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Copyright © 2014 H. Elçiçek et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning
agents. Dissolution of themineral is one of themost important processes for these industries. In this study, dissolution of colemanite
was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial
neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed,
solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental
dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs
has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method.
We conclude that ANNsmay be a preferred alternative approach instead of conventional statistical methods for prediction of boron
minerals.

1. Introduction

Natural resources play an immense role in creating the
country’s wealth and spurring economic growth, and they
have a significant impact on the human-social development
of countries [1, 2]. In addition, they play an effective role in
the developed countries’ technologies and level of prosperity,
provide employment, satisfy energy needs and services,
encourage subindustry and manufacturing, give regional
development prominence, and provide foreign exchange [3].
Turkey has very diverse natural mineral deposits because of
the loam and strategic position of its geographical features.
Except for the petroleum and coal, there are 53 exploitable
minerals and metals and 4,500 mineral deposits in Turkey
[4]. Among these minerals, undoubtedly boron is the most
important mineral in terms of mineral reserve and produc-
tion capacity in Turkey, which has approximately 72% of the
world’s boron reserves and by the end of 2007 has risen to the
first place in the boron market [5].

Boron is one of the most important elements in the
world due to its strategic and industrial value [6]. It is
frequently used in nuclear engineering, high-quality steels,
production of heat resistant polymers, cosmetic, leather,
ceramics, rubber, paint, textile, agricultural catalysts, and
in other industries [7, 8]. It is never found free in nature
but invariably occurs as the B

2
O
3
, in combination with the

oxides of other elements, forming borates of greater or lesser
complexity [9]. It is known that there are more than 230
boron types in theworld. Among theseminerals are commer-
cially important ones: tincal (Na

2
B
4
O
7
⋅10H
2
O), colemanite

(Ca
2
B
6
O
11
⋅5H
2
O), and ulexite (NaCaB

5
O
9
⋅8H
2
O) [10, 11].

Boron mineral products, which contain impurities, are
comprisedmostly of clays and other constituentminerals that
tend to be associated with clays [12]. Dissolution processes
are applied to overcome these negative effects or to obtain
product in industry.

Dissolution of the mineral is related to typical indus-
trial processes, such as those in hydrometallurgy, medicine,
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Table 1: Previous studies about dissolution kinetics of boron mineral.

No Author, year Mineral Solution Method Reference

1 Guliyev et al. (2012) Colemanite Potassium hydrogen sulphate Analytical
numerical

[8]

2 Guliyev et al. (2012) Colemanite Ammonium hydrogen sulphate Analytical
numerical

[22]

3 Demirkiran and Künkül (2011) Ulexite Ammonium carbonate Graphical [23]

4 Kuşlu et al. (2010) Ulexite Borax pentahydrate Nonlinear
regression

[10]

5 Çopur et al. (2010) Colemanite Water saturated with carbon dioxide Statistical [14]
6 Demirkiran (2009) Ulexite Ammonium nitrate Numerical [24]
7 Ekmekyapar et al. (2008) Ulexite Acetic acid Numerical [25]
8 Demirkiran (2008) Ulexite Ammonium acetate Statistical [20]
9 Alkan and Doǧan (2004) Colemanite Oxalic acid Statistical [21]

10 Okur et al. (2002) Colemanite Sulfuric acid Nonlinear
regression

[26]

11 In this study Colemanite Water saturated with carbon dioxide ANN

oceanography, crystallography, ceramics, and desalination.
On the other hand, it is also used for biological and environ-
mental precipitation processes [13].

Colemanite, which is one of the most important boron
minerals, is currently used on a large industrial scale. The
upswing in the demands for minerals will continue in the
years ahead as they are directly linked to rapid development
of the technology.The increasing demand and new industrial
use of boron compounds have increased their importance,
and these compounds have been used as raw material in
various areas of industry. There are numerous studies in the
literature about dissolution of boron in order to meet the
industry demands. Some of these studies are shown inTable 1.
Statistical and numerical methods were usually used to
determine dissolution kinetics in these studies.

