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Centrosomes are highly dynamic, spherical organelles without a
membrane. Their physical nature and their assembly are not
understood. Using the concept of phase separation, we propose
a theoretical description of centrosomes as liquid droplets. In our
model, centrosome material occurs in a form soluble in the cytosol
and a form that tends to undergo phase separation from the
cytosol. We show that an autocatalytic chemical transition be-
tween these forms accounts for the temporal evolution observed
in experiments. Interestingly, the nucleation of centrosomes can
be controlled by an enzymatic activity of the centrioles, which are
present at the core of all centrosomes. This nonequilibrium feature
also allows for multiple stable centrosomes, a situation that is
unstable in equilibrium phase separation. Our theory explains the
growth dynamics of centrosomes for all cell sizes down to the
eight-cell stage of the Caenorhabditis elegans embryo, and it also
accounts for data acquired in experiments with aberrant numbers
of centrosomes and altered cell volumes. Furthermore, the model
can describe unequal centrosome sizes observed in cells with per-
turbed centrioles. We also propose an interpretation of the molec-
ular details of the involved proteins in the case of C. elegans. Our
example suggests a general picture of the organization of mem-
braneless organelles.

How cells organize their interior is still an open question (1).
For instance, the size, the count, and the position of cellular

substructures must be controlled to ensure proper function.
Indeed, the size of many cell organelles, such as the mitotic
spindle, centrosomes, and the nucleus, is correlated with cell
size, bringing up the question of how cells both determine and
adjust the size of their substructures (2, 3). An interesting situ-
ation arises in the case of non–membrane-bound organelles, e.g.,
the mitotic spindle, Cajal bodies, or germ granules, where the
flux of material across the interface between the organelle and
the cytosol is not controlled by an enclosing membrane (4, 5).
Instead, these structures often consist of many different com-
ponents exchanging quickly with the surrounding cytosol, while
maintaining a well-defined spatial organization. This turnover
suggests that elastic stresses can relax and are thus unimportant
for dynamics on long time scales, which is a characteristic
property of complex fluids. In the case of germ granules it has
been shown that their behavior can be explained by considering
them as liquid droplets (6). Other cell organelles are also good
candidates for a description as drop-like objects (4). In the case
of metaphase spindles, a theoretical description based on liquid
crystal properties led to predictions of spindle size as a function of
kinetic parameters that was confirmed experimentally (7).
Centrosomes are examples of organelles without a membrane

that can occur in varying sizes. However, the mechanisms regu-
lating their size and their growth kinetics are not understood (8).
Centrosomes play a key role in organizing the microtubule net-
work of the cell, most notably the mitotic spindle during cell
division (9). In particular, it has been shown that in the nema-
tode Caenorhabditis elegans, centrosome size directly sets the
length of the mitotic spindle (10). Generally, centrosomes consist
of a pair of centrioles embedded in a matrix of pericentriolar
material (PCM). This structure has a dynamic life cycle in cells:

Centrioles are duplicated (11, 12) and two centrosomes grow by
accumulating PCM to organize the mitotic spindle. After ana-
phase, centrosomes disassemble and each daughter cell inherits
one pair of centrioles after cell division. The proteins required
for this centrosome cycle are known (13) and at least one of
them was shown to be limiting for centrosome size in C. elegans
(14). Furthermore, the centrioles also influence the assembly of
PCM (15), many centrosome proteins turn over quickly (8), and
the PCM is permeable and permits the diffusion of a number of
proteins (16).
The nucleation and growth of centrosomes has been thor-

oughly examined in the early divisions in C. elegans embryos (14).
Here, as in all systems, centrosome growth always begins at
centriole pairs. Because there are only two centriole pairs, there
are only two centrosomes in a cell. After nucleation, centro-
some size follows a sigmoidal growth curve (14). Importantly,
the growth rate and the final centrosome size depend on the size
of the cell. In the divisions of early C. elegans embryos, all ma-
terial has been provided by the mother, and no new material is
made during the course of cell divisions (17). Therefore, the
same components are reused in subsequent divisions by a process
of growth and disassembly. This has led to the hypothesis that
centrosome size is determined by a limiting component that
is depleted from the cytosol as centrosomes grow (14). Cen-
trosomes then disassemble at the end of cell division and the
components are available for the next cell cycle. Centrosome
formation has all the hallmarks of a nucleation and growth
process, but currently the physical nature of the centrosome and
its dynamics are not understood (8). Centrosomes are complex
objects that consist of many components. However, only a few
components are required for their formation (13), which allows
us to seek for a simplified, minimal description to highlight es-
sential properties. In general, any theory of centrosome growth
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must explain the following key features: (i) Nucleation at cen-
trioles must be extremely reliable. Thus, there must be a mech-
anism to suppress nucleation in the cytosol, whereas nucleation
at the centrioles must be guaranteed. (ii) The sigmoidal growth
curve must be accounted for. (iii) The coexisting centrosomes
must be stable, spherical, and of similar size, whereas compo-
nents can both exchange with the cytosol and internally rear-
range. (iv) The size of the centrosome must depend on cell size.
In this paper, we develop a physical description that can quan-
titatively account for these centrosome properties.

Physical Description of Centrosomes as Active Droplets
Centrosome growth is an aggregation process of a condensed
phase of PCM components, which segregate from the cytosol.
The aggregation process leads to a centrosome phase that coexists
with the cytosol and does rearrange internally. This implies
that the centrosome phase is viscoelastic, such that on long time-
scales it behaves as a liquid-like material. Thus, in our picture,
centrosome material phase separates from the cytosol. Because
centrosome growth requires kinase activity (14), the most likely
scenario is that two phosphorylation states of PCM components
have different assembly properties (Fig. 1). The phosphorylation
reaction permits the cell to regulate assembly and disassembly
of centrosomes. We propose a simplified model of centrosome
assembly based on the idea that PCM is made of subunits that
can exist in two different forms: (i) building blocks that dissolve
in the cytosol (we call this form A) and (ii) droplet material that
phase separates from the cytosol and produces centrosomes (we
call this form B). In the case of C. elegans centrosomes, these two
forms could be related to different conformations of the same
structural protein, e.g., spindle defect protein-5 (SPD-5). Phos-
phorylation mediated by kinases like PLK-1 could then change

the conformation of the structural protein and thereby in-
fluence its physical properties (Fig. 1).
An important question is to understand why centrosome ma-

terial aggregates only around centrioles. This implies that the
centrioles act as a nucleator and at the same time spontaneous
nucleation in the cytosol is suppressed. Either the centrioles
could act as a passive nucleator in a so-called heterogeneous
nucleation while the chemical transition from form A to form
B happens away from the centrioles or the centrioles them-
selves could act as an active nucleator by catalyzing the chemical
transition from A to B. To address such questions, we next de-
velop the basic physical equations for centrosome assembly in-
volving diffusion, chemical transitions, and phase separation.

