor, 1E3G; estrogen receptor beta, 1I0G; HIV1
protease, 1HXW; and thrombin, 3RLW). Each set contains 40
active ligands and 1200 decoys.

The basic algorithm of docking tools typically includes
three major steps.

(1) First, many plausible structures of a complex are
generated. Therefore, a huge search space has to be
globally or locally investigated. Global methods scan
the whole target’s surface, whereas local docking can
be applied in case the binding site is already identified.
Both approaches have to inspect the ligand’s plausible
poses around a binding site, but local docking reduces
the search space on the target’s surface and, thus, the
required computing time.

(2) After generating the plausible structures, the algo-
rithm filters out geometrically or energetically unfa-
vorable structures.

(3) Finally, the algorithmpredicts the binding free energy
of the remaining structures via scoring/energy func-
tions. The assumption is that better scores imply a
closer approximation of the true structure of the
protein-ligand complex.

Before a docking tool is invoked, it is crucial to examine
whether a ligand and a target are provided in the suitable
format for the applied docking software. Thus, a docking
process does not only consist of the dockingmethod itself but
implies a whole workflow. Figure 1 illustrates this workflow
for CADDSuite with its docking application IMGDock.



BioMed Research International 3

ProteinProtonator

GridBuilder IMGDock

PDBCutter

LigandFileSplitter

PDB file

results

Ligand3D-
Generator LigCheckMolecule

file

Figure 1: A docking workflow for CADDSuite including the prep-
aration of the receptor and the preparation of the ligands.

PDBCutter is used to split a structure into its receptor and
ligand parts. The extracted ligand forms the reference ligand
for defining the binding pocket of the receptor. Hydrogen
atoms are essential for the docking process and if hydrogen
atoms are missing after the splitting task, they are added
to the receptor structure via ProteinProtonator. The output
of PDBCutter as well as ProteinProtonator is used in Grid-
Builder to build an interaction grid for the binding pocket
of the receptor. The resulting grid and the receptor file set
the stage to dock a set of ligands with IMGDock. The ligands
have to be prepared for docking by generating 3D conforma-
tions and adding hydrogens to them (Ligand3DGenerator).
Furthermore, a sanity check (LigCheck) is performed. The
sanity check examines, for example, whether the ligands
are properly protonated, possess suitable bond lengths, and
have properly assigned binding orders.TheLigandFileSplitter
allows splitting the ligandfile into a number of subsets and the
workflow can be parallelized based on the number of splits.
Finally, IMGDock is executed, which applies an empirical
scoring function and consequently generates a list of ligand
poses with their corresponding estimates for binding free
energies.

The workflow is preconfigured in the MoSGrid science
gateway and can be applied by the users to arbitrary input
datasets.

2.2. The MoSGrid Science Gateway. Distributed science gate-
way infrastructures are essential in today’s and tomorrow’s
research landscape. From the users’ point of view, they
provide a seamless environment where simulations are per-
formed and data analyzed in an efficient and user-friendly
way via graphical user interfaces. The underlying infrastruc-
ture is of high complexity and of growingmaturity. It includes
several layers: the user interface, the workflow management,
the data andmetadata management, and the underlying stor-
age and compute resources. The MoSGrid science gateway is
a virtual research environment for molecular chemists. It was
built in the BMBF project MoSGrid and is currently further
developed and operated in the SCI-BUS [25] and ER-flow
[26] EU funded projects. An XSEDE project [27] is currently
starting to port MoSGrid to the XSEDE infrastructure to

enable US-based computational chemists to easily perform
their calculations on XSEDE resources.

A key aspect of the MoSGrid design is its usability. The
science gateway is based on the gUSE/WS-PGRADE portal
technology, which provides services for the whole life cycle
of workflows on DCIs. The Molecular Simulation Markup
Language (MSML) [28] has been developed in MoSGrid and
forms a metadata format for domain, job, and workflow data
especially for the three main domains quantum chemistry,
molecular dynamics, and docking. MSML is applied to
automatically generate specifically tailored user interfaces.
The user is enabled to submit simulations via intuitive user
interfaces hiding the complexity of the workflow manage-
ment and offering data as input using the integratedmetadata
management [29].