Some obtainedmathematical models are given as follows:
Çopur et al. studied dissolution kinetics of colemanite in
water saturated with carbon dioxide solutions. They have
obtained a mathematical equation as follows by using statis-
tical method [14]:

𝑥 = 1 − exp( − 6890 × 𝑃

0.18
× 𝐾𝑆

−1.31

× 𝑇𝐵

−1.04 exp(−

2764

𝑇

) × 𝑧

0.47
) ,

(1)

where 𝑃,𝐾𝑆, 𝑇𝐵, 𝑇, and 𝑧 indicate total pressure, solid/liquid
ratio, particle size, temperature, and reaction time, respec-
tively. Guliyev et al. studied colemanite in potassium hydro-
gen sulphate solutions. They used heterogeneous reaction
models to determine the correlation between the dissolution

rate and the parameters. Model equation was determined
using both numerical and analytical methods as below [8]:

1 − 3(1 − 𝑥)

2/3
+ 2 (1 − 𝑥)

= 10.41 × 𝐶

1.01
× 𝑊

1.55
× 𝐷

−1.43

× (

𝑆

𝐿

)

−0.60

× exp(

−26.34

(𝑅𝑇)

) × 𝑡.

(2)

Kuşlu et al. investigated ulexite in borax pentahydrate
solutions. In order to determine a mathematical model, they
used integrated rate equations for the unreacted shrinking
coremodel applying nonlinear regression analysis.Themath-
ematical model was described as follows [10]:

1 − (1 − 𝑥)

1/3
= 9.725 × 10

5
× 𝐷

−0.8
× (

𝑆

𝐿

)

−0.8

× 𝑊

0.1 exp(

−42.525

(𝑅𝑇)

) × 𝑡.

(3)

In (2) and (3)𝐶,𝑊,𝐷, (𝑆/𝐿), and 𝑡 indicate concentration,
stirring speed, mean particle size, solid/liquid ratio, and
reaction time, respectively. 𝑥 was designated as dissolution
rate for all equations. However, there are some disadvantages
of using numerical and statistical methods:

(i) a large data set is necessary in order to obtain reliable
results,

(ii) prediction data cannot accord with experimental
data,

(iii) complex calculating is needed,
(iv) being time consuming.
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Table 2: The chemical characteristic of colemanite mineral and ranges of parameters.

Components Amounts (%) Parameters Ranges
B2O3 42.00 Pressure (bar) 5, 10, 15, 20
CaO 19.75 Temperature (K) 303, 313, 323, 333, 353, 383
H2O 18.20 Meanly particle size (𝜇m) 137.5, 213.5, 446, 563.5
SiO2 5.54 Solid-liquid ratio (g/mL) 0.10, 0.20, 0.25, 0.30, 0.35
As2S3 1.22 Stirring speed (rpm) 450, 500, 730
Other 13.22 Reaction time (min.) 2.5, 7.5, 15, 30, 40

Neural networks are one of the artificial intelligence tech-
niques. It is based on present understanding of the biological
nervous system and its ability to learn through example [15,
16]. Neural networks are used to solve the problems which
cannot bemodeled, in particular. A neural network can learn,
adapt, predict, and classify. Prediction of parameters capacity
of neural networks is very high. It provides more accurate
results than the conventional statistical methods for predic-
tion. Therefore, it has been used in different engineering
applications [16–19].

There is nearly no article in the scientific literature
specifically devoted to a study of an integrated prediction
of dissolution kinetics of boron minerals based on ANNs
(see Table 1). In general, in order to determine prediction of
dissolution kinetics boron mineral, conventional statistical
methods were used by authors [14, 20, 21].

In this study, an artificial neural network was developed
to predict dissolution kinetics of colemanite which was
determined using the feedforward backpropagation neural
network algorithm. ANNs performance was determined
by using different learning methods, activation function,
hidden layer, and neuron numbers to determine prediction of
dissolution rate. ANNs were trained using experimental data
[14]. Afterwards, prediction data was obtained from ANNs
in comparison with previous mathematical model [14] which
was formed using conventional prediction technique. ANNs
model has given more accurate results than mathematical
model.