Reaction–Diffusion Kinetics. We first consider the diffusion of the
forms A and B of PCM components. The local composition of
the cytosol and the droplets is characterized by the volume
fractions ϕA of soluble building blocks and ϕB of droplet mate-
rial. The components can diffuse and undergo chemical reac-
tions in the cytosol and in the droplets. The droplets are
separated from the cytosol by an interface region, which for
simplicity we consider to be infinitely thin and describe sepa-
rately. The diffusion constants DA and DB of the two forms may
then in general differ between the droplets and the cytosol. The
diffusion and the chemical transitions can be described by
reaction–diffusion equations,

∂tϕA =DA∇2ϕA − s [1a]

∂tϕB =DB∇2ϕB + s; [1b]

which are valid both inside and outside of droplets, but not at the
interface between droplets and cytosol (see below). Here, the
chemical reactions A ⇌ B, which convert the material between
form A and form B, are quantified by the rate s. This rate
depends on the local composition and enters as a sink in Eq.
1a and as a source in Eq. 1b. We propose the simple form of the
bulk reaction terms

s= kABϕA − kBAϕB + kϕBϕA; [2]

where kAB and kBA are the rate constants for the first-order
reactions A → B and B → A, respectively. The coefficient k in
the last term describes the bimolecular reaction A + B → 2B.
This accounts for a possible autocatalytic mechanism, where the
presence of droplet material B catalyzes its own production from
form A. Note that the autocatalytic reaction will typically dom-
inate inside the droplet, where the form B is enriched. Eq. 2
contains the lowest-order contributions of reactions that can ac-
count for droplet growth.
The reaction–diffusion equations cause diffusive fluxes, which

can be discussed most easily in a spherical symmetry around the
centriole pair, where the volume fractions depend on the radial
distance r. In this case, the total volume flux of form i passing
a spherical shell at distance r is given by

JiðrÞ=−4πr2Di∂rϕiðrÞ; [3]

where Ji has units of volume per time and i = A, B.
The effect of the centriole pair is to introduce a boundary

condition at r = a, where a is the radius of the sphere repre-
senting the centriole pair. We set a = 75 nm, which is half the
length of a single centriole (12). If centrioles play only a passive
role, we would impose no-flux boundary conditions on their
surface. However, motivated by the fact that the structure of the
centrioles can influence centrosome size (15), we propose that
centrioles can also produce droplet material; i.e., they catalyze

Fig. 1. Representation of a centrosome consisting of centrioles (blue) sur-
rounded by a dense phase (orange) of PCM. In our model, the PCM com-
ponents exist in two conformations: a form A that dissolves in the cytosol
(globular shape) and a form B that segregates from the cytosol in a droplet
phase (elongated shape). The dynamics of the system are governed by dif-
fusion of the components and transitions between the A and B forms in the
bulk and at the centrioles. (Lower Right) Phosphorylating the PCM compo-
nents (open white circles becoming solid black circles) could induce a con-
formational change, which exposes binding sites (dark red patches). (Lower
Left) Schematic representation of a cell with two centrosomes.
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the chemical reaction A→ B in our model. This reaction induced
by the centrioles is quantified by the total volume per unit time
of PCM components that is converted from form A to form B.
We write this flux as QϕA(a), which implies a first-order reaction
at the centrioles, where the coefficient Q describes the centriolar
enzymatic activity. The amount of PCM components is con-
served, yielding

−JAðaÞ= JBðaÞ=QϕAðaÞ; [4]

which is a boundary condition for Eqs. 1a and 1b.
We assume that the total amount of PCM components in the

cell is constant and impose no-flux conditions at the system
boundary. Material conservation then implies

ϕ=
1
Vc

Z
cell

�
ϕA +ϕB�d3x; [5]

where Vc is the total volume of the cell and ϕ denotes the aver-
age volume fraction of the PCM components in the system.

Phase Separation of Droplet Material. So far, the reaction–diffusion
system given in Eqs. 1a and 1b together with the activity at the
centrioles can create a locally increased concentration of form B
that gradually decreases at larger distances from the centrioles.
However, we have not yet accounted for the interface that sep-
arates the PCM phase from the cytosol.
Formation of a PCM phase can be accounted for by phase

separation of form B from the cytosol. Considering the centro-
some as a droplet phase that separates from the cytosol implies
that across the centrosome surface different volume fractions of
PCM components coexist inside and outside the centrosome.
The approximation of local thermodynamic equilibrium implies
that the chemical potential can be defined locally and is a con-
tinuous function in space. This also holds across the interface
between the droplet and the cytosol and introduces a boundary
condition at the interface. Additionally, the pressure difference
between the inside and outside is given by the Laplace pressure
2γ/R, which is generated by the surface tension γ of the curved
interface. Here, the mean curvature of the interface is R−1,
where R is the radius of the spherical droplet representing the
centrosome. Using these thermodynamic principles, we can ob-
tain conditions for the volume fractions of form B inside and
outside the droplet, which we call ϕB

− and ϕB
+ , respectively. These

volume fractions are of the form

ϕB
− ≈ψ− +

γβ−
R

and ϕB
+ ≈ψ+ +

γβ+
R

; [6]

where ψ− and ψ+ are the volume fractions that would occur at
a flat interface and the coefficients β− and β+ describe the effects
of the Laplace pressure on the volume fractions at the interface
(Appendix: Phase Separation in a Ternary Fluid).
In our model, form A is soluble in the cytosol and for sim-

plicity has the same physical properties as cytosol with respect to
the phase separation process. Therefore, the volume fraction
ratio of form A and cytosol is the same inside and outside of the
droplet. This can be expressed as

ϕA
+

1−ϕB
+

=
ϕA
−

1−ϕB
−
  [7]

(Appendix: Phase Separation in a Ternary Fluid). Droplet growth
is driven by the addition of droplet material. Changes in volume
V = ð4π=3ÞR3 can thus be related to the volume fluxes of the B

form in and out of the droplet. This leads to the droplet growth
rate (Appendix: Droplet Growth Kinetics)

dV
dt

=
JB− − JB+
ϕB
− −ϕB

+

; [8]

where the volume fluxes JB− and JB+ at the droplet surface are the
limits of Eq. 3 approaching the interface from the inside and out-
side, respectively. The material conservation at the interface also
yields a boundary condition for the flux of the soluble material A
(Appendix: Droplet Growth Kinetics, Eq. 19). The flux JB+ outside the
droplet surface results from diffusion in the cytosol. Given a volume
fraction ϕB

0 of the B component far from the droplet, this flux can
be approximated as (Appendix: Droplet Growth Kinetics)

JB+ ≈ 4πDBR ·
�
ϕB
+ −ϕB

0

�
: [9]

The flux of droplet material is thus driven by the difference
between the volume fraction ϕB

+ at the droplet interface and the
fraction ϕB

0 far away. This expression is valid for droplets small
compared with a characteristic length set by the chemical reac-
tions, R � (DB/kBA)

1/2 (Appendix: Droplet Growth Kinetics).
We have thus developed a general framework of centrosome

assembly, which involves an insoluble form B that phase sepa-
rates and forms PCM droplets with a sharp interface to the cy-
tosol (Eqs. 6 and 7). Such droplets grow by accumulating droplet
material (Eq. 8). Droplet material B is produced from the sol-
uble form A by chemical reactions that can occur both in the bulk
and at the centrioles (Eqs. 1, 2, and 4). Form A is thus depleted
from the cytosol until a steady-state centrosome is formed.

