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Abstract

Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide

association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide

association studies. This protocol provides guidelines for [1] organizational aspects of GWAMAs,

and for [2] QC at the study file level, the meta-level across studies, and the meta-analysis output

level. Real–world examples highlight issues experienced and solutions developed by the GIANT

Consortium that has conducted meta-analyses including data from 125 studies comprising more

than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying

out QC to minimize errors and to guarantee maximum use of the data. We also include details for

use of a powerful and flexible software package called EasyQC. For consortia of comparable size

to the GIANT consortium, the present protocol takes a minimum of about 10 months to complete.

INTRODUCTION

Background

The genome-wide association (GWA) study approach has been extremely successful in

pinpointing association of common genetic variants with diseases or disease-related

quantitative phenotypes1, 2. However, given the small sizes of the expected effect under a

polygenic model, individual GWA studies are generally too small to provide the necessary

power to detect single nucleotide polymorphism (SNP) associations, while accounting for

the multiple number of independent tests. Therefore, the genetics community has widely

adopted the approach of combining summary statistics from multiple GWAS into a single

meta-analysis to increase the statistical power of the analysis by augmenting the effective

sample size3, 4. These GWAMAs collate data from GWA studies conducted around the

world and thus require an enormous organizational effort to ensure effective

communication, standardization of analytical procedures, and coordination at both the study-

specific level and the meta-analysis level, followed by rigorous quality control (QC) during

the meta-analysis process. Although a QC protocol for individual GWA studies has been

described before5, a comprehensive protocol describing state-of-the-art procedures to

conduct and perform QC of large-scale GWAMAs is currently lacking.

The typical GWAMA approach is to design a standardized analysis plan centrally and share

it with the individual study partners who will perform the GWAs according to the

designated analysis plan. More specifically, the study analysts conduct study-specific GWA
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QC for each SNP, and impute the genome-wide SNP array data. Next, they compute

association statistics for each SNP, including effect size estimates with standard errors (or

odds ratios with corresponding confidence intervals for case-control samples), allele

frequencies, sample size, and P-values, and provide these summary statistics to the meta-

analyses centers. Typically, data on the individual participants, alongside phenotype and

genome-wide SNP genotype information, are not shared to guarantee anonymity of study

participants and to conform to strict data-sharing policies. The unavailability of individual

participant data at the meta-analyses centers creates unique analytical challenges for QC,

requiring specific statistical and graphical tools to track errors in the study-specific analysis

from the available aggregated data.

Study-specific data issues that need to be detected at the meta-analysis stage include file

naming errors (e.g. female-specific files labeled as male-specific), erroneous SNP genotype

data (e.g. flipped alleles, duplicate SNPs, bad imputation quality), and association issues

stemming from incorrect analysis models (e.g. improper model adjustments, population

stratification, and unaccounted relatedness of individuals). Although some errors impede the

meta-analysis (e.g. file formatting errors), others (e.g. incorrect trait transformations and

flipped alleles) limit the full contribution of a study to the meta-analysis and thus lower the

power of the meta-analysis or inflate the number of false positives (type I errors, e.g.

unaccounted population stratification). Issues that inflate the number of type I errors should

be avoided with higher priority than issues that increase the number of false negatives (type

II errors), which negatively affect the statistical power of the meta-analysis. False positives

could set researchers onto the wrong track, leading them to spend time and money on

misguided follow-up studies, whereas missed genetic signals can be expected to emerge in a

following, larger GWAMA.

A typical GWAMA involves two stages: (i) a discovery stage, in which meta-analyzed

GWA data are used to select promising variants, and (ii) a follow-up stage, in which

analyses are performed on data derived either from de novo genotyping or from existing

genome-wide data (in silico). This protocol focuses on the discovery stage. Although in

silico follow-up data can generally be treated similarly to discovery GWA data for QC

purposes, de novo genotyped data needs to be checked with a particular focus on SNP strand

issues, call-rate, Hardy-Weinberg equilibrium (HWE)5 or other technical steps related to the

particular genotyping technology applied.

In recent years, GWAMAs have become more and more complex. Firstly, GWAMAs can

extend from simple analysis models to more complex models including stratified6 and

interaction7, 8 analyses. Secondly, beyond imputed genome-wide SNP arrays, new custom-

designed arrays such as Metabochip9, Immunochip10, and Exomechip11 are increasingly

integrated into meta-analyses. Because of differing SNP densities, strand annotations, builds

of the genome, and the presence of low-frequency variants, data from such arrays require

additional processing and QC steps (also outlined in this protocol using the example of the

Metabochip). Finally, GWAMAs involve an ever-increasing number of studies. Up to a

hundred studies were involved in recent GWAMAs12–17, often involving 1,000 to 2,000

study-specific files. Increasing the scale and complexity of GWAMAs increases the
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likelihood of errors by study analysts and meta-analysts, underscoring the need for more

extensive and automated GWAMA QC procedures.

We present a pipeline model that provides GWAMA analysts with organizational

instruments, standard analysis practices, and statistical and graphical tools to carry out QC

and to conduct GWAMAs. The protocol is accompanied by an R package, EasyQC, a user-

friendly software that implements this GWAMA QC pipeline and is flexible to

accommodate additional and alternative steps.

Development of the protocol

Our protocol was developed by analysts from the GIANT Consortium, which is one of the

largest global collaborations to study complex traits and diseases, currently including up to

125 studies into the meta-analysis. Established in 2006, GIANT has accumulated a lot of

experience with GWAMAs. Four rounds of analyses have already been conducted, with

each round incorporating new studies and chip technologies. 13, 15, 18–20. Our work

illustrates the increasing complexity of GWAMAs: we deal with multiple phenotypes (e.g.

height, body mass index (BMI), waist-hip ratio (WHR), waist and hip circumference (WC

and HIP), the latter three also with adjustment for BMI (WHRadjBMI, WCadjBMI, HIPadjBMI),

and body fat percentage), multiple SNP platforms (genome-wide SNP and Metabochip

arrays), multiple analysis models (without and with adjustment for BMI, interaction with

smoking status and with physical activity, sex- and age- stratified analyses, and various

dichotomizations of the BMI distribution6, 21), including imputed and unimputed SNP data,

and an ever-increasing number of studies per meta-analysis (16 initially and up to 125 in the

current analyses). Our on-going analyses include more than 1,500 GWA input files,

necessitating an efficient QC pipeline. The size and experience of the GIANT Consortium

provides an ideal basis for the development of a GWAMA protocol. The protocol and tools

can readily be applied by other consortia using aggregated statistics for meta-analysis,

studying other quantitative traits and using other statistical models or other genotyping

platforms. We have incorporated all QC steps that proved to be helpful during our GIANT

work and have been known to be efficient in other consortia’s work. We have also

developed special tools to conduct meta-level QC and to handle the particularly large

number of files.

Limitations

Firstly, this protocol has been developed for human genomic data. Although some aspects

can be applied to non-human data, a detailed protocol for other species is beyond the scope

of the present protocol.

Secondly, even a perfect protocol for the meta-analysis of aggregated statistics cannot fully

compensate for not having access to individual participant data, which would guarantee

standardized QC and analyses across studies. Advantages and disadvantages of meta-

analyses using individual participant data are summarized in the “Comparison with other

approaches” section, below. However, ethically motivated restrictions to sharing genome-

wide genotype and phenotype data currently limit the realization of individual participant
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GWAMAs, which is the reason why the aggregated statistics GWAMA – as described here

– is the currently most widely applied approach.

Applications of the protocol

Generally, this protocol assumes that the study analysts have quality-controlled their study

data regarding phenotype and genotype as well as accounted for ethnicity, race and familial

relatedness. For these steps, there are standardized protocols available5. It also assumes that

they either have imputed their genome-wide SNP array data – ideally with a pre-specified

common reference panel – to ensure a common SNP panel across all studies, or that they

have data from an unimputed custom genotype array available.

This protocol specifically focuses on the discovery stage of a GWAMA, but can be readily

applied to the follow-up stage as well. Imputed in silico follow-up data can be treated in a

similar way as the here described imputed genome-wide SNP array data, non-imputed in

silico or de novo genotyped data can be treated like the Metabochip data regarding the

cleaning of call rate, HWE, and strand issues.

Although this protocol has been developed for quantitative phenotypes and HapMap

imputed or typed common autosomal genetic variants, it can be extended to 1000 Genomes

imputed variants, dichotomous phenotypes, rare variants, gene-environment interaction

(GxE) analyses and to sex chromosomal variants. A summary of directly applicable protocol

steps or steps requiring adaptation is given in Table 1. Since 1000 Genomes imputed data

extends to a larger SNP panel and includes structural variants (SV) and insertions or

deletions (indels), the allele coding and harmonization of marker names require special

consideration: (i) Additional allele codes (other than “A”,”C”,”G” or ”T”) are needed for

indels and SVs (e.g., “I” and “D” for insertions and deletions). (ii) To account for the fact

that some SVs and indels map to the same genomic position as SNPs, the identifier format

“chr<chromosome>:<position>” would introduce duplicates. Therefore, the identifier format

needs to be amended (e.g. to “chr<chromosome>:<position>:[snp|indel]”, which adds the

type to the format).