This paper is organized as follows. In Section 2, the exper-
imental study and used method are presented. Designing of
an artificial neural network for prediction of dissolution rate
and simulationsmethod are considered in Section 3. Result of
the simulations is addressed in Section 4. Finally, conclusions
are presented in Section 5.

2. Material and Methods

2.1. Material. Dissolution processes were carried out by
using colemanite mineral which was obtained from real
boric acid plant (ETI Mine, Bandırma, Turkey). The samples
were crushed by a jaw crusher and sieved using ASTM
Standard sieves to obtain the following size fractions; 137.5,
213.5, 446, and 563.5 𝜇m. The chemical characteristics of
colemanite minerals, chosen parameters, and their ranges
used in experiments are shown in Table 2.

2.2. Methods. An artificial neural network was developed to
predict dissolution rate of colemanite in this study.Developed
neural network results were compared with a regression
based mathematical model which was obtained in a previous
study. This mathematical model was formed using a series of
experiments. Neural network was trained with data obtained
from these experiments.

Experiments were carried out in a reactor (Parr 4848
reactor controller—Parr pressure reactor—Figure 1) which
provides the temperature, pressure, stirring speed, and pH
control. The schematic diagrams of experimental setup are
shown in Figure 1. The solid prepared in accordance with the
certain solid/liquid ratio was put into the reactor and 200mL
distilled water was added onto it. The system was set into the
desired conditions and after the temperature of the reactor
content reached to the determined value, CO

2
gas was passed

through the reactor until the air inside went to the outside.
Later the gas outlet valve was closed and after the pressure
value was adjusted to the desired level, the experiments were
started.

At the end of the reaction, solutions were filtered by
using a blue band filter and B

2
O
3
, Na+, and Ca2+ analyses

were measured in permeate by using volumetric method and
flame photometry, respectively. The mole fractions of B

2
O
3
,

Na
2
O, andCaOpassing into the solution fromulexitemineral

were calculated by formulas given in (4), where 𝑥 designates
quantity dissolution and 𝑖 shows the soluble compound:

𝑥

𝑖
=

Amount of (𝑖) passing into the solution
Amount of (𝑖) in original sample

. (4)

3. Designing of an Artificial Neural Network
for Prediction of Dissolution Rate

Artificial neural networks are computational systems that
simulate themicrostructure (neurons) of a biological nervous
system. The most basic components of ANNs are modeled
after the structure of the brain, and therefore even the
terminology is borrowed from neuroscience [27]. ANNs
consist of a large number of processing elements with their
interconnections. They are essentially parallel computing
systems similar to biological neural networks [28] called neu-
rons, with each layer being fully connected to the proceeding
layer by interconnection fully connected to the proceeding
layer by interconnection strengths or weights [16].
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Figure 1: Schematic diagram of the experimental setup.
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Figure 2: A typical four-layer feedforward ANN.

ANNs are widely used to approximate complex systems
that are difficult to model using conventional modeling
techniques, such as mathematical modeling. There is no a
certain method for selection of proper ANNs structure and
training algorithm. The best solution is obtained by trial
and error. On the other hand, the neural networks have
a high prediction capability. Therefore a neural network,
which has multilayer feedforward structure with two hidden
layers, was designed (see Figure 2). Pressure, temperature,
particle size of colemanite, solid liquid ratio, reaction time,
and stirring speed are inputs of ANNs structure. The ANN

was trained by using multilayer perceptron (MLP) networks.
Backpropagation (BP) algorithm is the typical means of
adjusting the weights and biases to obtain minimum the
mean square error between the target and the network
output by using a gradient descent algorithm [17, 29, 30].
Backpropagation gradient descent to minimize the target
error, which is approximated in the vector space created by
the weights and biases [31, 32].

In order to implement learning algorithm, each iteration
of training includes the following procedures.