Nucleation and Growth of PCM Droplets
We now consider whether the four key features of centrosome
assembly can be accounted for, using the reaction–diffusion and
phase separation equations that we established. To examine this,
we consider several possible assembly scenarios and eliminate
those that do not account for centrosome behavior in C. elegans.
To recap, centrosomes in C. elegans nucleate at centrioles, where
they first grow slowly and then accelerate before reaching a
plateau (Introduction).

Catalytic Centrioles Can Reliably Nucleate Centrosomes. One way to
achieve reliable nucleation is that form B is created at the cen-
trioles by the catalytic activity Q, but not in the cytosol. The
simplest case corresponds to Q > 0, setting both the first-order
reaction rate and the autocatalytic reaction rate to zero (kAB = 0,
k = 0) and keeping kBA > 0. Droplets are then nucleated and
grow around the centrioles if the production of droplet material
at the active centrioles, quantified by the flux QϕA(a), is strong
enough to overcome the loss of droplet material via the efflux JB+
given by Eq. 9. As a result, a characteristic centriole activity

Qc ≈
4πDBγβ+
ð1−ψ−Þϕ

[10]

exists, beyond which nucleation is guaranteed and growth occurs
(Appendix: Droplet Growth Kinetics). Because form B is not pro-
duced in the bulk, homogeneous and heterogeneous nucleation
away from the centrioles is suppressed.
After nucleation, droplets grow and the cytosol is depleted of

form A until a steady state is reached. In the simple case of fast
diffusion and ignoring surface tension effects, the droplet volume
V evolves as (kAB = 0, k = 0)

V ðtÞ≈ 1−ψ−

ψ−
·

ϕQ
kBA + ðλA − kBAÞN

�
1− e−tλA

�
: [11]
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Here, N is the number of droplets growing simultaneously and
λA ≈ kBA + ð1−ψ−ÞNQV−1

c defines the relaxation rate to steady
state (Fig. 2A). Note that this growth curve is not sigmoidal and
cannot account for the experimental results. In addition, diffu-
sion-limited material insertion at the centrioles is a slow pro-
cess, because building blocks A have to be transported to the
small centrioles by diffusion. The resulting growth duration can
be estimated as τD ∼ Vc/(4πaDA) ∼ 2,000 s (Appendix: Droplet
Growth Kinetics), which is longer than the observed time of
about 500 s (14). Here, we used a typical diffusion constant
DA = 5 μm2=s found for centrosome proteins (18) and a typical
cell volume Vc = 104 μm3 (14). Consequently, enzymatic activity
at the centrioles alone can account for neither the sigmoidal
growth curve nor the observed rate of centrosome assembly. How-
ever, centriole activity can lead reliably to centrosome nucleation.

Autocatalytic Assembly Leads to Sigmoidal Growth. How can we
account for the fast, sigmoidal growth of centrosomes? Sigmoidal
growth is reminiscent of logistic growth processes observed in
population dynamics or autocatalytic growth in general (19). We
therefore consider the production of form B driven by autocatalytic
assembly (k > 0, kAB = 0). In this case, form B would be generated
by a second-order reaction A + B → 2B that depends on the con-
centration of already existing B. In the case of C. elegans cen-
trosomes, such an autocatalytic reaction could be caused by a kinase
that catalyzes the production of B and is localized within the cen-
trosome. In the simple case of strong phase separation and van-
ishing surface tension, the droplet material of form B is then
produced only inside the droplet itself. The resulting growth reads

V ðtÞ≈ VcλB
ð1−ψ−ÞNkψ−

ð1+ tanh½ðt− t0ÞλB�Þ; [12]

where λB = ð1=2Þ½ð1−ψ−Þϕk− kBA� and t0 is a parameter setting
the volume at t = 0. This growth exhibits a sigmoidal shape,
because as the droplets grow larger they can recruit new material
at a higher rate, until the material runs out (Fig. 2B and Appen-
dix: Droplet Growth Kinetics).
We also considered whether a simple first-order reaction

could account for sigmoidal centrosome growth. If dropletmaterial is
produced only via a first-order reaction (kAB > 0, k = 0, Q = 0), the
droplet volume relaxes exponentially to a steady-state value and is not
sigmoidal (Fig. 2C). In addition, because droplet material is in this
case produced everywhere, unwanted heterogeneous and homoge-
neous nucleation in the cytosol is possible. Therefore, we propose
that centrosome growth is driven by an autocatalytic reaction.

Centriole Activity Can Nucleate Autocatalytic Droplets.Although the
autocatalytic assembly can account for the sigmoidal growth, it
cannot account for nucleation. This is because droplet formation

requires the B form, which in the autocatalytic case can be
produced only if existing B form is already present. Consequently,
the autocatalytic process strongly suppresses droplet nucleation.
Thus, we asked whether centriole-driven formation of form B is
sufficient to nucleate autocatalytically growing centrosomes.
To address this question, we determined the steady states of

a single, autocatalytic droplet (Fig. 3). In the case of passive cen-
trioles and no surface tension (Q = 0, γ = 0), a steady state exists
beyond a minimum fraction of PCM components ϕ (Fig. 3, solid
green line) with a radius R that increases for larger ϕ. The effect of
surface tension (Fig. 3, orange solid line) is the appearance of a
second steady state with a smaller radius, which is unstable (Fig. 3,
orange dotted line). The radius of the unstable steady state is called
the critical radius. Droplets smaller than this radius disappear and
only larger droplets grow autocatalytically until the stable steady
state is reached. Because of the existence of a critical radius, ho-
mogeneous and heterogeneous nucleation is strongly suppressed. A
sufficiently strong catalytic activity of the centrioles,Q >Qc, leads to
the behavior described by the solid blue line in Fig. 3, where all
steady states are stable. As a consequence, small droplets always
grow and nucleation is reliably induced by the catalytic activity of
the centrioles. The value of Qc is again given by Eq. 10 (Appendix:
Droplet Growth Kinetics). Therefore, autocatalytic growth combined
with a centriole activity leads to a situation where nucleation can be
reliably controlled by centrioles and growth is sigmoidal, as ob-
served in C. elegans embryos.

