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Neurocomputational models hold that sparse distributed coding is
the most efficient way for hippocampal neurons to encode episodic
memories rapidly. We investigated the representation of episodic
memory in hippocampal neurons of nine epilepsy patients un-
dergoing intracranial monitoring as they discriminated between
recently studied words (targets) and new words (foils) on a recog-
nition test. On average, single units and multiunits exhibited
higher spike counts in response to targets relative to foils, and the
size of this effect correlated with behavioral performance. Further
analyses of the spike-count distributions revealed that (i) a small
percentage of recorded neurons responded to any one target and
(ii ) a small percentage of targets elicited a strong response in
any one neuron. These findings are consistent with the idea that
in the human hippocampus episodic memory is supported by a
sparse distributed neural code.
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The hippocampus is known to play a fundamental role in de-
clarative memory (1–4), but it is not known how mnemonic

information is coded by the activity of individual hippocampal
neurons. At least three different coding schemes have been
considered: a localist coding scheme, a fully distributed coding
scheme, and a sparse distributed coding scheme (5). In a localist
coding scheme, an individual neuron (sometimes referred to as
a “grandmother cell”) codes only one memory, and each memory
is coded by the activity of only one neuron. In a fully distributed
coding scheme, each memory is coded instead by a pattern of
activity across many hippocampal neurons. Falling between these
two extremes is a sparse distributed coding scheme in which each
memory is coded by the activity of a small proportion of hippo-
campal neurons, and each neuron contributes to the representation
of only a few memories. Sparse distributed coding has long been
hypothesized to be the most efficient way for hippocampal neurons
to encode episodic memories (remembering events) in rapid
succession without overwriting previously stored memories (6–8).
Most prior work concerned with the coding of declarative

memory in the human hippocampus has focused on the neural
representation of semantic memories (remembering facts), such as
memory for famous people or landmarks (9, 10). The results of
these studies suggest that long-established semantic memories
may be represented by fewer than 1% of neurons in the hip-
pocampus (11). However, neurocomputational theories are con-
cerned with the representation of episodic memories. The purpose
of our study was to test predictions of these neurocomputational
theories about how episodic memories are represented by neurons
of the hippocampus.
The representation of episodic memory in the hippocampus

typically has been investigated using recognition procedures. In
recognition, the task is to discriminate between familiar items
presented earlier in the experimental session (targets) and novel
items not previously presented (foils). An episodic memory sig-
nal is evident when neurons exhibit different levels of activity for

targets (old items) vs. foils (new items). The first recognition
studies with humans (12, 13) and monkeys (14–16) failed to
detect evidence of episodic memory in neurons of the hippo-
campus, but more recent studies have identified hippocampal
neurons that differentiate targets from foils (17–21). However,
these studies did not investigate how the representation of in-
dividual targets is distributed across neurons of the hippocam-
pus. Instead, the aim was to find cells that distinguish the class of
targets from the class of foils.
We investigated the representation of individual targets in

neurons of the human hippocampus. The participants were nine
patients with pharmaco-resistant epilepsy requiring the implan-
tation of intracranial wire electrodes for clinical evaluation and
localization of seizure foci for possible surgical resection. Among
them, the patients completed a total of 18 recognition memory
tasks in which they first studied 32 words and then attempted to
distinguish between the 32 targets that had appeared on the
study list and 32 foils that had not. Each of the 64 items on the
recognition test was presented only once, a format that differs
from many other neurophysiology studies that present individual
stimuli multiple times to identify neurons with reliable stimulus-
specific firing properties. The multiple-presentation method is
well-suited to the study of semantic memory (e.g., a neuron that
is found to respond reliably to six presentations of the word
“baby” likely is responding to its long-established semantic
meaning) but is not well-suited to the study of episodic memory.
When targets and foils are presented only once on a recognition
test, the targets, but not the foils, are represented by an episodic
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memory formed earlier at the time of learning. Under these
conditions, any difference in neural activity associated with tar-
gets and foils would indicate episodic memory. Note that, if the
test items were presented again, the targets and foils no longer
would be clearly differentiated because even the foils would
be represented by a recently formed, context-specific episodic
memory. Accordingly, instead of using multiple stimulus pre-
sentations during the recognition test, we examined the dis-
tribution of activity associated with once-presented targets vs.
once-presented foils across all recorded neurons. The different
coding schemes under consideration here make distinct predictions
about the expected distributions of neural activity.