Another major aspect is that in principle storage or com-
pute resources of any size and number can be accessed via the
MoSGrid science gateway. Distributed data management is
currently offered via the object-oriented file systemXtreemFS
[30], while the design allows the integration of various file
systems like dCache [31] or iRODS [32].These extensions are
being planned to further increase the sustainability. Compute
resources are made available and are handled via the scalable
andmature computing middleware UNICORE [33], which is
used by major infrastructures and projects like PRACE [34],
XSEDE [27], EGI [35], and soon the Human Brain Project
[36].

By using advanced authentication methods like Security
Assertion Markup Language (SAML) [37] trust delegation
assertions, MoSGrid is prepared in an optimal way for
the spread of federated identity management systems like
Shibboleth [38]. They enable the user to utilize the login of
their home institution for other services, like the MoSGrid
science gateway.

The seamless integration of computing, workflow, data,
andmetadatamanagement with an easy-to-use user interface
optimally supports the users in solving their highly complex
and data-intensive research questions. In addition to work-
flows, the concept of metaworkflows has been proven to be
beneficial for the users.

2.3. Workflows in Computational Chemistry. Workflow
implementation has a long tradition in MoSGrid using the
embedded graphical workflow editor of WS-PGRADE and
the available DCIs. In collaboration with the SHIWA project
[39], metaworkflows have been developed in MoSGrid. In
the course of the collaboration, the idea came up that lots of
workflows consist of subunits, which are repeated in other
workflows [40]. These subunits themselves represent small
workflows. In particular, for the investigation of quantum
chemical questions, the workflow idea is helpful to perform
the screening of large numbers of molecules.

Thefirst step is always to build up the input file for a geom-
etry optimization, which is followed then by subsequent steps
of frequency calculation (freqWF), population analysis (pop
WF), time-dependent DFT (TD-DFT, TD WF), and added
solvation models (solv WF). For each of these subsequent
jobs, the output coordinates of the optimization have to be



4 BioMed Research International

QM code

Output file

Job creator Job creator Job creator Job creator

Frequency
input

QM code QM code QM code QM code

Frequency
output

Freq WF

TD-DFT
input input input

TD-DFT
output output output

TD WF

Population

Population

Pop WF

Solvation

Solvation

Solv WF

Opt. WF

Opt.
input

Figure 2: Example for a metaworkflow containing basic workflows.

used and inserted into a new input file. Hence, every job
step represents a small basic workflow with a job definition
step before job submission. The combination of these small
basic workflows yields a metaworkflow (see Figure 2). Such
workflows are a great help for the quantum chemist and
can be executed in MoSGrid, for instance, with the quan-
tum chemistry codes NWChem [41] or Gaussian09 [42].
With regard to the virtual screening of potential drugs, the
submission of such a metaworkflow enables the efficient
investigation of a larger number of molecules. After this
basic characterization, further basic workflows can be added,
for example, pKa calculation and charge decomposition
analyses. The strength of the metaworkflow concept is that
these further basic workflows can be added freely to the
original metaworkflow, which even enhances the efficiency.
This workflow can be executed several times in order to
validate the molecules properties by simulations with various
methodologies (different flavors of DFT).

3. Results

The workflow illustrated in Figure 1 is the basis for our
performance studies applying the DUD-E set for ABL1 (see
above). As the preprocessing steps for the receptor such
as the protonation state prediction and grid building are
not influenced by the size and characteristics of the ligand
library, our main focus was on the LigandFileSplitter and
IMGDock applications. The first application is responsible
for separating the ligand library into chunks of equal size.

0

200

400

600

800

1000

1200

1400

25 50 75 100

Total
Data stage out Wall time

Ligands per file

LigandFileSplitter

(s
)

Usability overhead

Figure 3: The performance of LigandFileSplitter for different sizes
of data chunks.

In this study we split the data into chunk sizes of 25, 50, 75,
and 100 ligands, which corresponds to 448, 224, 150, and 112
individual IMGDock jobs. The pure wall time on the remote
DCI was observed as well as data transfers between portal,
DCI, and remote storage.