(1) Set the initial values of weights 𝑊
𝑖𝑗
and 𝑊

𝑗𝑘
.
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(2)Compute the outputs for all neurons and layer, starting
with the input layer as shown below:

net
𝑗
=

𝐼

∑

𝑖=1

𝑊

𝑖𝑗
𝑋

𝑖
, 𝑗 = 1, 2, . . . , 𝐽 − 1, 𝑖 = 1, 2, . . . , 𝐼,

output
𝑗
= 𝑓 (net

𝑗
) ,

net
𝑘
=

𝐽

∑

𝑗=1

𝑊

𝑗𝑘
𝑌

𝑗
, 𝑗 = 1, 2, . . . , 𝐽 − 1, 𝑘 = 1, 2, . . . , 𝐾,

output
𝑘
= 𝑓 (net

𝑘
) ,

(5)

where 𝑊

𝑖𝑗
is the weight between the input neurons and the

hidden neurons, 𝑊
𝑗𝑘

is the weight between the hidden and
the output nodes, 𝑋

𝑖
is the value of the input which consists

of pressure, temperature, particle size of colemanite, solid
liquid ratio, reaction time, and stirring speed, 𝐼 is the number
of inputs of neuron 𝑖 in the hidden layer, output

𝑗
is the

value of the output for hidden nodes, 𝑗 is the number of
neurons of the hidden layer, 𝐽 is the number of inputs of
neuron 𝑘 in the output layer, output

𝑘
is the output signals

(dissolution of colemanite), and 𝑘 is the number of neurons
of the output layer. In order to convert the input signals to
the output signals, sigmoid transfer function can be used in
ANN. Sigmoid transfer function formula is given below:

𝑓 (𝑥) =

1

1 + 𝑒

−net . (6)

(3) Compute the error. In order to determine ANN per-
formance, root mean square errors (RMSE), mean absolute
errors (MAE), and coefficient of correlation (𝑅2) parameters
were used. These are defined as

RMSE =
√

1

𝑁

𝑁

∑

𝑖=1

(𝑌

𝑖observed − 𝑌

𝑖estimate)
2

,

MAE =

1

𝑁

𝑁

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑌

𝑖observed − 𝑌

𝑖estimate
󵄨

󵄨

󵄨

󵄨

,

𝑅

2
= (

𝑁

∑

𝑖=1

(𝑌

𝑖observed − 𝑌

𝑖observed)
2

−

𝑁

∑

𝑖=1

(𝑌

𝑖observed − 𝑌

𝑖predicted)
2

)

× (

𝑁

∑

𝑖=1

(𝑌

𝑖observed − 𝑌

𝑖observed)
2

)

−1

,

(7)

where, 𝑌measured is the mean of the measured data
[𝑌measured, 𝑖]. RMSE measures residual errors that give a
global idea of the difference between the observed and
modeled values. And 𝑅

2 provides the variability measure of
the data reproduced in the model. 𝑌

𝑖observed is the average of
𝑌observed, 𝑖.

(4) The number of iterations is determined according
to minimum value of the error function. When the error
function reaches to sufficient value, iteration is stopped.

(5) Learning error computed for every neuron in all
layers:

𝛿

𝑘
= (𝑑

𝑘
− 𝑎

𝑘
) 𝑓

󸀠
(output

𝑘
) , 𝑘 = 1, 2, . . . , 𝐾,

𝛿

𝑗
=

𝐾

∑

𝑘=1

𝑊

𝑗𝑘
𝛿

𝑘
𝑓

󸀠
(output

𝑗
) ,

𝑗 = 1, 2, . . . , 𝐽 − 1, 𝑘 = 1, 2, . . . , 𝐾,

(8)

where 𝐾 represents the total number of patterns, 𝛿

𝑘
the

desired outputs (experimental data) and 𝑎

𝑘
the actual outputs.