Results
Behavioral Data. Recognition decisions were made using an
8-point confidence scale (1 = Sure New . . . 8 = Sure Old). Con-
fidence ratings of 5 through 8 were counted as hits for target
words and as false alarms for foils. Hit rate, false alarm rate,
percent correct, and discriminability (d′) scores were computed
for each patient. For patients who completed more than one
recognition test, these measures were computed separately for
each test and then averaged. All nine patients exhibited above-
chance memory for every test (mean = 63% correct), although
the performance for patient 8 was close to chance (Table S1).
Reaction time (RT) was defined as the interval between the

onset of a test item and the mouse click indicating the confidence
rating for that test item. All confidence ratings were made 1,500 ms
or more after the presentation of the test item, that is, after the
occurrence of the spikes counts that were analyzed here (200–
1,000 ms after test stimulus presentation; see Fig. S1).

Neural Data. We recorded neural activity bilaterally from 220
units in the hippocampus (34 single units + 186 multiunits) and
300 units in the amygdala (68 single units + 232 multiunits) over
the course of the 18 recognition memory tests. In the hippo-
campus, the mean firing rate of the 34 single units during the
prestimulus baseline period (1,000–200 ms before stimulus pre-
sentation) was 1.7 Hz (SD = 2.76), and the mean firing rate of
the 186 multiunits was 21.2 Hz (SD = 10.32). In the amygdala,
the mean firing rate of the 68 single units during the prestimulus
baseline period was 2.0 Hz (SD = 2.02), and the mean firing rate
of the 232 multiunits was 20.2 Hz (SD = 11.77). Before analysis,
poststimulus spike counts for each unit (200–1,000 ms after test
stimulus presentation) were normalized based on the mean and
SD of the unit’s spike counts during the prestimulus baseline
period across all 64 test items.
The normalized spike counts were subjected to three levels

of analysis. First, for each patient, we measured the difference
between test period activity for targets vs. foils averaged across
all units recorded from the hippocampus and, separately, from
the amygdala, and we compared that neural difference score with
a standard behavioral measure of recognition memory perfor-
mance (d′). Second, we analyzed the activity of individual units in
the hippocampus and the amygdala to identify those for which
the average activity level across the 32 targets differed signifi-
cantly from the average activity level across the 32 foils. Third, at
the most fine-grained level of analysis, we compared the distri-
bution of all spike counts recorded for individual targets and
compared it with the distribution of all spike counts recorded for
individual foils. This analysis most directly addresses the ques-
tion of how individual episodic memories are represented by
neurons of the human hippocampus.
In the first (patient-level) analysis, for each patient (i), a single

difference score (D′i ) was computed consisting of the mean of all
normalized spike counts to targets, μTargeti, minus the mean of all
normalized spike counts to foils, μFoili. As an example, 17 hip-
pocampal units (six single units and 11 multiunits) were recorded
from patient 3 in one recognition test session. Because the

recognition test consisted of 32 targets and 32 foils, 544 nor-
malized scores were averaged to compute μTarget3 (i.e., 17 units ×
32 targets = 544 target scores), and 544 normalized scores were
averaged to compute μFoil3 (i.e., 17 units × 32 foils = 544 foil
scores). The individual neural difference score for patient 3 (D′3)
was equal to μTarget3 – μFoil3. D′ scores for all nine patients were
computed using a similar procedure. For patients who completed
more than one recognition test, these measures were computed
separately for each test and then averaged. Using the same
procedure, a second D′ score was computed for each patient
based on recordings made from the amygdala. The results in-
dicated the detection of an episodic memory signal in the hip-
pocampus but not in the amygdala (Fig. 1A). Moreover, for
recordings made from the hippocampus, the larger the differ-
ence between the average normalized spike counts between
targets and foils for a particular patient, the better recognition
memory performance was for that patient as measured by d′
(Fig. 1C). When this same test was performed on recordings
from the amygdala, no such relationship was observed (Fig. 1D).
These findings are consistent with prior work showing that
hippocampal lesions impair recognition memory performance,
whereas amygdala lesions do not (1), but they differ from other
single-unit studies that have detected episodic memory signals in
the amygdala (19, 20).
In the second (unit-level) analysis, we identified units with