ParameterEstimation forC.elegansCentrosomes.We next wanted to see
whether we could account for the quantitative shape of the growth
curves measured in vivo by incorporating known parameters. This
also allows us to estimate parameter values that are not yet known.
Some model parameters are known from experimental studies.

Decker et al. (14) measured the volume Vc of cells in different
early stages of development (Table 1). Diffusion constants for
the centrosomal protein PLK-1 ranging from about 1 μm2=s to
10    μm2=s were reported (18). These observations motivate
our choice, DA=B = 5  μm2=s. The rate constant of the reaction
converting droplet material back to soluble building blocks,
kBA ∼ 10−3 s−1, is estimated from the longest reported turn-
over time of centrosomal proteins (8). Not known are the other
chemical reaction rate constants, the parameters associated with
surface tension effects, the average fraction ϕ of PCM compo-
nents in the system, and the volume fractions ψ− and ψ+ of the
form B inside and outside the centrosome. We consider strong
segregation of the B form, ψ+ = 0, but ψ− = 0.1, permitting other
components to enter the centrosome phase.
Several of the unknown parameters can be estimated by

comparing the theory to the experimentally obtained growth
curves. We used data obtained in the original experiments
reported in ref. 14 and performed additional experiments of the

A B C

Fig. 2. Droplet volume (blue solid lines) as a function of time for three scenarios of reaction-limited droplet growth. (A) Droplet growth by centriole activity.
Droplet material is produced at the centrioles only (orange region). (B) Autocatalytic droplet growth. Droplet material is produced inside the droplet only. (C)
Droplet growth by a first-order reaction A→ B corresponding to droplet material production in the whole cell. The maximal volume growth rate for each case
is indicated by dashed lines, and their corresponding time dependence is given (green).
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same type to increase the sample size. A simultaneous fit of the
numerical solutions to Eqs. 1–8 to experimental data of different
cell stages is shown in Fig. 4A. Fit parameters were the auto-
catalytic reaction rate constant k, the average fraction ϕ of PCM
components in the system, and the initial centrosome volumes
(Materials and Methods). Using this fitting approach, we arrived
at parameter estimates (Table 2), which account for the growth
curves of C. elegans centrosomes quantitatively.
The values of the centriole activity Q and the parameter γβ+

describing the effects of surface tension cannot be determined
from this fit, because they do not influence the shape of the
growth curve. As discussed above, these parameters play an im-
portant role for centrosome nucleation. From the experimental
data we can determine upper bounds for Q and γβ+. In particular,
a sigmoidal growth curve implies that autocatalytic assembly
dominates over centriole activity, Q � kVψ−. From the observa-
tion that centrosomes with volumes as small as V ∼ 0.3 μm3 show
sigmoidal growth, we estimate Q � 3  μm3=s. At the same time, Q
must be larger than Qc given by Eq. 10 to ensure that droplets
nucleate around centrioles. Because Qc depends on γβ+, this
provides the additional upper bound γβ+ < ð1−ψ−ÞϕQ=ð4πDBÞ.

We chose parameters Q and γβ+ consistent with these require-
ments. The complete set of parameters is given in Table 2.
The values of these parameters can be changed in vivo by

studying mutant conditions. We thus next test whether we can
understand the centrosome growth in mutants by modifying
relevant parameters in our model. Fig. 4B shows a fit of the
model to data obtained from mutant cells with an aberrant
number of centrosomes (14), using the parameter values of
Table 2, the observed number N of centrosomes, and only the
initial volumes as fit parameters. Furthermore, we compare the
model to data from experiments where the cell volume has been
changed (14). Using the initial centrosome volumes and the cell
volume Vc as fit parameters shows that in these experiments the
cell volume is indeed reduced (Fig. 4C). Fig. 4 thus shows that
our model can quantitatively account for the observed growth
curves in wild-type embryos and under conditions where we
changed key parameters experimentally.

Suppression of Ostwald Ripening. So far, we have explained the
controlled nucleation of centrosomes and their sigmoidal growth,
which are two key features of centrosome assembly in C. elegans.
Additionally, Decker et al. have shown that centrosomes in
the same cell have the same size (14). Considering centrosomes
as liquid droplets then raises the question of how two cen-
trosomes can be stable and have the same size. In passive sys-
tems, Ostwald ripening would make it difficult for droplets to
coexist. This is because two equal-sized droplets are unstable and
one grows at the expense of the other until a thermodynamic
equilibrium is reached (20). However, we find that in our model
Ostwald ripening can be suppressed, because of nonequilibrium
conditions created by the chemical reactions (Fig. 5). Multiple

Fig. 3. Radii of stationary, autocatalytic droplets as a function of the av-
erage volume fraction ϕ of PCM components for different values of surface
tension γ and centriole activity Q. Solid lines indicate stable steady states,
and dotted lines correspond to unstable states. Steady states were obtained
by solving Eqs. 1–8 in a spherical geometry and the associated stability was
obtained by linear stability analysis. The gray area marks the centrioles
of radius a = 75 nm. Additional model parameter values are Vc = 104 μm3,
ψ− = 0.1, ψ+ = 0, DA=B =5  μm2=s, kAB = 0, k = 100 s−1, kBA = 10−3 s−1, and
β± = 10−8 μm2=pN.

Table 1. Measured cell volumes Vc and final centrosome
volumes V (mean ± standard deviation) of C. elegans embryos

Cell Stage Vc V(t = 150 s) Vc/V

P0 1 cell 22,000 μm3 (11.5 ± 2.0) μm3 1,900
AB 2 cells 12,700 μm3 (7.6 ± 1.6) μm3 1,700
P1 2 cells 8,600 μm3 (6.5 ± 1.0) μm3 1,300
ABa 4 cells 6,200 μm3 (4.2 ± 1.1) μm3 1,500
ABp 4 cells 6,200 μm3 (3.9 ± 1.1) μm3 1,600
EMS 4 cells 4,400 μm3 (3.5 ± 0.6) μm3 1,300
P2 4 cells 4,400 μm3 (3.2 ± 1.0) μm3 1,400
P3 8 cells 2,200 μm3 (2.4 ± 0.5) μm3 920