For dichotomous traits, the effective sample size needs to be computed by Neff=2/(1/Ncases +

1/Ncontrols), an expression that balances the number of cases with the number of controls.

Custom-array data require checks of genotype quality per case status. The analysis is usually

performed using logistic instead of linear regression providing beta estimates and standard

errors that enable the implementation of the same meta-analysis methods. The MAC cut-off

requires more consideration: It depends on the logistic-regression-based test used and on the

ratio between number of cases and controls22.

For rare and low-frequency variants more refined considerations regarding the minimal

sample size or the minimally acceptable MAC cut-off per file are required. The

comparability of the study frequencies with reference data such as HapMap or 1000

Genomes is of limited use as Exomechip or custom-made chips focusing on rare variants

and low-frequency tend to include novel or population-specific variants. Often, the single-

variant analyses are complemented by gene-based burden tests requiring special
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consideration. For single-variant analyses, most of the protocol steps described herein are

directly applicable.

Results for analyses models that include an interaction term can also be quality-controlled

by this protocol. The main SNP effect estimates can be treated like the SNP effects without

interaction. The interaction effect estimates need to be cleaned and meta-analyzed in

addition. This objective can be achieved in the same fashion as the main effect estimates or

implementing alternate methods23. As the analysis of the interaction between SNP and the

environment is more and more included into GWAMA efforts, this approach will be of

increased importance.

Analyses with sex-chromosomal variants require some special considerations, in particular

in men. We assume that study partners have quality-controlled their data regarding rare

gonosomal aberrations (X0, XXX, XYY). The potential errors in coding variants in men

include differences in the coding of X-chromosomal variants (either 0|1 or 0|2 for men) or

erroneous coding of pseudo-autosomal variants (should be 0|1|2). Separating the QC by X-,

Y-, and pseudo-autosomal variants in men can be grasped by deflated or inflated beta-

estimates (and thus standard errors) in the SE-N (i.e., inverse of the median standard error

versus the square root of the sample size) plot. Generally, sex-chromosomal variants should

be cleaned and analyzed in men and women separately.

Comparison with other approaches

Over the past six years, more than 100 large phenotype-driven consortia of genetic

association studies have emerged1. Most of these consortia follow a similar framework for

QC and data ‘sanity checks’ as outlined here24.

Some consortia, such as the Uric Acid (UA) Consortium, follow slightly modified

procedures, whereby study-specific QC metrics, generated by GWAStoolbox25, were

collected next to summary level association statistics26. This approach enables the easy

detection of basic data problems even before the results are shared, but at the same time it

poses an extra burden on the analysts, and its implementation does not help the necessity of

meta-level checks. The Chronic Kidney Disease Genetics (CKDGen) Consortium omits

filtering data based on poor imputation quality27, whereas most consortia, including GIANT,

delete badly imputed variants from the meta-analysis (see below).

Whereas most GWAMAs meta-analyze study-specific statistics, where study analysts have

provided GWA results to the meta-analysis center, the Psychiatric Genomic Consortium

(PGC) conducts a meta-analysis of individual participant data, as both the individual-level

genotype and phenotype data of all participating studies are deposited centrally28. This

approach has the following advantages: 1) central quality control: genotype and phenotype

data can be modeled and quality-controlled centrally, eliminating the need for subsequent

troubleshooting; 2) standardized study-specific analyses: fewer analysts are involved and the

utilization of the same imputation and association analysis software is guaranteed; and 3)

flexibility: more complex and comprehensive statistical analyses can be conducted without

burdening a large number of study analysts. However, our GWAMA approach has also

advantages compared to the meta-analysis of individual participant data: 1) gathering
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experts: the more analysts are involved, the more the network can profit from the

accumulated expertise; 2) local know-how: local study analysts know their study better than

a central team of meta-analysts; and 3) compliance: ethically motivated restrictions may

limit the sharing of genome-wide genotype and phenotype data due to the risk of participant

identification inhibit the study contribution29–31. In summary, the framework presented in

this protocol reflects the currently most widely applied GWAMA conduct and QC approach.

Experimental Design

Organizational aspects of the conduct of a typical GWAMA (Steps 1–6)

The typical GWAMA starts with the setting up of logistics aimed at achieving a smooth

communication between participating partners, analysts, and principal investigators, limiting

the burden for study analysts, so as to ensure a timely delivery of results to the meta-analysis

team.

Once study partners have been identified, general rules for the collaboration can be issued in

a ‘memorandum of understanding’ to set out the guidelines of confidentiality, data access,

publication of results, and authorship. Subsequently, collaborators and analysts are invited to

join task groups and regular teleconference calls.

An analysis plan is designed centrally by the meta-analysts to describe the standardized

analyses to be performed ‘locally’ and to detail phenotype transformation (e.g. to deal with

non-normal phenotype distributions and to enable comparability across studies), genotype

handling, imputation requirements, and association analysis methods (statistical model,

adjustment, stratification). Where possible and reasonable, software scripts are provided to

every participating study group to minimize the potential of errors and to alleviate the

analysis burden for the study analyst. The analysis plan also defines the required aggregated

association statistics (e.g. SNP identifier, effect allele, allele frequency, beta estimate,

standard error, sample size, call rate or imputation quality, and P-value) and details the

format in which they need to be submitted (see Box 1). In the design of the analysis plan,

whether or not to provide detailed and lengthy guidelines, possibly including even software

codes, needs to be weighed against providing a short and comprehensive — but potentially

more error-prone — description. The less standard the requested analyses, the more details

need to be provided. A general analysis plan format cannot be provided, but the GIANT

analysis plan can serve as an example that has worked and has been improved through

several rounds of meta-analyses (Supplementary Manual). The analysis plan is discussed

with the study collaborators and then sent out to each study analyst, including a deadline and

server access details for data upload.

When data from all studies have been uploaded to a password-secured file server, a data

freeze ensures the integrity of the data for all meta-analysts, regardless of download time

(Supplementary Figure 1).

The complete turnaround time for consortia comparable in size to GIANT (>100 studies in

meta-analysis) is, at minimum, around 10 months: 2 months to set up the logistics and to
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develop the analysis plan, 2 months to collect the data after the analysis plan has been sent

out, and 6 months to perform QC and meta-analysis.

QC—The workflow involves three QC steps: file-level QC (Steps 7–18), meta-level QC

(Steps 19–26), and meta-analysis QC (Steps 29–32). The file-level QC tackles formatting

issues that can be checked independently on each study file. In the meta-level QC, the study-

specific statistics are compared across studies or with reference panels to detect errors in the

analyses that cannot be identified by examining the study files individually. The meta-

analysis QC works on the level of already aggregated meta-analysis results and helps to

remove or flag suspicious SNP results. The workflow and the three QC steps are presented

in Figure 1.

File-level QC (Steps 7–18): This stage involves ‘cleaning’ (deleting poor quality data) and

‘checking’ (providing summaries to judge data quality) data. Thresholds for what data to

remove are typically defined a priori (e.g. by this protocol). Although data checking should

ascertain that there are no issues left, it often reveals further issues, which require re-

cleaning and re-checking. A few QC iterations may be needed before all files are fully

cleaned and ready for meta-analyses. Which SNPs or study files are to be removed depends

on how much the improvement in data quality weighs against loss of data. On the one hand,

the stricter the QC, the more SNPs or study files are removed and thus the lower the

coverage or sample size (and thus power). On the other hand, the more relaxed the QC

requirements, the larger the coverage and sample size at the expense of data quality, which

also decreases power.

Clearly, monomorphic SNPs or SNPs with missing (e.g. missing P-value, beta estimate, or

alleles) or nonsensical information (e.g. alleles other than A, C, G, or T, P-values or allele

frequencies >1 or <0, or standard errors ≤0, infinite beta estimates or standard errors) are of

no help to the meta-analysis and need to be removed. Systematically missing values or

errors can point towards analysis problems; thus, such data calls into question the

correctness of the data and should be discussed with the study analyst. A large number of

monomorphic SNPs can also point towards study-specific array problems.

If a study includes a low number of individual participants, its summary statistics can be

unstable (e.g. zero or infinite standard errors, zero P-Values or extremely large beta

estimates), which might drive the meta-analysis towards detecting false positives. This risk

pertains in particular to low-frequency variants. The detection of false positives due to the

low statistical power of the meta-analysis can be avoided by requiring a minimum sample

size per study and a minimum number of minor alleles contributing to a SNP for each

participating study. For example, in meta-analyses performed by the GIANT consortium,

SNPs were removed from the study file if the number of individuals informative for the SNP

was lower than 30 or the minor allele count was (MAC, computed as 2*MAF*N, with MAF

being the minor allele frequency) equal or less than 6.