(6) Update weights along negative gradient of error:

𝑊

𝑖𝑗
(𝑛 + 1) = 𝑊

𝑖𝑗
(𝑛) + 𝑙

𝑟
𝛿

𝑘
output

𝑗

+ 𝛼 (𝑊

𝑖𝑗
(𝑛) − 𝑊

𝑖𝑗
(𝑛 − 1)) ,

𝑊

𝑗𝑘
(𝑛 + 1) = 𝑊

𝑗𝑘
(𝑛) + 𝑙

𝑟
𝛿

𝑗
output

𝑘

+ 𝛼 (𝑊

𝑗𝑘
(𝑛) − 𝑊

𝑗𝑘
(𝑛 − 1)) ,

(9)

where 𝑙

𝑟
is the learning rate, 𝛼 is the momentum, and 𝑛 is the

learning cycle.
(7) These procedures are repeated until the desired value

of error.
All calculationswere performedwith software.Theneural

network structure is shown in Figure 2. In this figure, 𝑖, 𝑗,
𝑘, and 𝑚 denote nodes input layer, hidden layer, and output
layer, respectively. Weight of the nodes is referred to as 𝑤.
Subscripts specify the connections between the nodes. For
example, 𝑤

𝑖𝑗
is the weight between nodes 𝑖 and 𝑗. The data

were randomized and divided into two parts, training and
testing. After the randomizing process, 65 data were used for
training and 20 datawere used for testing. Before applying the
ANNs to the data, the training input and output values were
normalized using the equation:

𝑎

𝑥

𝑖
− 𝑥min

𝑥max − 𝑥min
+ 𝑏, (10)

where 𝑥min and 𝑥max symbolize the minimum andmaximum
of the data. Different values can be assigned for the scaling
factors 𝑎 and 𝑏.There are no fixed rules as to which standard-
ization approach should be used in particular circumstances.
This range [0.2, 0.8] increases the extrapolation ability of the
ANN models. Therefore, these factors were assigned as 0.6
and 0.2, respectively [16].

In order to determine the best BP training algorithm,
Bayesian regulation, BFGS quasi-Newton methods, and
Levenberg-Marquardt (LM) algorithm with one and two
hidden layerswere trained and validated. Additionally, logsig,
tansig, and radbas were used to find the best ANN transfer
function. Different combinations of ANN structures with one
or two hidden layers are tested in terms of iterations.

The following factors are employed during the training
design: constant learning rate, constant moment, and learn-
ing cycles. Weights and bias values have been iteratively
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Table 3: Comparison of various backpropagation algorithms using different transfer function (test).

Training function Transfer function One hidden layer Two hidden layers
𝑅

2 RMSE MAE 𝑅

2 RMSE MAE
LM backpropagation tansig 0.9933 0.0121 0.0099 0.819 0.0641 0.0374
LM backpropagation logsig 0.9921 0.0135 0.0110 0.9975 0.0073 0.0061
LM backpropagation radbas 0.4391 0.1320 0.0990 0.5056 0.4184 0.3963
Bayesian regulation backpropagation tansig 0.9945 0.0113 0.0091 0.9938 0.0120 0.0098
Bayesian regulation backpropagation logsig 0.9854 0.0167 0.0133 0.9951 0.0102 0.0081
Bayesian regulation backpropagation radbas 0.9946 0.0117 0.0101 0.9965 0.0090 0.0069
BFGS quasi-Newton backpropagation tansig 0.9876 0.0167 0.0116 0.9909 0.0136 0.0120
BFGS quasi-Newton backpropagation logsig 0.9839 0.0189 0.0116 0.9882 0.0150 0.0128
BFGS quasi-Newton backpropagation radbas 0.0724 0.2041 0.0981 0.5832 0.1397 0.0688

0 100 200 300 400 500 600

M
SE

Epochs

Train
Best
Goal

100

10−2

10−4

10−6

Figure 3: The training error graph for the ANN models.

renewed using the various algorithms to minimize the RMSE
between the network output and the target output. These
parameters should be preferred to be as small as possible
to obtain a best performance from ANN models, since the
algorithm goes unstable [31–34].