spike counts that significantly differentiated targets from foils.
For each unit j, where j = 1–220 in the hippocampus and j = 1–
300 in the amygdala, a t test was performed comparing the mean
normalized spike count across the 32 targets (μTargetj) with the
mean normalized spike count across the 32 foils (μFoilj). Under
the null hypothesis of no difference, and assuming independence,
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Fig. 1. Fully aggregated analyses. (A) For each patient i (where i = 1–9),
a neural difference score (D′i) was computed from recordings made from the
hippocampus and, separately, from recordings made from the amygdala.
The difference score represents the normalized spike counts in response to
targets (averaged across all units and all 32 targets) minus the normalized
spike counts in response to foils (averaged across all units and all 32 foils).
For patients who participated in more than one recognition test, this value
was computed separately for each session and the values were then aver-
aged. The mean of the distribution of difference scores shown in A was
significantly greater than 0 in the hippocampus [t (8) = 3.9, P < 0.01], but not
in the amygdala [t (8) = 1.5, P = 0.17]. (B) An illustration of the standard
signal-detection model of recognition memory in which the behavioral
measure d′ reflects the theoretical difference between the average memory
strength of the targets minus the average memory strength of the foils. (C)
A plot of the relationship between the neural D′i scores from the hippo-
campus and the corresponding behavioral d′i score (one pair of D′i and d′i
scores for each of the nine patients). The correlation between these two
measures (r = 0.86) was significant (P < 0.01). (D) A plot of the relationship
between the neural D′i scores from the amygdala and the corresponding
behavioral d′i scores. The correlation between these two measures (r = 0.18)
was not significant (P = 0.64). The difference between these two correlation
coefficients was marginally significant, z = 1.92, P = 0.055.
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5% of these tests would be significant on the basis of chance
alone. In our data, only 12 of the 220 units (5.5%) in the hip-
pocampus and only 8 of the 300 units (2.7%) in the amygdala
significantly differentiated targets from foils, effects that oc-
curred no more often than would be expected from chance.
A similar result was obtained when the analysis was limited to
the single units. Only 1 of the 34 single units recorded from the
hippocampus (2.9%) significantly differentiated targets from
foils, and none of the 68 single units recorded from the amygdala
did so. Thus, analyzed in this fashion, the data offer no evi-
dence of a neural episodic memory signal in the hippocampus
or amygdala.
The apparent absence of an episodic memory signal at the

level of individual units in the hippocampus parallels earlier
results from similar episodic memory tests with epilepsy patients
(12, 13) and with monkeys (16). However, an an episodic memory
signal was evident in our data when the spike counts from the
hippocampus were aggregated across units (Fig. 1 A and C). This
apparent contradiction is resolved by analyzing the distribution
of 220 t scores, instead of simply counting the number of units
associated with a significant t score. A null effect would be
characterized by a distribution of t scores with a mean of zero.
However, when the full distribution of 220 t scores was analyzed,
the mean was slightly but significantly greater than 0 (Fig. 2A).
Similarly, the mean of the 34 t scores for the single units con-
sidered separately also was significantly greater than 0 (Fig. 2B).
Although the distribution of t scores was elevated above 0 in the
hippocampus, no such effects were evident in the amygdala
(i.e., the mean of the t distribution did not differ significantly
from 0).
The numerator of the t-score formula for a particular unit j is