Imputed genotype data is often filtered based on imputation quality. For example, in the

GIANT consortium, poorly imputed SNPs were removed according to a threshold that

depended on the imputation method and on the imputation quality metric (Table 2).
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Arguably, however, SNPs with poor imputation quality can be retained in the meta-

analysis27: on one hand, a badly imputed SNP can be considered a random, non-differential

error in the genotype (i.e. not systematically prioritizing one genotype and independent of

the phenotype) and thus it will not tend to create a false signal and, on the other hand, a

study with the SNP badly imputed will neither contribute to a true signal nor mask it.

Filtering poorly imputed SNPs has the advantage that no nonsensical results are unduly

decreasing the statistical significance of truly informative data.

Sex-chromosomal and autosomal SNPs require different genotype models and therefore are

often studied separately from each other. To focus on autosomal SNPs and consistent

genotype models across studies in its analyses the GIANT consortium has removed any sex-

chromosomal SNPs.

SNP identifiers often differ between arrays and/or imputation reference panels and,

therefore, often differ between studies. Their harmonization across studies is pivotal to the

meta-analysis. For example, a SNP that is assigned to two different SNP identifiers (e.g.

rs123 in half of the studies and rs17614680 in the other half) will appear as two different

SNPs in the meta-analysis output, with the total sample size split across the two SNPs; a true

signal might, therefore, be missed due to loss of statistical power. For HapMap imputed

studies, a unique SNP identifier can be generated by combining the SNP’s genetic positions

to generate the format “chr<chromosome>:<position>”. However for some arrays (e.g.

Metabochip) not all SNPs map to a standard reference panel. In such cases, the DNA probe

sequences need to be mapped to the reference genome build of interest to arrive at a

common chromosome and position, which can then be used to generate the SNP identifier.

This procedure will also remove SNPs that do not map uniquely to the genome. Maps with

unique SNP identifiers and genomic positions (for several different genome builds) for

several commercial arrays are freely available for download (see: http://www.well.ox.ac.uk/

~wrayner/strand/).

Meta-level QC (Steps 19–26): This stage consists in the cross-study comparison of

statistics to identify study-specific problems. This QC stage compensates for not having the

individual participant data of each study available to the meta-analyst. We recommend the

following plots to be included in the GWAMA QC protocol.

The SE-N plot (Steps 19–20): Several types of analytical problems can be identified by

depicting, for each study file, the inverse of the median standard error of the beta estimates

across all SNPs against the square root of the sample size. The inverse proportionality

between the median standard error and the square root of the sample size derives from the

fact that the sampling variance of a linear regression–derived beta-estimate of a specific

SNP j depends on the variance of the phenotype, Var(Y), the variance of the SNP genotype,

Var(Xj), and the sample size . If the regression model is

adjusted, then Var(Y) reflects the variance of the residuals. Thus, the average of the standard

errors across all SNPs will reflect the sample size. Assuming that the sample size for a given

SNP is close enough to the maximum sample size for all SNPs, Nj = N,, the median of the
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standard errors across all m SNPs (j=1…m) can be written as

 and therefore

(1)

with . The constant c can be computed per study file incorporating

the genotype frequencies (for genotyped variants) or the genotype dosages and imputation

quality (for imputed variants) and will depend on individuals’ ethnicity, genotyping

platform, imputation reference panel, and imputation quality. Ignoring the uncertainty from

the imputation, c can be approximated by

(2)

However, the computation of c per study is not ideal for comparing the studies with each

other. Differences in the MAF distribution between any individual study and the reference

would not be detected. For several standard platforms, imputation panels and ethnicities,

these approximate c values to be used in the SE-N plot are given in Table 3. For other

platforms, panels or ethnicities, c is to be computed from a reference study or the imputation

reference panel.

The study-specific data points of the SE-N plot will tend to describe a straight line.

However, studies will deviate from the overall trend, if:

i. the study’s phenotypic variance differs from other studies, which might be

explained by a different study design or special study population;

ii. the study’s MAFs differ from other studies, which might be explained by a

diverging genotyping platform, reference panel for the imputation, or a different

ethnicity;

iii. the study’s SNP imputation qualities differ from those of other studies, which

might reflect errors in the imputation or a different reference panel;

iv. the study’s effective sample size differs from the stated sample size, which might

be due to unaccounted relatedness between study participants or mis-coded sample

size;

v. the study analyst has used a different statistical test; or

vi. the study analyst has mis-specified the phenotype transformation or the regression

model, which results in a different phenotype variance or residual variance (see

Figure 2, Anticipated Results, Supplementary Figure 2).

The P-Z plot (Steps 21–22): Analytical problems related to the study-specific computation

of beta estimates, standard errors or P-values can also be revealed by a study-specific scatter
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plot that, for each SNP, compares the reported P-values with the P-values computed from

the Z-statistics based on reported beta-estimate and standard error (Z statistics = βj/SE (β)j)

(Figure 3, Anticipated Results, Supplementary Figure 3).

The EAF-plot (Steps 23–24): Plotting reported effect allele frequencies (EAF) against a

reference set, such as from the HapMap32 or 1000 Genomes33 projects, or from one specific

study, can help to visualize patterns that pinpoint strand issues, allele miscoding, or the

inclusion of individuals whose self-reported ancestry did not match their genetic ancestry

(Figure 4, Anticipated Results). A strand mismatch or allele miscoding may severely reduce

statistical power. If, for example, a study (or several studies) reports alleles on the ‘−’

instead of ‘+’ strand, which cannot be corrected for ‘palindromic’ A/T or C/G SNPs, a true

signal will be diminished, abolished, or even reversed. Although comparison of allele

frequencies across studies will not detect strand issues or allele miscoding for SNPs with

MAF close to 0.5, this comparison will be informative for most SNPs.

The lambda-N plot (Steps 25–26): Population stratification can either inflate or deflate

association P-values and can be grasped by the genomic control (GC) inflation factor

(λGC)34. As λGC increases with sample size in the case of polygenic phenotypes35, plotting

λGC versus sample size per study file identifies inflated λGC and thus potential problems

with population stratification (Figure 5, Anticipated Results). In the GIANT Consortium,

analysts of studies with λGC >1.1 are contacted and asked to revisit their analyses (e.g.

adjusting for principal components) and results.

Meta-Analysis and QC of meta-analysis output (Steps 27–32)—The meta-analysis

combines the study-specific association results to obtain an overall estimate of the

association and its P-value. The inverse-variance weighted meta-analysis using the fixed-

effects model is most commonly used for GWAMAs (e.g. implemented in METAL36). The

Q statistic and I2 measure test and estimate between-study heterogeneity22,37. For SNPs with

pronounced heterogeneity (I2 > 75%), the effect estimation benefits from a random effects

meta-analysis38. An alternative approach for deriving overall P-values is the sample size-

weighted Z-score meta-analysis39. This approach is used when beta-estimates or standard

errors are not available, or when the meta-analyzed traits are on a different scale (e.g. blood

level data measured in different labs or differences in trait transformation) at the cost of

losing power.

Meta-analyses are conducted by two meta-analysts independently, each uploading the results

and log files on to the server (Supplementary Figure 1). Results are compared using (i) the

log files that specify the study files included and the meta-analysis parameters set in the

software program, (ii) descriptive statistics (min, median, max) of sample size and number

of SNPs included in meta-analysis results, and (iii) correlation and scatter plot of P-values.

Differences between the two analyses are resolved until agreement is reached.

To evaluate whether the statistics of the meta-analyzed effect are inflated due to population

stratification accumulated across studies or due to unaccounted relatedness, the λGC is

computed for the meta-analysis result (complementing the file-specific λGC values, see

above). A high value (λGC >1.1) might be due to (a) an excess of association signals in large
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GWAMAs for highly polygenic traits14, (b) residual population stratification per study file

accumulated across studies, (c) relatedness between individuals across strata, when the

study-specific analyses have been performed separately by strata), or (d) related subjects

across studies, which can more likely occur in very large GWAMAs. In the case of (c), a

meta-analysis across strata per study can be conducted and a study-specific λGC >1.1 might

provide insight into inflation requiring contact of the study analyst. Generally, we

recommend applying the lambda GC correction on the file-level and on the meta-analysis

level (double GC correction), but very large GWAMAs (> 200,000 individuals) on highly

polygenic traits, such as height, may opt to omit the second GC correction (single GC

correction)35.

Finally, when all issues are resolved, one of the analysts shares the final results with the

analysis task group (Supplementary Figure 1). The final results file will be used for all

subsequent steps, including SNP selection for top hit identification and/or follow-up.