The ANN networks training was stopped after 625 learn-
ing cycles (epochs) since the variation of error was too
small after this epoch. MSE is shown in Figure 3 according
to epoch. The training was realized using the following
parameters:

(i) constant learning rate = 0.01,
(ii) constant momentum factor = 0.9,
(iii) mean-square error target = 10−6.

4. Results and Discussion

Theperformance comparison of BP algorithms in dissolution
kinetics of colemanite mineral in water saturated with CO

2
is

given in Table 3.The different structures of ANNmodels and
their outputs are given in Table 3. The performance of ANN
outputs for eachmodel was evaluated using three parameters:
mean absolute error (MAE), the coefficient of correlation
(𝑅2), and root mean square errors (RMSE). As can be seen

Input layer

Hidden layer

Output layer

X1

Y

X2

X3

X4

X5

X6

X1 = pressure (bar)
X2 = temperature (K)
X3 = practical size (𝜇m)
X4 = solid/liquid ratio (g/m)

X5 = stirring speed (rpm)
X6 = reaction time (min)
Y = dissolution rate (%)

Figure 4: The optimum ANNmodel structure.

fromTable 3, LMbackpropagation and logsig with two hidden
layers aremore suitable as training and transfer function than
others.

The test RMSE statistics of the ANN models are given
in Table 4. The best result for minimum RMSE was selected.
In this table, 𝑌 and 𝑋 represent the number of neurons in
the first and second hidden layers, respectively. As can be
seen from this table, the ANN model which has 7 neurons
in the first hidden layer and 4 neurons in the second hidden
layer has the lowest RMSE (0.0073), MAE (0.0061), and the
highest 𝑅

2 (0.9975) value in test period. According to this
result optimum ANN model was determined and structure
of it is shown in Figure 4.
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Table 4: The RMSE statistics of the ANN models in testing for two hidden layers.

𝑋

∗ 1 2 3 4 5
𝑌

∗ RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2

1 0.0320 0.0245 0.962 0.0319 0.0245 0.9616 0.0629 0.0486 0.7928 0.0469 0.0312 0.8822 0.0477 0.0323 0.8852
2 0.0187 0.0168 0.9814 0.0236 0.0186 0.97 0.4184 0.3963 NaN 0.0171 0.014 0.9868 0.0191 0.0127 0.9801
3 0.0229 0.0151 0.9836 0.0154 0.0121 0.987 0.0129 0.0101 0.9939 0.1442 0.0456 0.195 0.0179 0.0157 0.9828
4 0.0268 0.0215 0.9609 0.0107 0.0089 0.9945 0.0322 0.0222 0.943 0.0902 0.0366 0.592 0.0219 0.0144 0.9749
5 0.0143 0.0114 0.9905 0.0105 0.0082 0.9961 0.0228 0.0174 0.9714 0.0249 0.0175 0.9717 0.0277 0.0183 0.9588
6 0.0147 0.01 0.989 0.0142 0.0106 0.9923 0.0285 0.0145 0.9627 0.0217 0.0158 0.9811 0.022 0.0161 0.98
7 0.0286 0.0147 0.9601 0.017 0.0135 0.9852 0.0156 0.0093 0.9893 0.0073 0.0061 0.9975 0.0159 0.0133 0.9904
8 0.0177 0.0118 0.9836 0.0281 0.0188 0.9565 0.0889 0.048 0.8232 0.0219 0.015 0.9809 0.07 0.037 0.7685
9 0.0282 0.0213 0.9632 0.0313 0.0194 0.9495 0.0263 0.0168 0.9831 0.0575 0.0464 0.8877 0.0275 0.0192 0.9686
10 0.0226 0.0171 0.9729 0.0533 0.0352 0.8669 0.0418 0.0192 0.9618 0.0193 0.0132 0.9874 0.0179 0.0134 0.9826
𝑋