μTargetj − μFoilj. Thus, the results shown in Fig. 2 A and B suggest
that the entire distribution of μTargetj values was significantly el-
evated relative to the distribution of μFoilj values, and indeed this

was the case (Fig. 2 C and D). These results demonstrate that
even though the number of units with significant t scores was
no greater than would be expected on the basis of chance, most
or all of the units were involved in the coding of episodic
memory. In that sense, a distributed memory signal was identi-
fied, arguing against the notion of a strictly localist (i.e.,
“grandmother” cell) coding scheme. Under a localist scheme, the
likelihood of detecting any memory signal would be extremely
low. However, although a distributed signal was identified (Fig. 2
C and D), this analysis does not distinguish between a fully dis-
tributed coding scheme (Fig. 3A) and a sparse distributed coding
scheme (Fig. 3B).
In the third and most detailed analysis, we investigated whether

the significant increase in the μTargetj values in hippocampal
neurons (Fig. 2 C and D) occurred because, for each unit, most
or all of the 32 targets exhibited elevated spiking relative to the
foils (consistent with a fully distributed coding scheme), or be-
cause, for each unit, only a few targets elicited elevated spiking
relative to the foils (consistent with a sparse distributed coding
scheme). To address this issue, we compared the full distribution
of individual normalized spike counts for the targets with the
full distribution of normalized spike counts for the foils. For the
analysis involving all units, there were 7,040 individual target
spike counts (32 targets × 220 units) and 7,040 individual foil
spike counts (32 foils × 220 units). For a separate analysis in-
volving only single units, there were 1,088 individual target spike
counts (32 targets × 34 single units) and 1,088 individual foil
spike counts (32 foils × 34 single units). If a modest memory
signal were added to all the targets (a fully distributed coding

Fig. 2. Unit-level analyses. (A and B) For each unit j, where j = 1–220 for all
units (A) and j = 1–34 for the single units (B), a t test was performed com-
paring the mean normalized spike count across the 32 targets (μTargetj) with
the mean normalized spike count across the 32 foils (μFoilj). The mean of the t
distribution was significantly greater than 0 (dashed vertical line) both for all
units [M = 0.24, t(219) = 3.44, P < 0.001] and for the single units [M = 0.36,
t(33) = 2.24, P < 0.05]. (C and D) Distribution of target means (i.e., the dis-
tribution of μTargetj values) and foil means (i.e., the distribution of μFoilj val-
ues) for all units (C) and for single units separately (D). For all units (C), the
mean of the target means ðμTarget = 0:08Þ was significantly greater than the
mean of the foil means ðμFoil = 0:01Þ, t(219) = 3.69, P < 0.001. Similarly, for
the single units (D), the mean of the target means ðμTarget = 0:11Þ was sig-
nificantly greater than the mean of the foil means ðμFoil = 0:003Þ, t(33) = 2.28,
P < 0.05. Note that statistical tests for all units are reported for the sake of
completeness, but they should be interpreted with caution because the
measures may not be independent (i.e., the measures from two or more
multiunits from the same patient may reflect partially overlapping neural
activity).
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Fig. 3. Illustration of sparse distributed and fully distributed coding schemes.
The figure presents a simplified illustration of what these coding schemes
predict about normalized spike counts for eight units in response to the
presentation of eight foils and eight targets. The normalized spike counts
reflect hypothetical mean values (observed values would be distributed
randomly about those means). Because the foils are not associated with
a recent episodic memory, under both coding schemes the normalized spike
counts for all hippocampal units would be drawn from a distribution with
a mean of 0 (i.e., no response relative to baseline). Thus, both schemes
predict a large unimodal foil distribution centered on 0. Both schemes also
predict that the mean normalized spike count for the targets will be slightly
greater than that of the foils. (A) For the fully distributed coding scheme, the
targets should be associated with a large, right-shifted unimodal target
distribution centered between 0.1 and 0.2. (B) For the sparse distributed
coding scheme, each target would elicit a strong response in one unit (mean
normalized spike count = 2) but would elicit no response in the remaining
units. Thus, when the normalized spike counts for the targets are pooled
together, a bimodal distribution would result, consisting of one large target
distribution centered on 0 (coincident with the large unimodal foil distri-
bution) and one much smaller target distribution centered on 2.
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scheme; Fig. 3A), then, for both analyses, the entire target dis-
tribution would be shifted slightly rightward relative to the foil
distribution. If, instead, a small proportion of the targets generated
an especially strong response in a small proportion of neurons,
with the large majority of targets eliciting no differential re-
sponse relative to foils (a sparse distributed coding scheme; Fig.
3B), then a bimodal target distribution of normalized spike
counts should be observed. That is, the large majority of target
spike counts should coincide with the distribution of foil spike
counts, but a small percentage of targets should be drawn from
a distribution with a much higher mean.
The spike-count frequency distributions (Fig. 4 A and B) do