Special considerations for custom array data instead of genome-wide SNP
array data—The GIANT consortium has worked on data genotyped using the Metabochip,

a custom genotyping array that contains ~195,000 replication and fine-mapping SNPs

chosen from GWAMAs of metabolic, cardiovascular and anthropometric traits9. Although

many of the QC steps for HapMap imputed SNP data can be directly applied to the

Metabochip and other customized genotype arrays, some steps need to be adjusted, which

are summarized in the following section and given in the protocol as alternative route to

using HapMap imputed SNP data: (i) To control genotype quality instead of imputation

quality, a filter on call rate and deviation from Hardy-Weinberg equilibrium (HWE) is

required; (ii) some genotyped SNPs may not be available in the HapMap reference data,

which requires other references to identify strand and allele frequency errors; and (iii) to

perform GC correction for chips designed to cover multiple traits, the calculation of the λGC

needs to be limited to a subset of SNPs that are chosen from a trait that is uncorrelated with

the trait of interest. This λGC is then to be applied to all SNPs on the array. For example,

GIANT limits the λGC computation for Metabochip data to the 4,427 QT-interval SNPs as

the QT-interval is uncorrelated with the GIANT traits, as recommended by the Metabochip

designers9.

Software—Using the standard, open-source and freely-available software R40 and the

graphical R package ‘Cairo’, we created a pipeline for completing this protocol into a

downloadable GWAMA-QC R package called EasyQC. We provide code application

directly in the procedure steps. The general basic usage is described in Box 2. Minimum

system requirements are described in the Materials.

We provide a number of template scripts that enable to conduct multiple procedure steps at

once: (i) EasyQC scripts ‘1_filelevel_qc.gwa.ecf’ and ‘1_filelevel_qc.metabochip.ecf’ to

perform file-level QC (Steps 7–18); (ii) EasyQC script ‘2_metalevel_qc.ecf’ to perform

meta-level QC (Steps 19–26); (iii) METAL-script ‘3_metaanalysis.metal.txt’ to perform the

meta-analysis (Steps 27–28); (iv) EasyQC script ‘4_metaanalysis_qc.compare.ecf’ to

compare two meta-analysis results for meta-analysis QC (Steps 29–30); (v) R script

‘4_metaanalysis_qc.compare_logfiles.r’ to compare two meta-analysis log-files with regards
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to included and excluded files for meta-analysis QC (Step 30); and (vi) EasyQC script

‘4_metaanalysis_qc.studymeta.ecf’ to perform study-specific meta-analyses for meta-

analysis QC (Steps 31–32).

Parts of the EasyQC template scripts and single EasyQC functions can also be included into

other existing QC pipelines. This task can be accomplished by removing functions from the

scripting interface of the template scripts (see Box 2).

Future studies, like GWAMAs using 1000 Genomes imputed data, will exhibit an increased

number of variants and will include additional genetic structures such as indels or SVs. The

EasyQC software is specifically designed to handle large datasets and can thus be used for

larger SNP panels. With regard to memory requirement, EasyQC requires a minimum of 30

GB random access memory (RAM) for 1000 Genomes imputed data (~40M SNPs) for the

file-level QC, which is the protocol part requiring the largest memory. Alternatively, the

file-level QC steps can be parallelized by splitting the data into smaller parts, e.g. by

chromosome or into overlapping segments of 5Mb, as recommended for 1000 Genomes

imputation. To handle indels and SVs, adjustments to the scripts, like allowing for “I”

(insertion) and “D” (deletion) alleles, are needed and can be made directly to the provided

EasyQC scripts. To this end, the EasyQC package is under active development and future

updates will include scripts tailored to 1000 Genomes data.

MATERIALS

EQUIPMENT

Data—

- Allele frequency reference panels: For HapMap imputed GWAs data: HapMap

CEU frequencies as given in ‘AlleleFreq_HapMap_CEU.v2.txt.gz’. For typed

Metabochip data: 1000 Genomes EUR frequencies as given in

‘AlleleFreq_1000G_EUR_Metabochip.v1.txt.gz’. Both files are available from

the relevant website of the Department of Genetic Epidemiology, University of

Regensburg http://www.genepi-regensburg.de/easyqc/.

- SNP identifier reference panel for marker harmonization: The file

‘SNPID_to_ChrPosID.b36_v2.txt.gz’ (available from the website http://

www.genepi-regensburg.de/easyqc/) maps ~9.1 million known different SNP-

IDs (column “SNPID”, which contains different versions of rs-IDs from b35,

b36 or b37, as well as array-specific marker names like “SNP_1_12345”) to

~4.8 million unique ChrPosIDs (column “ChrPosID”). It can be used to

harmonize SNP identifier names between HapMap imputed or Metabochip data

(see Step 15). It does not include sex-chromosomal SNPs. Please see the

Supplementary Methods for a description of the file creation.

- QT interval SNPs for GC correction of typed Metabochip data and only for traits

that are not correlated with the QT interval: ‘QTSNPs_AEL_TW.txt’ (available

from the website http://www.genepi-regensburg.de/easyqc/).

- Multiple summary-level association result files.
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Software—

- Statistical software R (http://cran.r-project.org/)

- R Package EasyQC (http://www.genepi-regensburg.de/easyqc/);

- Meta-analysis software METAL (http://www.sph.umich.edu/csg/abecasis/

metal/);

- Template R-, EasyQC- and METAL-scripts that can be used to conduct multiple

procedure steps are available from http://www.genepi-regensburg.de/easyqc/

Hardware—

- Computer workstation or server with Unix or Linux operating system

- Minimum memory requirements: For performing the file-level QC (which is the

most memory-intensive step due to evaluating unfiltered data) with HapMap

imputed data (~2.8M SNPs) at least 4GB of random access memory (RAM)

should be available

PROCEDURE

Setting up logistics of meta-analysis (Timing ~2 months)

1. Identify GWAS partners and lay out rules of cooperation (“Memorandum of

understanding”, MOU). Form task groups and set up phone meetings.

2. Develop a GWAS analysis plan (Supplementary Manual), including instructions

on phenotype transformation, analysis models, covariate adjustment,

stratification, use of reference panels for imputation, and formatting of data

submissions.

3. Set up an sftp site that will be used to collect and securely store the data and

organize and label directories and sub-directories in a logical self-explanatory

manner (Supplementary Figure 1).

Collecting aggregated statistics per study (Timing ~2 months)

4. Send out the analysis plan and allow for 2 months for the collaborators to

provide the data.

5. In the meantime, prepare file cleaning instructions and a meta-analysis plan.

6. When all files are available (or at least files from >80% of studies), freeze the

data, i.e. protect the data from further changes (Supplementary Figure 1),and

start conducting the file-level QC.

File-level QC (Timing ~2 months)

Critical—The following file-level QC tasks (Steps 7–18) can be grouped by study and be

assigned to a set of analysts. Check whether format and variable names included in the study

file match the requested format and columns. The following example uses the terminology
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of the GIANT format described in Box 1 and assumes that data is provided by study

collaborators in tabular (TAB) delimited text files with missing values being indicated by ‘.’.

7. To check variable names and format in EasyQC, define the requested columns

and format using the DEFINE and the EASYIN functions in the ecf-header (for

more information on how to use EasyQC, see Box 2) using option A for imputed

data or option B for genotyped Metabochip data.

A. Defining columns and format for imputed data

i. Type the following commands:

DEFINE –-acolIn

MarkerName;Strand;Chr;Pos;N;Effect_allele;Other_

allele;EAF;Information_type;Information;BETA;

SE;P

--acolInClasses

character;character;character;integer;integer;ch

aracter;character;numeric;numeric;numeric;num

eric;numeric;numeric

--strMissing .

--strSeparator TAB

EASYIN --fileIn /path2input/study.gwa.file1.txt

EASYIN --fileIn /path2input/study.gwa.file2.txt

…

B. Defining columns and format for genotyped Metabochip data

i. Type the following commands:

DEFINE -–acolIn

MarkerName;Strand;Chr;Pos;N;Effect_allele;Other_

allele;EAF;P_HWE;Callrate;BETA;SE;P

--acolInClasses

character;character;character;integer;integer;ch

aracter;character;numeric;numeric;numeric;num

eric;numeric;numeric

--strMissing .

--strSeparator TAB

EASYIN --fileIn /path2input/

study.metabochip.file1.txt

EASYIN --fileIn /path2input/

study.metabochip.file2.txt

…
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8. (OPTIONAL) If column names were labeled wrongly, e.g. the analyst used

‘Pvalue’ instead of ‘P’, change the column names centrally, as this is more time-

efficient. If any of the requested columns cannot be clearly allocated or are even

missing, consult the study analyst for clarification or — if needed — ask for re-

upload. EasyQC will only start to iterate over the defined input files if their

headings and format match the requested columns and the requested format.

Minor changes to the requested format, e.g. renaming column names or using a

different delimiter, can be handled by EasyQC directly through small

adjustments in the ecf-header.