A B C

Fig. 4. Comparison of the theory (lines) to experimental data (dots, mean; shaded area indicates standard deviation) of centrosome growth in C. elegans.
The centrosome volume is shown as a function of time. Time t = 0 corresponds to nuclear envelop breakdown (NEBD). (A) Wild-type data for several cell sizes
ranging from the one- to the eight-cell stage with cell volumes given in Table 1 (sample size n = 64, 54, 56, 51, from top to bottom). (B) Data from cells with an
aberrant number N of centrosomes [N = 1, zyg-1(b1) embryos; N = 8, 12, zyg-1(it29) embryos; sample size n = 15, 16, 12, from top to bottom]. (C) Data from
ani-2(RNAi) embryos with altered cell volumes (quantified fraction of wild-type volume is indicated; sample size n = 12, 18, from top to bottom). In A, the
autocatalytic reaction rate constant k = 100 s−1, the average fraction of PCM components ϕ= 2× 10−4, and the initial centrosome volumes V0 are determined
by a fit of theoretical curves to the data. k and ϕ are used in B and C, where the initial centrosome volumes are determined by a fit to the data. Vc is an
additional fit parameter in C. All other model parameters have only a weak influence and are taken from Table 2.
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droplets are stable if Q is larger than Qstab, which can be ap-
proximated as

Qstab ≈
4πDBkγβ+

3kBA
  [13]

(Fig. 5 and Appendix: Autocatalytic Growth of Multiple Droplets). The
centrioles can therefore prevent Ostwald ripening. This effect can
be understood qualitatively by considering two droplets of unequal
size with identical centriole activities Q. The total volume of both
droplets relaxes quickly to a steady-state value set by the available
amount of droplet material but is essentially independent of Q. The
material influx caused by centriole activity is more important for
small droplets than for large ones and thus promotes the growth of
small droplets. Thus, for sufficiently large Q, the small droplet can
grow at the expense of the large droplet until both have the same
stable size (Appendix: Autocatalytic Growth of Multiple Droplets).
Because multiple droplets are stable and have the same size if

their centriole activity Q is equal, Eq. 12 applies also for N > 1.
This results in a steady-state volume V in the limit of large t,

V ≈
Vc

Nψ−

�
ϕ−

kBA
ð1−ψ−Þk

�
: [14]

Decker et al. have shown that the total volume of all centro-
somes in a cell, NV, is proportional to the cell volume Vc (14).
This observed scaling is captured by our model.

Multiple Centrosomes with Unequal Sizes. We showed that two
droplets tend to have equal size if the catalytic activity Q is equal
in both droplets and larger than Qstab given by Eq. 13. In-
terestingly, it was shown experimentally by perturbing centrioles
that centrosomes can have unequal sizes whereas their total
volume is unchanged (14, 15). In these experiments, the larger
centrosome contains a single, full-sized centriole, and the smaller
centrosome contains a single, incomplete centriole (15). The fact
that the second centriole is incomplete suggests that its enzy-
matic activity Q2 is smaller than that of the complete centriole,
because it may not localize the same amount of catalyst at its
surface. We thus next test whether different catalytic activities of
the centrioles are sufficient to explain the observed differences in
the growth dynamics of two centrosomes with structurally dif-
ferent centrioles. Neglecting surface tension effects and assum-
ing fast diffusion for simplicity, we find that the ratio V1/V2 of
centrosome volumes is given by the ratio Q1/Q2 of the centriole
activities, whereas the total volume V1 + V2 depends only weakly
on Q1 and Q2 (Appendix: Autocatalytic Growth of Multiple Droplets).
Our theory explains the observed growth curves quantitatively,
using the ratio Q1/Q2 as a fit parameter (Fig. 6). Our study thus
suggests that compromising the centrioles in experiments changes
their catalytic activity.

Discussion
It is long been known that centrosomes have an amorphous
structure formed by assembly and disassembly of PCM compo-
nents. However, the principles governing centrosome dynamics
and the mechanisms of centrosome assembly remain unclear.
What type of material is the centrosome made of? How do the
subunits from the cytosol become incorporated in the PCM?
Here, we show that a model based on the idea of centrosomes
forming around centrioles by autocatalytic growth of a PCM
droplet phase in the cytosol can quantitatively account for key
features of centrosome growth in C. elegans.
The model has three key ingredients: (i) The PCM compo-

nents can exist either in a soluble or in an insoluble form; (ii) the
interconversion between the two forms is driven by the catalyt-
ically active centrioles and by an autocatalytic chemical reaction;
and (iii) the insoluble form tends to phase separate from the
cytosol. This PCM phase corresponds to the droplet phase in the
model. In C. elegans, the known components required for cen-
trosome growth are the polo-like kinase PLK-1 (14) and the
coiled-coil proteins SPD-5 and SPD-2 (21, 22). It seems likely
that SPD-5 and SPD-2 are proteins that can phase separate from
the cytosol to form the PCM matrix after a phosphorylation
reaction and that the kinase PLK-1 mediates this conversion.
More experiments are needed to assess the biochemical details
and identify the nature of the autocatalytic mechanism. To test

Table 2. Model parameters used to describe centrosome growth in C. elegans embryos

Quantity Symbol Value Comment

Centriole size, radius of sphere a 75 nm Half the length of a single centriole (12)
Diffusion constants DA, DB 5  μm2=s Typical diffusion constant of centrosomal protein (18)
Rate constant for reaction B → A kBA 10−3 s−1 Estimated turnover rate of centrosome components (8)
Rate constant for reaction A → B kAB 0 s−1 Neglected, because the reaction cannot explain growth dynamics
Autocatalytic reaction rate constant k 100 s−1 Determined from fit to experimental data (Fig. 4)
Volume fraction of PCM in droplet ψ− 0.1 Rough estimate for porous centrosome matrix (18)
Fraction of PCM in cytosol for γ = 0 ψ+ 0 Strong segregation of the B form
Average fraction of PCM components ϕ 2 × 10−4 Determined from fit to experimental data (Fig. 4)
Centriolar enzymatic activity Q 0:1  μm3=s Largest order of magnitude still showing sigmoidal growth
Surface tension parameter in cytosol γβ+=ϕ 5 × 10−11 m Chosen such that Qc(γβ+) < Q
Surface tension parameter in droplet γβ−=ϕ 0 Negligible influence; assumed for simplicity