Figure 3 illustrates the overall runtime of the Ligand-
FileSplitter from the point of time the process is started
via the science gateway until the point of time the results
are transferred back to the science gateway. Additionally, we
measured the times for staging out data from the computing



BioMed Research International 5

0

30 60 90 120 150 180 210 240 270 300 More

0.05

0.1

0.15

0.2

0.25

0.3

Ra
tio

25 ligands per file

Run time classes per ligand (s)

(a)

30 60 90 120 150 180 210 240 270 300 More
0

0.05

0.1

0.15

0.2

0.25

0.3

Ra
tio

50 ligands per file

Run time classes per ligand (s)

(b)

30 60 90 120 150 180 210 240 270 300 More
0

0.05

0.1

0.15

0.2

0.25

0.3

Ra
tio

75 ligands per file

Run time classes per ligand (s)

(c)

Figure 4:Thedistribution of the runtime classes of the docking runs
with 25 ligands, 50 ligands, and 75 ligands is similar, which is also
reflected in their runtimes for the whole process with the tendency
to consume more time the larger the input files are.

resources to the science gateway and the wall time for the
LigandFileSplitter on the computing resources. The time
spent for the remaining tasks like staging the data and
scheduling the job results via the subtraction of staging out
the data and wall time from the total time is presented as
usability overhead. The wall time of the process is almost
the same for all runs independent of the number of files.
LigandFileSplitter is a very short running task and has a wall
time of about 50 seconds independent of the chunk size for
a given number of ligands, for example, 11180 for ABL1. It
consumes the smallest part of the overall runtime.The results
show—as expected—that the staging of fewer but larger files
consumes in general less time and the transfer of the files from
the computing resources to the science gateway absorbs most
of the overall time in general.

Since the times measured for usability features and data
staging in the science gateway resulted in similar values for

Table 1: Wall time distribution for IMGDock.

Jobs 448 224 150 112
Ligands per file 25 50 75 100
Wall time in hours 301 326 357 444
Average wall time in sec per
job 2422 5239 8586 14275

Average wall time in sec per
ligand 97 104 115 143

30 60 90 120 150 180 210 240 270 300 More
0

0.05

0.1

0.15

0.2

0.25

Ra
tio

100 ligands per file

Run time classes per ligand (s)

Figure 5: The distribution of the runtime classes of the simulations
with 100 ligands differs significantly from the three other cases and
reflects the increased runtime in this use case.

IMGDock and the response time in the science gateway
scaled almost linearly over the whole workflow, we focused
in the further performance studies on the wall time of
IMGDock on the computing resources.The accumulatedwall
time for the docking lay between 301 and 444 computing
hours and, thus, the added time via the science gateway
infrastructure was insignificant because it ranges between 10
and 20 minutes. The surprising result was that IMGDock
needed significantly less computing hours in total for more
parallel jobs and smaller input files if all runtimes are added
up including the scheduling time via the batch system. To
exclude that this was a one-time event, we repeated all simula-
tions a second time and a subset of simulations several times.
While the second test run over all simulations confirmed the
result, the test run on subsets has not shown this significant
time difference but only a slight increase for the average time
processing less jobs and larger files. However, the tendency
of increased runtimes is clearly towards the smaller number
of jobs. Since the docking of different ligands with different
complexity also leads to different runtimes and, thus, to
different results of the average time, our further analyses are
based on the measures for the whole dataset. The values of
Table 1 represent the wall time on the computing resource
Atlas at Technische Universität Dresden, Germany, with its
92 nodes with each of the 64 cores (5,888 cores) over the
complete dataset.

For further analyses we broke down the results into run-
time classes per ligand. The runtime classes are divided into
docking processes per ligand consuming 30 sec or less time
up to 300 sec ormore in steps of 30 sec (see Figures 4(a), 4(b),
4(c), and 5).

Since the pure docking process for the same ligands is
expected to consume the same time, only the overhead of



6 BioMed Research International

scheduling the job of reading the structure from files of
different sizes and writing the results to files of different sizes
can cause the difference.