not show clear visual evidence of a bimodal distribution for the
targets. However, the bimodal target distribution predicted by
the sparse distributed account would be difficult to detect visu-
ally in a frequency distribution because only a few targets would
be expected to yield values associated with the upper distribu-
tion, and those few values would not necessarily be tightly or-
ganized in a visually apparent distribution. Some targets (and
fewer foils) do fall in the far right tails of the frequency dis-
tributions. To determine whether the target distributions in Fig.
4 A and B are slightly right-shifted or instead are bimodal, we
constructed empirical quantile–quantile (Q–Q) plots (22).
An empirical Q–Q plot simply displays one rank-ordered

dataset (i.e., the sorted normalized spike counts for the targets)
against another rank-ordered dataset (i.e., the sorted normalized
spike counts for the foils). This graphical analysis method pro-
vides more accurate information about the relative shapes of two
distributions than can be obtained from a visual inspection of the
frequency distributions alone. A shifted distribution would yield
a linear pattern of scores elevated above the diagonal line (il-
lustrated with hypothetical data in Fig. 4C), whereas a bimodal
distribution would yield a pattern of scores characterized by
a sharp departure from the diagonal line (illustrated with hy-
pothetical data in Fig. 4D). The empirical Q–Q plots (Fig. 4 E
and F) show clear evidence of a bimodal distribution for the
targets, as predicted by a sparse distributed coding scheme
(Fig. 3B).
We next tested whether the apparent departure from a shifted

function in the Q–Q plots was statistically significant. Specifi-
cally, we tested how often a departure that large would have
occurred if the target distribution were simply right-shifted and
not bimodal. To do so, we conducted a bootstrap analysis of the
normalized spike count data. One bootstrap analysis was per-
formed on the data from all units combined, and a second
bootstrap analysis was performed only on the data from the
single units. On each iteration of the bootstrap analysis, a foil
distribution was constructed by randomly sampling (with re-
placement) n normalized foil spike count scores (n = 7,040 for
the full analysis, and n = 1088 for the single unit analysis). Next,
a target distribution was constructed by independently sampling
a second set of n normalized foil spike count scores and then
adding a constant α to each score. The value of α was set to the
average difference between the target and foil distributions in
the empirical data (α = 0.06 for the full analysis, and α = 0.10 for
the single units). Except for random error introduced by the
sampling-with-replacement process, the target distribution cre-
ated in this manner was not bimodal but instead was right-shifted
relative to the scores used to represent the foil distribution. A Q–

Q plot then was constructed for the hypothetical foil and target
values, and a statistic was formed by computing the sum of the
squared differences between the paired target and foil values.
Ten thousand bootstrap iterations were run, and the proportion
of these iterations in which the sum-of-squared differences was
larger than the sum-of-squared differences in the empirical data
was calculated. The results showed that sum-of-squared differ-
ences as large as observed in the empirical data occurred with
probability 0.004 in the bootstrap trials for all of the units and

with probability 0.011 in the bootstrap trials for the single units.
Thus, the apparent evidence for a bimodal target distribution in
the Q–Q plots is unlikely to have occurred by chance. The results
of these bootstrap statistical tests were nearly identical when α