∗ 6 7 8 9 10
𝑌

∗ RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2 RMSE MAE 𝑅

2

1 0.0716 0.0436 0.8371 0.0712 0.0447 0.8416 0.0544 0.0452 0.8401 0.0449 0.0325 0.8908 0.044 0.0355 0.8941
2 0.0387 0.0258 0.9375 0.1006 0.0349 0.5589 0.0757 0.0508 0.861 0.0904 0.0536 0.6878 0.1476 0.0808 0.3663
3 0.1158 0.0432 0.6194 0.0459 0.0268 0.9042 0.0193 0.0151 0.9813 0.0301 0.0222 0.9503 0.1174 0.0814 0.4844
4 0.0385 0.0244 0.9406 0.1053 0.0548 0.8877 0.0779 0.035 0.7952 0.1249 0.0671 0.5727 0.0387 0.0254 0.9448
5 0.0684 0.0385 0.7699 0.0157 0.0129 0.9885 0.0145 0.0116 0.9905 0.4184 0.3963 0.0723 0.0298 0.0166 0.9697
6 0.0352 0.0235 0.939 0.0908 0.0489 0.8513 0.1306 0.0529 0.5611 0.0435 0.0187 0.9046 0.0291 0.0225 0.9597
7 0.0307 0.0188 0.9514 0.0136 0.0118 0.9925 0.0497 0.0223 0.8686 0.0365 0.0236 0.9419 0.0129 0.0102 0.9926
8 0.0162 0.012 0.9874 0.0368 0.0273 0.9329 0.0349 0.0257 0.9443 0.0279 0.0185 0.9744 0.0154 0.0131 0.9874
9 0.0436 0.029 0.8985 0.0462 0.0304 0.9288 0.0458 0.024 0.892 0.0225 0.0184 0.9732 0.039 0.0308 0.9325
10 0.0318 0.0195 0.9712 0.0424 0.02 0.9675 0.0275 0.0185 0.9594 0.0243 0.0186 0.9696 0.051 0.0225 0.8714
∗

𝑋: number of nodes in the second hidden layer. 𝑌: number of nodes in the first hidden layer.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Training data

D
iss

ol
ut

io
n 

ra
te

Experimental
ANN

Figure 5: Comparison of ANN and experimental results for the
training results.

The performance of neural networks for training is shown
in Figure 5. As can be seen from this figure ANNs results per-
fectly follow experimental results.The network was evaluated
by comparing its predicted output values with experimental
data which was shown in Figure 6. As it is seen in the figure
the experimental data were found to be compatible with
ANNs output. The maximum residual between the experi-
mental data and ann output was determined to be around
0.0017 for training dataset. The residual characteristics have
a decreasing trend. After training the neural network, test
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Figure 6: Residuals between ANN and experimental data for
training data.

performance was checked. The performance of test was
shown in Figure 7. Figure 7 also shows an analysis between
the network outputs (estimations) and the corresponding
targets (observed data) for the test data set. It is obvious that
the predicted values from the trained neural network outputs
catch the targets well. Residuals between testing and experi-
mental data were shown in Figure 8. The maximum residual
between estimations and observed data is determined about
0.002 for testing dataset.

Çopur et al. used heterogeneous reactionmodels in order
to determine dissolution kinetics.They obtained amathemat-
ical model by using numerical methods based on regression
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Figure 7: Comparison of ANN and experimental results for the
testing results.
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Figure 8: Residual between ANN and experimental for testing data.
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Figure 9: Comparison experimental, mathematical, and ANN for
test input.

method. This model is given in (1). The dissolution rate was
calculated using ANN test inputs with (1). Experimental,
mathematical, and ANN results were compared. Results were
shown in Figure 9. According to Figure 9 developed ANN
results are closer to experimental data than the mathematical
model results obtained from numerical methods. As is obvi-
ous from Figure 9 ANN gives better results than numerical
methods.