To access the influence of the target protein and the char-
acteristics of its binding site, five further datasets were created
(see above), albeit with smaller ligand sets. The average wall
time per ligand was as follows: acetylcholine esterase 55 sec;
androgen receptor 20 sec; estrogen receptor beta 26 sec; HIV1
protease 105 sec; and thrombin 69 sec. Although the absolute
values differ for each target, the characteristics of the runtime
histograms resemble the observations reported for ABL1.

4. Discussion

In the age of big data, distributed infrastructures are increas-
ingly complex and common at the same time. Via easy-to-use
science gateways, users are enabled to make optimal use of
these infrastructures to advance their respective state of the
art. The infrastructures are hidden from the users enhancing
their experience on the usability, while the added layers in the
infrastructure by a science gateway affect also performance
measures.

The individual runtimes are influenced by multiple fac-
tors. One factor is the extraordinary situation for a perfor-
mance analysis that we on purpose have not used dedicated
nodes for our studies. The goal was to simulate the real
situation of users applying the MoSGrid science gateway for
docking in their daily research. Whereas the overhead of
the infrastructure adds a significant portion of time to jobs
with small runtimes, this ratio is negligible for compute-
intensive workflows.Themost consuming task of the docking
workflow is the docking method itself and IMGDock as
serial application can be parallelized by splitting the data
in meaningful chunks. Another factor, which influences
the individual runtime, relates to the analyzed molecular
structures and their features. The target protein and the
characteristics of its binding site play a major role. While
some pockets are rather small, preferring also small and
rigid ligands, others are considerably larger. This leads to an
increased number of degrees of freedom to be sampled, which
consequently leads to longer runtimes.

Our studies have shown that the performance scales
almost linearly for a growing number of jobs on the same
datasets. The smallest unity benchmarked by us (25 ligands
per file) is the one with the best performance even on wall
time level and even though the larger number of jobs creates
more overhead for managing the jobs. This surprising result
on wall time level presumably results from a combination
of factors: writing of larger files is also in ratio compared to
smaller files much slower on the used file system (NFS in this
case). Furthermore, all jobs are one-core jobs and the longer
running ones are more often disturbed or interrupted than
the short running jobs because of the parallel usage of the
underlying compute nodes.Therefore, the optimal chunk size
for splitting a docking library lies between 25 and 50 ligands
with respect to the scientists’ waiting time.

5. Conclusions

Our performance studies show that the docking workflow for
CADDSuite using the representative benchmark datasets for
the protein kinase ABL1 with over ten thousand compounds
scales almost linearly for up to 500 concurrent processes.The
parallelization is achieved by splitting the data into optimal
chunks for the docking task. The overhead for managing the
parallel tasks and the overhead resulting from the science
gateways infrastructure including the user interface layer
and workflow system is negligible, while the science gateway
especially adds usability aspects beneficial for the users.
Although a particular docking tool was used, the results
can be generalized for all applications available in the field.
They will scale similarly even though the single runtimes
of diverse docking applications will differ. In the future we
intend to compare the runtimes of diverse docking tools like
CADDSuite, FlexX, and AutoDock offered in the MoSGrid
science gateway and the corresponding scientific results for
various benchmark datasets.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the BMBF (German Federal
Ministry of Education and Research) for the opportunity to
do research in the MoSGrid project (reference 01IG09006).
The research leading to these results has partially been sup-
ported by the European Commission’s Seventh Framework
Programme (FP7/2007–2013) under Grant Agreement no.
283481 (SCI-BUS) and no. 312579 (ER-flow) and by the
LSDMA project of the Helmholtz Association of German
Research Centres.

References

[1] S. Ou-Yang, J. Lu, X. Kong, Z. Liang, C. Luo, and H. Jiang,
“Computational drug discovery,” Acta Pharmacologica Sinica,
vol. 33, no. 9, pp. 1131–1140, 2012.

[2] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G.
Coleman, “ZINC: a free tool to discover chemistry for biology,”
Journal of Chemical Information andModeling, vol. 52, no. 7, pp.
1757–1768, 2012.