Fig. 5. Stability diagram of a pair of centrosomes as a function of the av-
erage fraction ϕ of PCM components and the centriole activity Q. Two
centrosomes are stable and have the same volume in the green region.
Conversely, one centrosome grows at the expense of the other in the blue
region. The dashed line indicates the threshold Qstab given in Eq. 13 and
parameter values are given in Table 2. Insets show schematics of the
centrosome volumes as a function of time in the respective regions.
These dynamics and the associated stability are obtained from a numer-
ical analysis of a simplified model of centrosome growth (Appendix: Autocat-
alytic Growth of Multiple Droplets).
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our model, it would also be interesting to measure material prop-
erties of the PCM, e.g., its viscosity and the surface tension of the
interface with the cytosol. Note that the droplet description used
here does not account for more structured protein assemblies, e.g.,
interphase centrosomes (23) or spindle pole bodies (24).
One of the issues arising when considering the centrosome as

a droplet phase is the fact that PCM accumulates only at cen-
trioles and accidental nucleation in the cytosol is absent. If
centrosome formation were dependent only on homogeneous or
heterogeneous nucleation and growth, spontaneous nucleation
might occasionally occur in the cytosol. This spontaneous nu-
cleation could be rare because surface tension suppresses the
growth of small droplets. However, in our model nucleation is
suppressed even more strongly because the autocatalytic growth
does not allow the spontaneous production of centrosome ma-
terial. Because of this suppression of nucleation in the cytosol,
the centriole activity is required to initiate droplet growth. The
combination of autocatalytic growth and catalytically active
centrioles thus ensures controlled nucleation.
Another issue arising when considering the centrosome as a

droplet phase is that two centrosomes do coexist. This is in-
teresting because Ostwald ripening would lead in passive systems
to the growth of a larger droplet at the expense of smaller
droplets. Even if two droplets have the same size initially, this
state would be unstable. Our model accounts for the absence of
this instability in the case of centrosomes, because of the effect of
centriole activity that suppresses Ostwald ripening. Importantly,
this suppression also ensures that both centrosomes have a sim-
ilar size even in the presence of large fluctuations during growth.
In our model, the centriole activity plays a double role: It re-

liably controls the droplet nucleation and it suppresses Ostwald
ripening. Thereby, our model provides a robust mechanism by
which centrioles control the location and timing of centrosome
formation, whereas the centrosome size is determined by the
limiting amount of PCM components in the cell and thus by the
cell volume (3). It might be interesting to test these ideas in other
organisms, too. For instance, centrosome growth is not sigmoidal
in Drosophila, where centrioles control the rate of PCM accu-
mulation (25, 26). In this case, a scenario relying only on cata-
lytically active centrioles may provide a suitable description.
The centrosome joins a growing class of biological compart-

ments that have liquid-like properties driven by the colloidal nature
of biological macromolecules (4, 27, 28). The phase separation
process that controls the formation of these compartments

also leads to a clear interface between them and the sur-
rounding cytosol. Such phase-separated compartments in the
cytosol therefore provide specific chemical environments and
permit the cell to separate different chemical reactions in space
without using a membrane. These biological examples provide
a paradigm for a class of nonequilibrium emulsions that couple
phase separation with chemical reactions. There is a growing in-
terest in physics and chemistry to study chemical reactions that
couple to phase separation. Interesting phenomena including
stable emulsions and pattern formation have been reported (29–
31). The example from biology discussed here brings additional
elements to such systems, namely the autocatalytic growth and
chemically induced nucleation.

Materials and Methods
Experimental Data. Centrosome sizes were measured in γ-tubulin::GFP cell
lines, using live imaging as described earlier (14). The acquired image stacks
were analyzed by a custom-made algorithm (32). Some of the data that we
analyze have already been published in ref. 14. The data shown in Fig. 4B
were obtained from zyg-1 mutants and have already been shown in
figure 3A and 3B of ref. 14. For the data shown in Fig. 4 A and C we used
experimental data already presented in figure 1C and 1D of ref. 14, sup-
plemented by data from additional experiments of the same type to im-
prove statistics. The data shown in Fig. 6 result from an experiment reported
in ref. 14. The full time course of the two unequal centrosome radii shown as
a function of time is presented here, to our knowledge, for the first time.
The experimental methods and the methods to determine centrosome vol-
ume have been described previously in ref. 14. Cell volumes shown in Table 1
were taken from ref. 14.

Numerical Solution of the Theoretical Model and Fitting. Fitting was used to
compare the theoretical model to the experimental data as described in the
main text. The theoretical model given by Eqs. 1–8 was solved numerically in
a spherical geometry with radial symmetric volume fractions. The mov-
ing boundary conditions at the droplet surface were implemented using
an adaptive discretization scheme (33). In the case of N droplets, we
approximated the solution for the individual droplets by simulating
a single droplet with a reduced system volume of Vc /N, where Vc is the
cell volume. The fitting was done by adjusting parameters until the sum
of squared differences between the numerical solution and measured
data was minimized.

Appendix: Phase Separation in a Ternary Fluid
Flory–Huggins Free Energy. We discuss the centrosome using a
ternary fluid description involving soluble PCM building blocks
A, PCM droplet material B, and all other components described
together as cytosol C. We introduce two volume fractions ϕA

and ϕB, such that ϕC = 1 − ϕA − ϕB, and consider a simplified
Flory–Huggins free energy density (34, 35),

f
�
ϕA;ϕB�= kBT

ν
·
�
ϕA lnϕA +ϕB lnϕB +ϕC lnϕC�

+   χϕB ·
�
ϕA +ϕC�; [15]

where ν is a molecular volume. Here, the interaction character-
ized by the coefficient χ > 0 can induce phase separation of
droplet material B from the building blocks A and the cytosol C.

Thermodynamics of Two-Phase Coexistence. The conditions for equi-
librium at the interface between two coexisting phases read

0= μA
�
ϕA
−;ϕ

B
−
�
− μA

�
ϕA
+;ϕ

B
+

�
[16a]

0= μB
�
ϕA
−;ϕ

B
−
�
− μB

�
ϕA
+;ϕ

B
+

�
[16b]

0=
�
ϕA
− −ϕA

+

�
μA

�
ϕA
−;ϕ

B
−
�
+
�
ϕB
− −ϕB

+

�
μB

�
ϕA
−;ϕ

B
−
�

+   f
�
ϕA
+;ϕ

B
+

�
− f

�
ϕA
−;ϕ

B
−
�
− 2γH; [16c]

Fig. 6. Radii of two centrosomes with unequal centrioles as a function of
time. The solid lines show a fit of the theory to the experimental data
(squares and circles) obtained in the two-cell stage (AB cell) of C. elegans
where the protein SAS-4 has been partly depleted. Fit parameters are the
catalytic activity Q2 of the centriole pair of the smaller centrosome, the
average fraction ϕ of PCM components, and the time of growth initia-
tion. The remaining parameters are taken from Table 2. The theoretical
growth curve obtained with the same parameters in the symmetric case,
Q1 =Q2 = 0:1  μm3=s, is also shown (gray).
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where ϕ− and ϕ+ denote the volume fractions at the interface
inside and outside the droplet, respectively. Here, μi(ϕA, ϕB) =
∂f(ϕA, ϕB)/∂ϕi for i = A, B, γ denotes the surface tension, and H
is the mean curvature of the interface. For the free energy
density in Eq. 15, condition Eq. 16a reads