5. Conclusion

The work presented here has demonstrated that ANN can
be successfully employed to predict dissolution kinetics of
colemanite mineral. In order to develop ANN models, total
pressure, reaction temperature, particle size, solid/liquid
ratio, and stirring speed parameters were used as input
parameters and dissolution rate as the output. Experimental
dataset was used to train multilayer perceptron (MLP) net-
works to allow for prediction of dissolution kinetics. So as to
obtainmost suitable prediction data, different learningmeth-
ods, activation function, hidden layer, and neuron numbers
were used. Levenberg-Marquardt backpropagation algorithm
and Log-sigmoid (logsig) with two hidden layers were deter-
mined as training and transfer function. Also, ANN structure
is comprised of 6 input neurons, 7 first hidden, 4 second
hidden, and one output layers. This structure has the lowest
RMSE (0.0073) and the highest 𝑅2 (0.9975) values.

Developed ANN has given highly accurate predictions
in comparison with an obtained mathematical model used
through regression method. We conclude that ANN may be
preferred as an alternative approach instead of conventional
statistical methods for prediction of boron minerals. The
prediction of dissolution kinetics can be obtained using with
ANN quickly and accurately.
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of colemanite in ammonium hydrogen sulphate solutions,”
Journal of Industrial and Engineering Chemistry, vol. 18, no. 4,
pp. 1202–1207, 2012.

[23] N. Demirkiran and A. Künkül, “Dissolution of ulexite in
ammonium carbonate solutions,” Theoretical Foundations of
Chemical Engineering, vol. 45, no. 1, pp. 114–119, 2011.

[24] N. Demirkiran, “Dissolution kinetics of ulexite in ammonium
nitrate solutions,”Hydrometallurgy, vol. 95, no. 3-4, pp. 198–202,
2009.

[25] A. Ekmekyapar, N. Demirkiran, and A. Künkül, “Dissolution
kinetics of ulexite in acetic acid solutions,”Chemical Engineering
Research and Design, vol. 86, no. 9, pp. 1011–1016, 2008.

[26] H. Okur, T. Tekin, A. K. Ozer, and M. Bayramoglu, “Effect of
ultrasound on the dissolution of colemanite in H

2
SO
4
,”

Hydrometallurgy, vol. 67, no. 1–3, pp. 79–86, 2002.
[27] Z. Zhang and K. Friedrich, “Artificial neural networks applied

to polymer composites: a review,” Composites Science and
Technology, vol. 63, no. 14, pp. 2029–2044, 2003.

[28] E. Dogan, B. Sengorur, and R. Koklu, “Modeling biological
oxygen demand of the Melen River in Turkey using an artificial
neural network technique,” Journal of Environmental Manage-
ment, vol. 90, no. 2, pp. 1229–1235, 2009.

[29] J. Eynard, S. Grieu, and M. Polit, “Wavelet-based multi-
resolution analysis and artificial neural networks for forecasting
temperature and thermal power consumption,” Engineering
Applications of Artificial Intelligence, vol. 24, no. 3, pp. 501–516,
2011.

[30] G.-Z. Quan, C.-T. Yu, Y.-Y. Liu, and Y.-F. Xia, “A comparative
study on improved arrhenius-type and artificial neural net-
work models to predict high-temperature flow behaviors in
20MnNiMo alloy,”TheScientificWorld Journal, vol. 2014, Article
ID 108492, 12 pages, 2014.

[31] E. M. Bezerra, M. S. Bento, J. A. F. F. Rocco, K. Iha, V. L.
Lourenço, and L. C. Pardini, “Artificial neural network (ANN)
prediction of kinetic parameters of (CRFC) composites,” Com-
putational Materials Science, vol. 44, no. 2, pp. 656–663, 2008.

[32] A. M. Zain, H. Haron, and S. Sharif, “Prediction of surface
roughness in the end milling machining using artificial neural
network,” Expert Systems with Applications, vol. 37, no. 2, pp.
1755–1768, 2010.

[33] K. Tsagkaris, A. Katidiotis, and P. Demestichas, “Neural net-
work-based learning schemes for cognitive radio systems,”
Computer Communications, vol. 31, no. 14, pp. 3394–3404, 2008.

[34] E. F. Fernández, F. Almonacid, N. Sarmah, P. Rodrigo, T. K.
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