?TROUBLESHOOTING

9. Filter monomorphic SNPs. Exclude and count SNPs with allele frequency = 0 or

=1. In EasyQC, this can be done using the ‘CLEAN’ function:

CLEAN --rcdClean (EAF==0)|(EAF==1) --strCleanName numDrop_Monomorph

10. Filter SNPs with missing values. Exclude and count all SNPs with missing

alleles, P-value, beta estimate, standard error, allele frequency or sample size. In

EasyQC, this can be done using the ‘CLEAN’ function:

CLEAN --rcdClean is.na(Effect_allele) --strCleanName 

numDrop_Missing_EA

CLEAN --rcdClean is.na(Other_allele) --strCleanName 

numDrop_Missing_OA

CLEAN --rcdClean is.na(P) --strCleanName numDrop_Missing_P

CLEAN --rcdClean is.na(BETA) --strCleanName numDrop_Missing_BETA

CLEAN --rcdClean is.na(SE) --strCleanName numDrop_Missing_SE

CLEAN --rcdClean is.na(EAF) --strCleanName numDrop_Missing_EAF

CLEAN --rcdClean is.na(N) --strCleanName numDrop_Missing_N

11. Filter SNPs with non-sense values. Exclude and count all SNPs with alleles

other than ‘A’,’C’,’G’ or ‘T’; P-values <0 or >1; negative or infinite standard

errors (<=0 or =Infinity); infinite beta estimates or allele frequencies <0 or >1.

In EasyQC, this can be done using the ‘CLEAN’ function:

CLEAN --rcdClean !(Effect_allele%in%c('A','C','G','T')) --

strCleanName numDrop_invalid_EA

CLEAN --rcdClean !(Other_allele%in%c('A','C','G','T')) --

strCleanName numDrop_invalid_OA

CLEAN --rcdClean P<0|P>1 --strCleanName numDrop_invalid_P

CLEAN --rcdClean SE<=0|SE==Inf --strCleanName numDrop_invalid_SE

CLEAN --rcdClean abs(BETA)==Inf --strCleanName numDrop_invalid_BETA

CLEAN --rcdClean (EAF<0)|(EAF>1) --strCleanName numDrop_invalid_EAF
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12. Filter SNPs on allele frequency and sample size. Exclude and count SNPs with a

sample size <30. Add a column called MAC defined as 2 times sample size

times minor allele frequency and exclude and count all SNPs with MAC<=6. In

EasyQC, these steps can be performed using the following EasyQC code:

CLEAN --rcdClean N<30 --strCleanName numDrop_Nlt30

ADDCOL --rcdAddCol 2*pmin(EAF,1-EAF)*N --colOut MAC

CLEAN --rcdClean MAC<=6 --strCleanName numDrop_MAClet6

13. Filter SNPs on genotype quality. Use option A for imputed data or option B for

genotyped Metabochip data:

A. Filtering SNPs in imputed data

i. Filter SNPs due to non-sense or missingness: Exclude and

count SNPs with missing Information_type, genotyped

SNPs (indicated by Information_type =0) with an

imputation quality less than 1 (Information <1), imputed

SNPs (Information_type !=0) with missing imputation

quality. In EasyQC, this can be done using the ‘CLEAN’

function:

CLEAN --rcdClean is.na(Information_type)

--strCleanName numDrop_MissingInformationType

CLEAN --rcdClean 

Information_type==0&Information<1

--strCleanName numDrop_Genotyped_LowInformation

CLEAN --rcdClean (Information_type!= 

0)&(is.na(Information))

--strCleanName 

numDrop_Imputed_MissingInformation

ii. Filter SNPs on imputation quality: Exclude and count

SNPs with low imputation quality using a threshold that

depends on the imputation and association software used

(Table 2). In EasyQC, this can be done using the

‘CLEAN’ function:

CLEAN

--rcdClean

(Information_type!=0&Information<0.3)|

(Information_type==2&Information<0.4)|

(Informati on_type==3&Information<0.8)

--strCleanName numDrop_LowInformation
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B. Filtering SNPs in genotyped Metabochip data

i. Filter SNPs due to non-sense or missingness: Exclude and

count SNPs with: (1) missing per-SNP callrate; (2)

missing HWE P-values; (3) Callrate or Phwe <0 or >1. In

EasyQC, this can be done using the ‘CLEAN’ function:

CLEAN --rcdClean is.na(Callrate) --strCleanName 

numDrop_MissingCallrate

CLEAN --rcdClean is.na(P_HWE) --strCleanName 

numDrop_MissingPhwe

CLEAN --rcdClean Callrate<0|Callrate>1 --

strCleanName numDrop_InvalidCallrate

CLEAN --rcdClean P_HWE<0|P_HWE>1 --strCleanName 

numDrop_InvalidPhwe

ii. Filter SNPs on low call rate and SNPs violating the HWE:

Exclude and count SNPs with Callrate<0.95 and SNPs

with P_HWE<10−6. In EasyQC, this can be done using

the ‘CLEAN’ function:

CLEAN --rcdClean Callrate<0.95 --strCleanName 

numDrop_LowCallrate

CLEAN --rcdClean P_HWE <1e-6 --strCleanName 

numDrop_LowHwe

14. Filter and count SNPs on sex chromosomes. Keep the sex-chromosomal SNPs in

a separate file for optional subsequent analyses. In EasyQC, this can be done

using the ‘CLEAN’ function:

CLEAN --rcdClean !Chr%in%c(1:22,NA) --strCleanName 

numDropSNP_ChrXY --blnWriteCleaned 1

If the chromosomal information is missing in the input file, all SNPs on the sex

chromosomes will be excluded by the next step.

15. Harmonize SNP identifiers. To maximize the overlap in the number of SNPs

between the study files and to ensure a proper meta-analysis, create a unique

SNP-ID called ChrPosID, which uses the unique format “chr<chr>:<position>”

(e.g. ‘chr10:104207431’, which only uses genetic positions on build 36). We

propose two alternative approaches for this SNP-ID harmonization. Use option

A, for studies that lack information on genetic positions (columns Chr and Pos).

Option A was implemented in GIANT meta-analyses as the genetic positions

were not available in many of the studies (in particular in those that contributed

to earlier rounds of analyses). For future studies, we recommend using option B

Winkler et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for which Chr and Pos is requested from each collaborator to allow compiling

the ChrPosID from the provided information. Option B is the preferable, more

generic approach that easily handles novel genotyping arrays (e.g. Exomechip),

imputation reference panels (e.g. 1000 Genomes) or genome builds that are not

depicted by the provided reference panel ‘SNPID_to_ChrPosID.b36_v2.txt.gz’

(Supplementary Methods).

A. Creating ChrPosID if genetic positions are not available in the
study file

i. Create a SNP identifier reference panel. Create a

reference file that can be used to remap different versions

of SNP names to unique ChrPosIDs (see Supplementary

Methods for detailed descriptions on how-to create such a

reference file). In case of analyzing HapMap imputed or

Metabochip data on genome build 36, use the provided

SNP identifier reference panel

‘SNPID_to_ChrPosID.b36_v2.txt.gz’ (Supplementary

Methods).

ii. Add the unique ChrPosID to the study file by merging the

study file column MarkerName with the reference file

column SNPID. In EasyQC, this can be done using the

‘RENAMEMARKER’ function:

RENAMEMARKER --colInMarker MarkerName

--fileRename /path2reffiles/

SNPID_to_ChrPosID.b36_v2.txt.gz

--colRenameOldMarker SNPID

--colRenameNewMarker ChrPosID

iii. Check the format of existing ChrPosIDs. To avoid

formatting errors with existing ChrPosIDs in study files,

remove all spaces from the SNP names (i.e. transform

‘chr10 : 104207431’ to ‘chr10:104207431’) and add the

character string ‘chr’ at the beginning of the SNP name in

case it was forgotten (i.e. transform ‘10:104207431’ to

‘chr10:104207431’). In EasyQC correcting the format of

mislabeled ChrPosID SNPs can be performed using the

following commands:

EDITCOL --rcdEditCol gsub(" ","", ChrPosID) --

colEdit ChrPosID

EDITCOL --rcdEditCol 

ifelse(regexpr(":",ChrPosID)==2 | 
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regexpr(":",ChrPosID)==3,

paste("chr", ChrPosID,sep=""), ChrPosID)

--colEdit ChrPosID

B. Creating ChrPosID if genetic positions are available in the study
file

i. Generate ChrPosID directly from the provided Chr and

Pos columns by horizontally concatenating the string

“chr”, column Chr, character “:” and column Pos. This

approach requires genetic positions to be given in the

study file. In EasyQC, this can be done using the

‘ADDCOL’ function:

ADDCOL --rcdAddCol 

paste(“chr”,Chr,”:”,Pos,sep=””) --colOut 

ChrPosID

16. Filter duplicate SNPs. To use the best candidate, exclude the duplicate with the

smaller sample size. In EasyQC, this can be done using the

‘CLEANDUPLICATES’ function:

CLEANDUPLICATES --colInMarker ChrPosID --strMode samplesize --colN 

N

17. Save cleaned files: Add the prefix “CLEANED.” to the filename, save the

cleaned file and use ‘.’ as missing character. In EasyQC, this can be done using

the ‘WRITE’ function:

WRITE --strPrefix CLEANED. -–strMissing . -–strMode gz

18. To perform a file-level QC check, prepare a summary for each study file: Count

and check the number of SNPs in the cleaned file and the number of exclusions

for each procedure step. An example list of report variables is given in

Supplementary Table 1. The number of SNPs in the cleaned file should be >2.2

million for GWAS data (if imputed to a HapMap II reference panel) and

>100,000 for Metabochip data. Major departures from these expected values,

generally large numbers of exclusions or any exclusions due to missing or

nonsense values (Steps 10, 11, 13Ai, 13Bi) may indicate systematic issues with

the file; consult the study analyst to clarify. When using EasyQC, open the

generated summary report in Excel. The report is automatically written to the

output path and carries the file extension ‘.rep’. It contains one row per input file

and the QC variables - to be checked - in columns (Supplementary Table 1).
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Meta-level QC (Timing ~2 months)

19. Identify analytical issues by the SE-N plot. To check for issues with trait-

transformation, the coded sample-size or file-naming, calculate the median

standard error and maximum sample size of every input and produce a plot of c/

median(SE) versus Sqrt(max(N)) (one point for each file, Figure 2). The

proportionality constant c depends on the genotyping platform or the imputation

reference panel (Table 3). Find values for c for standard platforms and panels in

Table 3, i.e. use 1.93 for typed Metabochip data or 1.75 for HapMap II imputed

GWAS data. For platforms or panels other than those given in Table 3, the value

of c needs to be computed de novo by Equation (2) for one study with the

respective platform or for the imputation reference panel; this c can then be

applied to the other studies. In EasyQC, calculate the statistics and create the

plot using the ‘CALCULATE’ and ‘RPLOT’ functions:

CALCULATE --rcdCalc max(N,na.rm=T) --strCalcName Nmax

CALCULATE --rcdCalc median(SE,na.rm=T) --strCalcName SEmedian

RPLOT --rcdRPlotX sqrt(Nmax)

--rcdRPlotY [c]/SEmedian

--rcdRPlotY [c]/SEmedian

--arcdAdd2Plot abline(a=0,b=1,col="orange")

--strAxes zeroequal

--strPlotName SEN-PLOT

# Please replace [c] at --rcdRPlotY with the respective value from 

Table 3.

20. Check whether the points follow the identity line. In case any points clearly

deviate from the diagonal, consult study analyst to clarify trait transformation,

sample-size coding and file-naming (Figure 2, Anticipated Results). Studies

with unaccounted relatives show deviation from the identity line as the effective

sample size is different from the actual sample size, but whether unaccounted

relatedness is the reason for an observed deviation should be confirmed after

consultation with the analyst.

21. Identify analytical issues by the P-Z scatter plot. To check for problems with

beta estimates, standard errors and P-values, create plots comparing P-values (on

the −log10 scale) calculated from a Z statistic (Z=β/SE(β)) with the P-values

directly provided by study partners. (Figure 3, Supplementary Figure 3). In

EasyQC, this can be done using the ‘PZPLOT’ function:

PZPLOT --colBeta BETA --colSe SE --colPval P

22. Check whether the points follow the identity line. In case any points clearly

deviate from the diagonal, consult study analyst (Figure 3, Anticipated Results).
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23. Identify problems with allele frequencies or strand. To check for strand and

allele frequency issues, plot the allele frequency of each SNP and for each file

against a reference allele frequency (one plot for each file) (Figure 4,

Supplementary Figure 4). For HapMap imputed GWAS data, plot allele

frequencies against publically available HapMap allele frequencies, which are

reported in the reference file ‘AlleleFreq_HapMap_CEU.v2.txt.gz’. For

genotyped Metabochip data, plot allele frequencies against publically available

1000 Genomes allele frequencies, which are reported in the reference file

‘AlleleFreq_1000G_EUR_Metabochip.v1.txt.gz’. In EasyQC, the AFCHECK

function can be used to create these plots (please replace [reffile] in the

following code with the respective reference file name):

AFCHECK --colInMarker ChrPosID

--colInStrand Strand

--colInA1 Effect_allele

--colInA2 Other_allele

--colInFreq EAF

--fileRef /path2reffiles/[reffile]

--colRefMarker ChrPosID

--colRefA1 A1

--colRefA2 A2

--colRefFreq Freq1

--blnMetalUseStrand 1

# Replace the path to the reference and the reference-file name at 

--fileRef

24. The frequencies should be distributed along the identity line. Check whether

there are patterns (see Figure 4, Anticipated Results) that indicate problems with

strand or allele frequencies. In case you observe such patterns, contact study

analyst to clarify the issue. To define the problem more precisely, it can be

helpful to provide the collaborator with a list of (i) outlying SNPs, i.e. SNPs

with allele frequencies that deviate >20% from the reference population, and (ii)

mismatching SNPs, i.e. SNPs with alleles that do not match the reference, e.g.

AC in study versus AT in reference population. The AFCHECK function

automatically saves the lists of outlying or mismatching SNPs to the output path

(files indicated by suffix ‘AFCHECK.outlier.txt’ and

‘AFCHECK.mismatch.txt’). In case of problems, it can also be helpful to check

the summary report variables indicated by ‘AFCHECK.[variablename]’

(Supplementary Table 2).

25. Identify population stratification. Calculate λGC for each study file – without

applying the GC correction at this stage – using all SNPs for imputed GWAS

data, and, for custom chip data, only a subset of SNPs that are not associated

with the outcome of interest. In GIANT, 4,425 QT-interval SNPs (defined in

‘QTSNPS_AEL_TW.txt’) were used to derive the λGC for typed Metabochip
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data. To get an overview of the λGC values across all studies and to identify

studies with high λGC, produce a plot of λGC values versus the maximum sample

sizes (Figure 5). In EasyQC, the calculation of the λGC and the plotting can be

done using the ‘GC’ and the ‘RPLOT’ function:

GC --colPval P

--blnSuppressCorrection 1

# --fileGcSnps /path2reffiles/QTSNPs_AEL_TW.txt

# --colInMarker ChrPosID

# --colGcSnpsMarker ChrPosID

# Uncomment last three parameters for Metabochip data

RPLOT --rcdRPlotX Nmax

--rcdRPlotY Lambda.P.GC

--arcdAdd2Plot abline(h=1,col='orange');abline(h=1.1,col='red')

--strAxes lim(0,NULL,0,NULL)

--strPlotName GC-PLOT

26. Examine the plot and check whether λGC is above 1.1 in any of the individual

studies. If this is the case, go back to the relevant study analyst to clarify

potential issues with population stratification, unaccounted relatedness or

duplicated samples included in the analyses (Figure 5, Anticipated Results). The

summary report table created by EasyQC might be helpful to identify studies

that exhibit high λGC (variable GC.P.Lambda, Supplementary Table 2).

Meta-analysis (Timing ~0.5 months)

27. Prepare scripts for an inverse variance-weighted meta-analysis using a fixed

effects model with METAL, as follows: For quality control, we recommend that

two analysts perform the meta-analysis independently. The two analysts should

ensure that the order in which the studies are read into METAL is the same,

because the first study defines the allele coding directions and the following

studies are compared with this study. We advise to run METAL using the

following column definitions and options in the METAL script:

# Input columns: MARKER ChrPosID

ALLELE Effect_allele Other_allele

EFFECT BETA

STDERRLABEL SE

FREQLABEL EAF

PVALUE P

STRAND Strand

CUSTOMVARIABLE N

LABEL N AS N

# Metal Options:
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SCHEME STDERR

WEIGHT N

USESTRAND ON

AVERAGEFREQ ON

MINMAXFREQ ON

VERBOSE OFF

GENOMICCONTROL ON

# GENOMICCONTROL LIST /path2reffiles/QTSNPs_AEL_TW.txt

# Use the latter for metabochip data!

PROCESS /path2cleanedfiles/CLEANED.study1.file1.txt.gz

PROCESS /path2cleanedfiles/CLEANED.study1.file2.txt.gz

# …

PROCESS /path2cleanedfiles/CLEANED.study1.fileM.txt.gz

PROCESS /path2cleanedfiles/CLEANED.study2.file1.txt.gz

# …

PROCESS /path2cleanedfiles/CLEANED.studyN.fileM.txt.gz

OUTFILE metalout .TBL

ANALYZE HETEROGENEITY

To correct for file-specific population stratification, ‘GENOMICCONTROL’

should be set to ‘ON’, as this will apply GC correction to each study file. For

Metabochip studies, the ‘GENOMICCONTROL LIST’ parameter can be used to

limit the calculation of the λGC to the subset of QT-interval SNPs. An alternative

to using METAL for the GC correction by study-file during the meta-analysis is

provided by the EasyQC function ‘GC’ (see the EasyQC manual provided on the

EasyQC website for further details). Implementation of this function can be

added to the file-level QC to correct study-specific standard errors and P-Values

in the same way METAL does. To add metrics that measure between-study

heterogeneity use the command ‘ANALYZE HETEROGENEITY’ at the end of

the METAL script file. We provide template METAL scripts, which include the

described options and commands (‘3_metaanalysis.metal’).