ϕA
+

1−ϕA
+ −ϕB

+

=
ϕA
−

1−ϕA
− −ϕB

−
  : [17]

This is equivalent to ð1−ϕB
+ ÞϕA

+ = ð1−ϕB
−ÞϕA

−, corresponding to
Eq. 7. In the case ϕA � ϕC, the volume fractions that result from
Eqs. 16b and 16c can be expanded to first order in H,

ϕB
− ≈ψ− + β−γH and ϕB

+ ≈ψ+ + β+γH; [18]

where ψ− and ψ+ are the equilibrium volume fractions at a
flat interface and we defined β±≈ 2=½ðψ− −ψ+Þf″Bðψ ± Þ� with
f″BðϕBÞ= ∂2

ϕB f ð0;ϕBÞ.
Appendix: Droplet Growth Kinetics
Droplet Growth Rate. The volume growth rate dV/dt can be
obtained in a spherical geometry by considering a small shell
of thickness 2« in the range R − « < r < R + « around the
droplet interface. The volume occupied by form B in this shell
is VB

« ≈ 4πR2«½ϕBðR− «Þ+ϕBðR+ «Þ�. Fluxes of form B across
the shell boundaries change VB

« with a rate _V «
B = JBðR− «Þ−

JBðR+ «Þ, where JB is given in Eq. 3. If the interface moves
with a speed _R with respect to the fixed shell, the rate of change
of the volume of form B in the shell is _V «

B ≈ 4πR2 _R½ϕBðR− «Þ−
ϕBðR+ «Þ�. Equating both expressions of _V «

B leads in the limit of
small « to Eq. 8 for the droplet growth rate dV=dt= 4πR2 _R,
where ϕB

± ðRÞ= lim«→0ϕ
BðR± «Þ and JB± ðRÞ= lim«→0JBðR± «Þ. A

similar argument for the building blocks of form A leads to

JA− ðRÞ− JA+ ðRÞ
ϕA
−ðRÞ−ϕA

+ðRÞ
=

JB−ðRÞ− JB+ðRÞ
ϕB
−ðRÞ−ϕB

+ðRÞ
; [19]

where ϕA
−, ϕ

A
+ , J

A
− , and JA+ are defined correspondingly.

Surface Fluxes of Droplet Material. The fluxes JB− and JB+ at the
droplet surface set the droplet growth rate (Eq. 8). We can obtain
a simplified expression for the flux JB+ for steady states of the
concentration field in a spherical geometry. At the droplet in-
terface at r = R, we have ϕBðRÞ=ϕB

+ . For large r � R, ϕB(r)
approaches the bulk volume fraction ϕB

0 . Using Eq. 1b, consid-
ering kAB = 0, and neglecting the autocatalytic reaction outside
the droplet where ϕB is small, we have

ϕBðrÞ≈ϕB
0 +R

ϕB
+ −ϕB

0

r
eðR−rÞ=α; [20]

where α = (DB/kBA)
1/2 is a characteristic length. The flux JB+ at

the droplet surface becomes

JB+ ≈ 4πDBR ·
�
1+

R
α

��
ϕB
+ −ϕB

0

�
: [21]

For the parameters given in Table 2, α ∼ 70 μm, which is larger than
centrosomes. For such small droplets (R� α), we obtain Eq. 9. The
flux JB− inside at the droplet interface can be estimated for small
droplets with constant volume fraction ϕB(r) ∼ ψ− for r < R as

JB− ≈ ðQ+ kAB   V + kψ−V ÞϕA
1 − kBAVψ−: [22]

Here, ϕA
1 ≈ ð1−ψ−ÞϕA

0 is an approximation for the volume frac-
tion of form A inside the droplet (Eq. 7), and ϕA

0 is the bulk
volume fraction of form A outside the droplet.

Droplet Nucleation. We investigate nucleation by discussing the
growth dynamics of small droplets and the size of critical drop-
lets. Critical droplets are small droplets in a steady state that is
unstable. We can discuss steady-state droplets using the balance
of material fluxes at the interface of the droplet, which obey
JB− = JB+ (Eq. 8). Using Eqs. 21 and 22, we can estimate the steady-
state droplet radius Rcrit ≈ γβ+=ðϕB

0 −ψ+Þ for the case where no
chemical reactions occur (Q = 0, k = 0, kAB = 0, kBA = 0). Linear
stability analysis reveals that this steady state is unstable. Rcrit is
thus a critical radius such that droplets with R < Rcrit shrink and
disappear. This case without chemical reactions corresponds
to classical nucleation theory, where nucleation is suppressed
by surface tension γ.
Droplets can be nucleated in a controlled manner by cata-

lytically active centrioles (Q > 0, k = 0, kAB = 0, kBA > 0). This
can be shown most easily in the limit of strong phase separation
(ψ+ = 0) and for large cells, Vc � Vψ−=ϕ, such that most droplet
components are in their soluble form A (ϕA

0 ≈ϕ, ϕB
0 ≈ 0). The

steady-state droplet volume then reads

V ≈
ð1−ψ−ÞQϕ− 4πDBγβ+

kBAψ−
; [23]

for Q > Qc with Qc ≈ 4πDBγβ+=½ð1−ψ−Þϕ� denoting the nucle-
ation threshold. The corresponding steady states are stable drop-
lets nucleated reliably by the centriole activity. For Q ≤ Qc, V
vanishes and droplets shrink and disappear. No critical droplet
size exists in this case.
The same arguments can also be used to discuss the case

where centrosomes are nucleated by centriole activity and grow
autocatalytically (Q > 0, k > 0, kAB = 0, kBA > 0). For Q > Qc
the system reaches a stable steady-state droplet volume, which
is independent of Q and given in Eq. 14 of the main text. No
critical droplet size exists and nucleation by centriole activity
is reliable. For Q < Qc, the steady-state volume of small
droplets is

Vcrit ≈
4πDBγβ+ − ð1−ψ−ÞQϕ

ð1−ψ−Þkϕψ− − kBAψ−
: [24]

For k> kBA=½ð1−ψ−Þϕ� these droplets are unstable and thus cor-
respond to the critical radius Rcrit = (3Vcrit/4π)

1/3. Nucleation by
the centriole activity is thus not successful for Q < Qc. Note that
for small k Eq. 24 approaches the situation described by Eq. 23
discussed above, which also leads to reliable nucleation only for
Q > Qc.