[3] O. Kohlbacher, “CADDSuite-a workflow-enabled suite of open-
source tools for drug discovery,” Journal of Cheminformatics,
vol. 4, supplement 1, p. O2, 2012.

[4] O. Trott and A. J. Olson, “Software news and update AutoDock
Vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading,”
Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461,
2010.

[5] G. M. Morris, D. S. Goodsell, R. S. Halliday et al., “Automated
docking using a Lamarckian genetic algorithm and an empirical
binding free energy function,” Journal of Computational Chem-
istry, vol. 19, no. 14, pp. 1639–1662, 1998.



BioMed Research International 7

[6] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, “A fast flexible
docking method using an incremental construction algorithm,”
Journal of Molecular Biology, vol. 261, no. 3, pp. 470–489, 1996.

[7] G. Neudert and G. Klebe, “DSX: a knowledge-based scoring
function for the assessment of protein-ligand complexes,” Jour-
nal of Chemical Information and Modeling, vol. 51, no. 10, pp.
2731–2745, 2011.

[8] J. Krüger, R. Grunzke, S. Gesing et al., “The MoSGrid science
gateway-a complete solution formolecular simulations,” Journal
of Chemical Theory and Computation, 2014.

[9] S. Gesing, R. Grunzke, J. Krüger et al., “A single sign-on infra-
structure for science gateways on a use case for structural
bioinformatics,” Journal of Grid Computing, vol. 10, no. 4, pp.
769–790, 2012.

[10] R. Grunzke, G. Birkenheuer, D. Blunk et al., “A data driven
science gateway for computational workflows,” in Proceedings
of the 8th Uniform Interface to Computing Resources (UNICORE
Summit ’12), vol. 15, pp. 35–49, May 2012.

[11] P. Kacsuk, “P-GRADE portal family for grid infrastructures,”
Concurrency Computation Practice and Experience, vol. 23, no.
3, pp. 235–245, 2011.

[12] R. Barbera, G. La Rocca, R. Rotondo, A. Falzone, P. Maggi,
and N. Venuti, “Conjugating science gateways and grid
portals into e-collaboration environments: the Liferay and
GENIUS/EnginFrame use case,” in Proceedings of the TeraGrid
Conference (TG ’10), August 2010.

[13] J. Alameda,M. Christie, G. Fox et al., “The open grid computing
environments collaboration: portlets and services for science
gateways,” Concurrency Computation Practice and Experience,
vol. 19, no. 6, pp. 921–942, 2007.

[14] L. Li, K. Bum-Erdene, P. H. Baenziger et al., “BioDrugScreen:
a computational drug design resource for ranking molecules
docked to the human proteome,”Nucleic Acids Research, vol. 38,
no. 1, Article ID gkp852, pp. D765–D773, 2009.

[15] J. Goecks, A. Nekrutenko, J. Taylor et al., “Galaxy: a com-
prehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences,”
Genome Biology, vol. 11, no. 8, p. R86, 2010.

[16] M. Russell, P. Dziubecki, P. Grabowski et al., “The Vine Toolkit:
a Java framework for developing grid applications,” in Parallel
Processing and Applied Mathematics, R. Wyrzykowski, J. Don-
garra, K. Karczewski, and J.Wasniewski, Eds., vol. 4967, pp. 331–
340, Springer, Berlin, Germany, 2008.

[17] M. McLennan and R. Kennell, “HUBzero: a platform for
dissemination and collaboration in computational science and
engineering,”Computing in Science & Engineering, vol. 12, no. 2,
pp. 48–45, 2010.

[18] T. A. Wassenaar, M. van Dijk, N. Loureiro-Ferreira et al.,
“WeNMR: structural biology on the grid,” Journal of Grid
Computing, vol. 10, no. 4, pp. 743–767, 2012.

[19] D. Hull, K. Wolstencroft, R. Stevens et al., TAverna: A Tool
for Building and Running Workflows of Services Nucleic Acids
Research, vol. 34, Oxford Univ Press, Oxford, UK, 2006.