28. Perform the inverse variance-weighted meta-analysis and create a METAL log-

file by using the following command from the command line:

metal 3_metaanalysis.metal > metalout _log.txt

Meta-analysis QC (Timing ~ 1.5 months)

29. Compare results from two meta-analysts. For each of the two meta-analysis

results, calculate descriptive statistics of P-values and sample sizes (length,

number of missing values, minimum, maximum, median, mean and standard

deviation) and the meta-level λGC (again, restrict calculation of the λGC to QT-

interval SNPs for Metabochip results) and check the values for discrepancies. To

compare the meta-analyzed P-values directly, merge the two data sets, create a
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scatter-plot of P-values (on the -log10 scale) and calculate their Spearman

correlation coefficient. In EasyQC, the calculation of the statistics as well as the

merging of the data sets and the creation of the plot, can be done using the

following ‘EasyQC’ code:

DEFINE --acolIn MarkerName;P.value;N

--acolInClasses character;numeric;numeric

EASYIN --fileIn /path2metalresults/metalout.analyst1.TBL --

fileInTag A1

EASYIN --fileIn /path2metalresults/metalout.analyst1.TBL --

fileInTag A2

START EASYQC

EVALSTAT --colStat P.value

EVALSTAT --colStat N

GC --colPval P.value

--blnSuppressCorrection 1

#--fileGcSnps /path2reffiles/QTSNPs_AEL_TW.txt

#--colInMarker MarkerName

#--colGcSnpsMarker ChrPosID

# Uncomment last three parameters for metabochip data

MERGEEASYIN --colInMarker MarkerName

CALCULATE --rcdCalc 

cor(P.value.A1,P.value.A2,method="spearman",use="pairwise.complete.

obs")

--strCalcName corr_Pvals

SPLOT --rcdSPlotX -log10(P.value.A1)

--rcdSPlotY -log10(P.value.A2)

--arcdAdd2Plot abline(a=0,b=1,col='orange')

STOP EASYQC

The summary report table created by EasyQC contains the descriptive values,

the λGC as well as the correlation coefficient (Supplementary Table 3).

30. Examine the calculated values and the scatter plot to check for discrepancies

between the two meta-analysis results. All summary statistics should be

identical and the P-values should lie on the identity line. Most discrepancies

observed between meta-analysts are usually explained by different file

inclusions in the meta-analysis. To get a quick overview on the files included in

the meta-analysis of each analyst, run the R-script

‘4_metaanalysis_qc.compare_logfiles.r’. This action takes the two meta-

analysis log-files as inputs and creates a table that can be used to compare file

inclusions.

31. (OPTIONAL) Identify analytical issues by calculating the study-levelλGC. if

the verified and agreed-on meta-analysis result displays a large meta-level λGC
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(>1.1, check the λGC calculated by step 29), conduct one meta-analysis for each

study (e.g. pooling strata-specific files per study) and calculate the study-level

λGC. An inflated study-level λGC might pinpoint unaccounted relatedness or

overlap of samples across the strata of the study; it can also pinpoint errors as

simple as mis-naming the strata files (e.g. one file is labeled as men, the other as

women, but the men-file was uploaded twice). A substantial fraction of the

inflated meta-level λGC might be explained by such study-specific issues. In

EasyQC, the study-specific meta-analysis as well as the calculation of the study-

level λGC can be performed using the following EasyQC code:

DEFINE --acolIn ChrPosID;Effect_allele;Other_allele;BETA;SE

--acolInClasses character;character;character;numeric;numeric

EASYIN --fileIn /path2cleanedfiles/CLEANED.study1.file1.txt --

fileInTag 1

EASYIN --fileIn /path2cleanedfiles/CLEANED.study1.file2.txt --

fileInTag 2

START EASYQC

MERGEEASYIN --colInMarker ChrPosID

METAANALYSIS --acolBETAs BETA.1;BETA.2

--acolSEs SE.1;SE.2

--acolA1s Effect_allele.1;Effect_allele.2

--acolA2s Other_allele.1;Other_allele.2

--colOutBeta betaPooled

--colOutSe sePooled

--colOutP pPooled

GC --colPval pPooled

--blnSuppressCorrection 1

#--fileGcSnps /path2reffiles/QTSNPs_AEL_TW.txt

#--colInMarker ChrPosID

#--colGcSnpsMarker ChrPosID

# Uncomment last three parameters for metabochip data

STOP EASYQC

The summary report table created by EasyQC contains the study-level λGC.

32. Check the study-level λGC and consult the relevant study analyst in case of a

study-level λGC >1.1. If the study analyst then flags analytical errors, re-analysis

of the study data is needed and steps 7 – 32 have to be repeated for the affected

files.

33. Finalize the meta-analysis. After passing all meta-analysis quality checks,

upload the final meta-analysis results file to the ftp site and freeze the upload

directory (Supplementary Figure 1). Use the agreed-on result files to extract

significant SNPs, to create plots, e.g. Manhattan- or QQ-plots, and for further

evaluation. If a replication of the findings using independent follow-up data is
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planned, all steps of the Procedure can be repeated for the follow-up meta-

analysis.

TROUBLESHOOTING

Step 8: It is likely that data from some studies may have been uploaded in a format that

differs from the requested one. If the format of an input file does not match the requested

format, EasyQC stops with an error message before it starts to iterate over all input files.

Issues such as completely missing columns may require contacting the study analyst. Some

obvious problems, such as different column names (e.g. ‘Pvalue’ instead of ‘P’), different

column separators (e.g. ‘,’ instead of TAB) or missing characters (e.g. ‘NaN’ instead of ‘.’)

can instead be fixed by EasyQC directly (by overwriting the DEFINE parameters at the

respective EASYIN statement):

EASYIN --fileIn /home/fileWithDifferentFormat.txt

–-acolIn

MarkerName;Strand;Chr;Pos;N;Effect_allele;Other_allele;EAF;Information_type;I

nformation;BE

TA;SE;Pvalue

--acolInClasses

character;character;character;integer;integer;character;character;numeric;num

eric;numeric; numeric;numeric;numeric

–-acolNewName

MarkerName;Strand;Chr;Pos;N;Effect_allele;Other_allele;EAF;Information_type;I

nformation;BE

TA;SE;P

--strMissing NaN

--strSeparator COMMA

TIMING

The timing of the whole QC and GWAMA pipeline depends on the number of studies

involved and also on the experience of the analysts. The estimates reported below are based

on the assumption that an existing pipeline of QC and meta-analysis is available (as given by

this protocol). The original GIANT conduct and QC has taken longer due to the exploratory

nature of the effort. The estimates provided are realistic as they are given by experienced

meta-analysts. For a consortium of comparable size to GIANT’s, we estimate the timing of

each procedure step to be as follows:

Steps 1–3, Setting up logistics of meta-analysis: ~2 months

Steps 4–6, Collecting aggregated statistics per study: ~2 months

Steps 7–18, File-level QC: ~2 months

Steps 19–26, Meta-level QC: ~2 months

Steps 27–28, Meta-analysis: ~0.5 months
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Steps 29–32, Meta-analysis QC: ~1.5 months

ANTICIPATED RESULTS

Meta-level QC - Identification of analytical issues by the SE-N plot (Steps 19–20)

In the case of an inverse normal transformed phenotype, forcing the phenotype into the

Standard Normal distribution, N(0,1), the data points on the SE-N plot should tend to

describe a straight line on the diagonal, the identity line. Figure 2a illustrates a major

deviation of a cluster of GIANT studies from the identity for HIPadjBMI in the initial round

of meta-level QC.

To investigate the reason for this deviation, we surveyed the way each study analyst

performed the phenotype transformation. Whether the analyst adjusted the phenotype for

age, age2, study-specific covariates, and BMI by sex according to the analysis plan and then

subjected to the inverse Normal transformation, again separately by sex. This survey

revealed that the studies in the cluster above the identity line first (instead of last) applied

the inverse Normal transformation and then adjusted the phenotype for the covariates; a few

studies had done the adjustment and/or transformation in men and women combined

(instead of by sex), and separated the data by sex afterwards.

Subsequent explorations revealed that the SE-N plot identified this problem for phenotypes

adjusted for BMI (such as HIPadjBMI), but not the BMI-unadjusted phenotypes, since the

adjustment for BMI after the inverse Normal transformation had disrupted the N(0,1)

distribution of the phenotype (Supplementary Figure 2a). Further explorations revealed that

such type of trait transformation issue would result in a loss of power (QQ-plot,

Supplementary Figure 2b) and in estimates biased towards the null (Supplementary Figure

2c).

Other transformation errors that we were able to identify using the SE-N plot (not shown)

include (i) lack of inverse Normal transformation, (ii) the stratification by sex conducted

after the adjustment and inverse Normal transform, (iii) miscoded sample size (e.g. stating

full sample size rather than the sample size used for the analysis).

Meta-level QC - Identification of analytical issues by the P-Z scatter plot (Steps 21–22)

Occasionally, for a large proportion of SNPs, we observed a discrepancy between the P-

value reported by an analysis software and the P-value calculated manually from the Z

statistic based on the reported beta estimates and standard errors (Z=β/SE(β)). In the GIANT

Consortium, we observed such discrepancies caused by the “--score” option in the SNPtest

software. The P-Z plots can detect such issues (Figure 3a) and asking study analyst to re-

analyze the data, using the requested and (in our case) correct “--expected” option, resolved

these issues (Figure 3b). Panels of such plots for each file in the meta-analysis can provide a

quick overview across files and studies (Supplementary Figure 3).