Shape of Volume Growth Curves. We can obtain simplified expres-
sions for the droplet volume as a function of time if the droplet
growth rate is limited by chemical reactions. In this case, for large
diffusion coefficient DB, the flux JB+ ≈ ðkBAϕB

+ − kABϕA
0 ÞV0N−1

becomes independent of DB. This expression follows from the
material balance dϕB

0 =dt= kABϕA
0 − kBAϕB

0 +NV−1
0 JB+ for fast dif-

fusion in a steady state with dϕB
0 =dt= 0. The droplet growth rate

dV/dt, given by Eq. 8 together with Eq. 22, for the simple case of
strong segregation (ψ+ = 0) with γ = 0 obeys

dV
dt

≈
�
kϕA

1 − kBA
�
V +

QϕA
1

ψ−
+
kABϕA

0Vc

Nψ−
; [25]

where ϕA
1 ≈ ð1−ψ−ÞϕA

0 , ϕ
A
0 ≈ϕ−ψ−NVV

−1
c , and we used for sim-

plicity the limit of large cells Vc � NVψ−.
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We can distinguish three different scenarios:

i) Growth driven by centriole activity (Q > 0, k = 0, kAB = 0): In
this case, dV=dt≈ ð1−ψ−ÞϕQ=ψ− − λAV with a growth rate
λA = kBA + ð1−ψ−ÞNQV−1

c , which leads to

V ðtÞ≈ ð1−ψ−ÞϕQ
λAψ−

�
1− e−λA t

�
+V ð0Þe−λA t; [26]

where V(0) is the volume at t = 0.
ii) Autocatalytic growth (Q = 0, k > 0, kAB = 0): In this case,

dV/dt ≈ 2λBV − ζV2, where λB = ð1=2Þ½ð1−ψ−Þϕk− kBA� and
ζ = [(1 − ψ−)ψ−Nk]/Vc. For λB > 0, the droplet volume
increases as

V ðtÞ≈ λB
ζ

�
1+ tanh½ðt− t0ÞλB�

�
; [27]

where t0 is an integration constant setting the initial vol-
ume V(0).

iii) Growth by chemical reactions with first-order kinetics (Q =
0, k = 0, kAB > 0): In this case, we have dV=dt≈
ϕkABVc=ðNψ−Þ− ðkAB + kBAÞV , which is solved by

V ðtÞ≈ϕVckAB
Nλcψ−

�
1− e−λc t

�
+V ð0Þ  e−λct; [28]

with λC = kAB + kBA.

We also discuss the case where droplet growth is limited by
diffusion of form A to the centrioles with large catalytic activ-
ity Q (k = 0, kAB = 0, kBA = 0). For simplicity, we consider a
spherical geometry, γ = 0, and ψ+ = 0. In this case, ϕA(a, t) = 0 at
the centrioles. The time-dependent solutions to Eq. 1a are

ϕAðr; tÞ=
X
k

bk
sin

�ðr− aÞαk
�

r
e−DAα2kt; [29]

where αk are positive real solutions to αkRc = tan½ðRc − aÞαk� with
Rc = (3Vc/4π)

1/3. The coefficients bk follow from the initial con-
dition ϕAðr; 0Þ=ϕ. The droplet volume is V = VB/ψ− with

VBðtÞ=ϕVc −
X∞
k=1

�
2+ 2R2

cα
2
k

�
4πa2ϕ

ðRc − aÞR2
cα

4
k − aα2k

  e−DAα2kt: [30]

The slowest mode has a relaxation rate λd =DAα21, with

λd ≈
4πDAa
Vc

; [31]

for a � Rc. This is slower than the diffusion rate across the
cell, DA=R2

c , because the material not only has to traverse the
cell volume but also has to reach the small target region of
size a.

Appendix: Autocatalytic Growth of Multiple Droplets
We investigate multiple droplets that are nucleated by centriole
activity and grow autocatalytically (Q > 0, k > 0, kAB = 0, kBA > 0).
The growth rate dVi/dt of the ith droplet is given by Eq. 8 together

with Eqs. 21 and 22. In the simple case of strong phase separation
(ψ+ = 0), taking into account finite surface tension γ, we obtain

dVi

dt
≈
�
kϕA

1 − kBA
�
Vi +

Qiϕ
A
1

ψ−
+
4πDB

ψ−

�
Riϕ

B
0 − γβ+

�
; [32]

where ϕA
1 ≈ ð1−ψ−ÞϕA

0 .

Suppression of Ostwald Ripening by Centriole Activity. We inves-
tigate the late stage of droplet growth, where the total droplet
volume and thus also the fractions ϕA

0 and ϕB
0 have reached their

steady-state values after a time λ−1B . A linear stability analysis
of Eq. 32 around the symmetric steady state Vi = V with small
perturbations of amplitude «i, Vi = V + «ie

λt, leads to the per-
turbation growth rate

λ= kϕA
1 − kBA +

DBϕ
B
0

R2ψ−
: [33]

To investigate stability, we need to determine the steady-state
volume fractions ϕB

0 and ϕA
1 . For fast diffusion ϕB

0 ≈ϕB
+. ϕ

A
1 fol-

lows from Eq. 32 in steady state, dVi=dtjVi=V = 0. Finally, for
equal centriole activities Qi = Q, we obtain

λ≈
4πDBγβ+
3Vψ−

−
kBAQ

Q+ kVψ−
: [34]

If λ is positive, equal-sized droplets are unstable and Ostwald
ripening occurs. This is the case for large surface tension γ.
However, for large enough kBA and finite Q, λ can become nega-
tive. In this case equal droplets are stable and Ostwald ripening is
suppressed. Note that this simplified argument applies if λB > jλj,
which is the case for the parameter values given in Table 2.

Growth of Centrosomes with Different Centriole Activities. We con-
sider droplet growth described by Eq. 32 in the case of dif-
ferent centriole activities Qi. For simplicity we neglect surface
tension effects (γ = 0), consider strong segregation (ψ+ = 0),
and approximate the volume fractions of the A form as
ϕA
0 ≈ϕ−Vtotψ−=Vc, where Vtot =

P
iVi is the total droplet vol-

ume. The total droplet volume in steady state to linear order
in Qtot =

P
iQi reads

Vtot ≈
ηVc

ψ−
+

kBAQtot

ð1−ψ−Þk2ηψ−
; [35]

where η=ϕ− kBA=½ð1−ψ−Þk�. For autocatalytic growth
k � Qtot/(ηVc) and the dependence of Vtot on the centriole
activity Qtot can thus be neglected. However, differences in
centriole activities have a strong influence on the volume dif-
ferences of droplets. For two droplets, Eq. 32 implies

d
dt

�
V1

V2

�
=
V2Q1 −V1Q2

V 2
2

·
ϕA
1

ψ−
: [36]

Thus, V1/V2 is time independent if V1/V2 = Q1/Q2. If droplet
growth is initiated by activating centrioles at time t = 0, corre-
sponding to the initial condition Vi(t = 0) = 0, we obtain unequal
volume growth of both droplets, Vi(t) = Vtot(t)·Qi/Qtot.
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