[20] B.Demuth, B. Schuller, S.Holl et al., “TheUNICORE rich client:
facilitating the automated execution of scientific workflows,”
in Proceedings of the 6th IEEE International Conference on e-
Science (eScience ’10), pp. 238–245, December 2010.

[21] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet,
“Directory of useful decoys, enhanced (DUD-E): better ligands
and decoys for better benchmarking,” Journal of Medicinal
Chemistry, vol. 55, no. 14, pp. 6582–6594, 2012.

[22] 2014, http://dude.docking.org/targets/abl1.
[23] M. R. Bauer, T. M. Ibrahim, S. M. Vogel, and F. M. Boeckler,

“Evaluation and optimization of virtual screening workflows
with DEKOIS 2.0—a public library of challenging docking
benchmark sets,” Journal of Chemical Information andModeling,
vol. 53, no. 6, pp. 1447–1462, 2013.

[24] 2014, http://dekois.com/.
[25] SCI-BUS, SCIentific gateway Based User Support, 2014, https://

www.sci-bus.eu/.
[26] ER-flow, Building an European Research Community through

Interoperable Workflows and Data, 2014, https://www.erflow.
eu/.

[27] XSEDE, Extreme Science and Engineering Discovery Environ-
ment, 2014, https://www.xsede.org/.

[28] R. Grunzke, S. Breuers, S. Gesing et al., “Standards-based
metadatamanagement formolecular simulations,”Concurrency
and Computation: Practice and Experience, 2013.

[29] R. Grunzke, S. Gesing, R. Jäkel, and W. E. Nagel, “Towards
generic metadata management in distributed science gateway
infrastructures,” in Proceedings of the 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing
(CCGrid ’14), 2014.

[30] F. Hupfeld, T. Cortes, B. Kolbeck et al., “The XtreemFS archi-
tecture-a case for object-based file systems in grids,” Concur-
rency Computation Practice and Experience, vol. 20, no. 17, pp.
2049–2060, 2008.

[31] P. Fuhrmann and V. Gülzow, “dCache, storage system for
the future,” in Proceedings of the 12th International Euro-Par
Conference on Parallel Processing (Euro-Par ’06), W. E. Nagel,W.
V.Walter, andW. Lehner, Eds., vol. 4128, pp. 1106–1113, Springer,
Dresden, Germany, September 2006.

[32] A. Rajasekar, R. Moore, and C. Y. Hou, IRods Primer: Integrated
Rule-Oriented Data System, Morgan & Claypool, San Rafael,
Calif, USA, 2010.

[33] A. Streit, P. Bala, A. Beck-Ratzka et al., “UNICORE 6-recent and
future advancements,” Annales des Telecommunications, vol. 65,
no. 11-12, pp. 757–762, 2010.

[34] PRACE, PRACE Research Infrastructure, 2014, http://www
.prace-ri.eu/.

[35] EGI, European Grid Infrastructure, 2014, https://www.egi.eu/.
[36] HBP, The Human Brain Project, 2014, https://www.human-

brainproject.eu/.
[37] OASIS, Security Assertion Markup Language (SAML) V2.0,

2002, http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-
os.zip.

[38] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Kling-
enstein, “Federated security: the Shibboleth approach,” EDU-
CAUSE Quarterly, vol. 27, no. 4, pp. 12–17, 2004.

[39] SHIWA SHaring Interoperable Workflows for large-scale sci-
entic simulations on Available DCIs, http://www.shiwa-work-
flow.eu/project.

[40] S. Herres-Pawlis, Á. Balaskó, G. Birkenheuer et al., “User-
friendly workflows in quantum chemistry,” in Proceedings of the
InternationalWorkshop on Scientific Gateways (IWSG ’13), 2013.

[41] M. Valiev, E. J. Bylaska, N. Govind et al., “NWChem: a com-
prehensive and scalable open-source solution for large scale
molecular simulations,”Computer Physics Communications, vol.
181, no. 9, pp. 1477–1489, 2010.

[42] M. Frisch, G. Trucks, H. B. Schlegel et al.,Gaussian 09, Revision
A.02, Gaussian, Wallingford, Conn, USA, 2009.