Meta-level QC - Identification of problems with allele-frequencies or strand (Steps 23– 24)

Heterogeneity in allelic patterns may be observed when study allele frequencies are plotted

against a reference set, whether derived from HapMap, 1000 Genomes, or the meta-analysis

Winkler et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mean allele frequency. Figure 4 shows patterns observed in data submitted to the GIANT

Consortium. Deviations from the reference frequencies are expected for studies of different

ancestry and for studies that have incorrectly coded effect alleles, allele frequencies or

strand. Creating a panel displaying such plots for each study-file at once provides a quick

overview and can identify studies with any of the above issues (Supplementary Figure 4).

Meta-level QC - Identification of population stratification (Steps 25–26)

To detect studies with population substructure, the file-specific λGC versus the square root of

the sample size can be plotted (Figure 5). Study analysts with λGC >1.1 should be contacted

asking them for re-analysis, e.g. including principal components in their analysis model. The

EasyQC report may be of help to identify which studies exhibit a high λGC (Supplementary

Table 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BOX 1 – Study-specific GWAS results – Columns as requested by GIANT

Stated are the columns requested by GIANT from the study partners for each GWAS to

ensure uniform study-specific files:

“MarkerName” – character string; the SNP identifier of the marker analyzed.

“Strand” – a single character “−“ or “+”; Strand on which the allelles are reported.

“Chr” – character; Chromosome.

“Pos” – integer; Base position of the SNP.

“N” – positive integer; The effective number of subjects analyzed.

“Effect_allele” – a single upper case character “A”, “C”, “G”, or “T”; The allele

associated with phenotypic traits (corresponding to change in beta estimates).

“Other_allele” – a single upper-case character "A" "C" "G" or "T"; Indicating the

other (non-effect) allele.

“EAF” – numeric; Effect allele frequency (range 0–1).

“BETA” – numeric; Estimate of the effect size.

“SE” – numeric; Estimated standard error on the estimate of the effect size.

“P” – numeric; Significance of the variant association, uncorrected for genomic

control.

Only for genotyped data:

“P_HWE” – numeric; Exact HWE P-value for the sample analyzed.

“Callrate” – numeric; Call rate for this SNP across all subjects. Perfectly genotyped

(100%) data will have a Callrate = 1.000.

Only for imputed data:

“Information_type” – integer; Code indicating the type of data in the “Information”

column (i.e. the type of the imputation and analysis software used):

0 if the SNP was not tested using imputation/genotyping uncertainty, in which

case the following column “Information” should be missing (e.g. for directly

genotyped SNPs);

1 for a MACH imputed SNP, whereas the following column “Information”

either contains “r2_Hat” from MACH2DAT/MACH2QTL OR “INFO” from

PLINK (in case you have used PLINK for the association with MACH imputed

SNP data)

2 if the following column “Information” contains “proper_info” from

SNPTEST;

3 for a PLINK imputed SNP, i.e. the following column “Information” contains

“INFO” from PLINK (in case the SNP was imputed using PLINK as well)
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4 if the following “Information” column contains “rSqHat” from QUICKTEST.

“Information” – numeric; A value (range 0–1; PLINK values can exceed 1)

corresponding to the information content output from the association testing (according

to the data type specified in the "InformationType" column above).
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BOX 2 - Easy QC programming

Generally EasyQC is started by calling the EasyQC function at the R-prompt and with an

ecf-file as parameter:

> library(EasyQC)

> EasyQC(“/path2ecffile/examplescript.ecf”)

Every data input/output (I/O) and the conducted pipeline is defined in the ecf-file.

EasyQC’s ecf-files are modularized and each step can be conducted separately. An ecf-

file consists of two parts: (i) a header or config-section at the beginning that defines data

I/O using the DEFINE and EASYIN functions; followed by (ii) a scripting interface

which defines the QC steps being executed.

Structure of an ecf-file:

Header to define I/O:

[DEFINE, EASYIN]

Scripting interface with EasyQC function steps:

[CLEAN,GETNUM,ADDCOL …]

Several example scripts and templates that combine multiple steps described in this

protocol are available from our website http://www.genepi-regensburg.de/easyqc/.
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Figure 1. Workflow of the QC and the meta-analysis
A typical GWAMA includes four major stages: (i) The File-level QC (Steps 7–18) includes

the QC of each study file to ensure validity. This stage involves file cleaning (e.g.

adjustments of column headings, file format changes, SNP exclusions based on certain

criteria, or adding columns) and file checks (e.g. checking overall characteristics of the file

or the number of SNP exclusions), usually in an iterative fashion. Typically this task is

divided by study among analysts of the meta-analysis team. Files that pass the file-level QC

are labeled as “CLEANED”. Any issues observed with particular files should be clarified

with the respective study analyst directly. (ii) The Meta-level QC (Steps 19–26) addresses

the comparison of file-specific statistics across files in order to depict study-specific issues

yet undetected. In case issues of specific studies cannot be resolved centrally, the relevant

study analyst should be contacted for clarification.. (iii) Meta-analysis (Steps 27–28) is the

stage at which the meta-analysis is actually conducted, a task typically performed by two

analysts independently. (iv) Meta-analysis QC (Steps 29–32) involves the checking the

meta-analysis results and includes the comparison of the two meta-analyses performed by

the different analysts and the quality control of the meta-analysis result.
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Figure 2. SE-N plots to reveal issues with trait transformations
SE-N plots to detect issues with trait transformations contrasting the study-specific standard

errors with sample sizes for GIANT studies typed on Metabochip and tested for association

with HIPadjBMI (N=81,000): (a) before QC: a number of studies (in fact the majority of

studies) revealed errors by clustering above the identity line, and (b) after QC: the same plot

after having gone back to the relevant study analysts and having resolved all trait

transformation issues. Different colors for the points in the plot indicate men-specific (blue),

women-specific (red) or sex-combined (black) association results.
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Figure 3. P-Z plot to reveal analytical issues with beta, standard error and P-values
Plots to reveal issues with beta estimates, standard errors and P-values for (a) an uncleaned

study file showing severe deviations from the identity line and (b) the cleaned dataset

showing perfect concordance. The plots compare P-values reported in the association result

file to P-values calculated from Z statistics derived from the reported beta and standard error

from an example GIANT file. The uncleaned study file contained a large number of highly

significant but erroneous (reported) P values.
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Figure 4. Different patterns of allele frequencies in the EAF plot
These different patterns have been observed during the QC checks performed by the GIANT

analysts. In the graphs the observed (study-specific) allele frequencies reported on the y-axis

are plotted against the expected (HapMap or 1000 Genomes) allele frequencies, reported on

the x-axis. The plots (a)– (c) represent data from studies where allele frequencies and strand

annotation are correct but participants exhibit different ancestries compared to the reference,

which includes mostly samples of European ancestry: (a) study in which data are relatively

consistent with the reference; (b) study in which participants had slightly different ancestry

to the reference, resulting in a thicker band across the diagonal; (c) study involving
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participants of non-European ancestry resulting in substantial deviation from the reference.

Plots (d)–(h) pertain to studies with errors in coding the effect allele, the effect allele

frequency, and/or strand annotation: (d) a study in which the wrong allele was consistently

labeled as effect allele; (e) a study in which a fraction of the effect alleles was mis-specified,

e.g. from stating the MAF instead of the effect allele frequency, or from incorrectly

assigning strand due to data management or wrong strand reference (sometimes specific to

“palindromic” SNPs A/T or C/G); (f)–(h) all represent studies with other data management

or analytical errors in calculating the allele frequencies.
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Figure 5. Lambda-N plot to reveal issues with population stratification
Plot to detect issues with population stratification contrasting the study-specific λGCwith

sample sizes for GIANT studies typed on Metabochip and tested for association with

HIPadjBMI (N=81,000): (a) before QC: a number of studies displayed high λGC values, and

(b) after QC: the same plot after having gone back to study analyst and having resolved all

issues. The orange line indicates the optimal λGC=1. Dots above the red line, which

visualizes the threshold λGC=1.1, represent problematic studies.
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Table 3

SE-N Plot calibration factors for various genotyping platforms, imputation reference panels, and ethnicities.

Genotyping
Platform

Imputation
reference panel Ethnicity

Calibration
factor (c)

GWAS chip HapMap CEU 1.75

GWAS chip HapMap YRI 1.83

GWAS chip 1000 Genomes ALL 8.86

Metabochip - EUR 1.93

Metabochip - AFR 2.18

The calibration factors were estimated from the publically available HapMap and 1000 Genomes reference data. Only autosomal and non-
monomorphic SNPs were used in the estimation. The Metabochip c factors were estimated from 179,000 overlapping SNPs from 1000 Genomes
reference data frequencies.
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