Fig. 4. Distributional analyses of normalized spike counts. (A) Frequency
distribution of normalized spike counts for each of 7,040 normalized target
spike counts (32 targets × 220 units; gray bars) and 7,040 normalized foil
spike counts (32 foils × 220 units; black bars). The means of the target and
foil distributions are necessarily the same as the means of the target and foil
means shown in Fig 2C (μTarget = 0:08 and μFoil = 0:01, respectively). (B) Single-
unit frequency distribution of normalized target spike counts for each of
1,088 normalized spike counts (32 targets × 34 single units; gray bars) and
1,088 normalized foil spike counts (32 foils × 34 single units; black bars).
Again, the means of the target and foil distributions are necessarily the same
as the means of the target and foil means shown in Fig. 2D (μTarget = 0:11 and
μFoil = 0:003, respectively). (C) Hypothetical Q–Q plot illustrating the expec-
ted pattern of results for a shifted distribution. The plot is based on simu-
lated data drawn from one Gaussian distribution with an arbitrary mean of
0.75 and SD of 1 (target distribution) vs. another Gaussian distribution with
a mean of 0 and SD of 1 (foil distribution). (D) Hypothetical Q–Q plot illus-
trating a bimodal distribution. The plot is based on simulated data drawn
from a bimodal mixture distribution with a mean of 0 and SD of 1 for 95% of
the scores and a mean of 5 and a SD of 1 for 5% of the scores (target dis-
tribution) vs. a unimodal Gaussian distribution with a mean of 0 and SD of 1
(foil distribution). (E and F) Empirical Q–Q plots for the frequency dis-
tributions shown in A and B, respectively. The Q–Q plots suggest a bimodal
distribution of target (but not foil) values. In the Q–Q plot for all units (E),
there are 112 target values (1.6% of the total) that account for the upward
trending portion of the curve that begins at ∼2.5 on the x and y axes
(boundaries that are indicated by dashed gray lines). Although it is not
obvious, the remaining 6,960 scores (with x and y values below 2.5) fall close
to the diagonal line of equality. For the single-unit Q–Q plot (F), there are
∼30 target values (2.8% of the total) that account for the upward trending
portion of the curve that begins at ∼2.5 on the x and y axes (indicated by
dashed gray lines). The remaining 1,048 values with x and y values below 2.5
fall close to the diagonal line of equality.
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was a random variable (instead of being a constant) drawn from
exponential distributions with means of 0.06 and 0.10 for the full
and single unit analyses, respectively.
For the Q–Q plot with all units combined (Fig. 4E), there are

∼112 target values (1.6% of the 7,040 target-by-unit spike
counts) that account for the upward trending portion of the
curve that begins at ∼2.5 on the x and y axes (indicated by the
dashed gray lines). In the single-unit Q–Q plot (Fig. 4F), there
are ∼30 target values (2.8% of the 1,088 target-by-unit spike
counts) that account for the upward trending portion of the
curve. For both plots, the remaining target values (>97%) ap-
pear to be coincident with the foil values. Such a small per-
centage of target-by-unit spike counts exhibiting elevated activity
is consistent with the percentage of active units in hippocampal
subfields in the rat, which have been found to range from 0.5% in
dentate gyrus to 2.5% in CA1 and CA3 (23).
In Fig. 4F, the ∼30 elevated target-by-unit spike counts are

spread across the 34 single units. Seven of the nine patients and
22 different single units are represented in the top 30 single-unit
target responses. Two targets appear four times (“shallow” and
“hand”), one target appears three times (“family”), two targets
appear twice (“organ” and “sweat”), and 15 targets appear once
(a total of 20 different words). Thus, generally speaking, each
single unit was responsive to only a few targets, the pattern that is
anticipated by the sparse distributed account (Fig. 3B). Note that
the strong responses in some units to these target items cannot
be attributed to random spiking activity because they occurred
significantly more often in response to targets than to foils.
Despite their critical contribution to the significantly elevated

single-unit t distribution (Fig. 2B), these 30 normalized spike
counts were not associated with what usually would be regarded
as a large increase in the absolute level of spiking activity relative
to baseline. For example, for the 30 target-by-unit normalized
spikes found to be elevated during the test period, the average
number of raw spikes increased from 2.3 during the 800-ms
prestimulus baseline period to 4.1 during the 800-ms post-
stimulus test period. This increase represents a difference of only
1.8 spikes, not even double the baseline count (see Fig. S2 for
a representative raster plot).

Discussion
Several previous studies in humans and monkeys failed to identify
any memory-related neurons in the hippocampus (e.g., 12, 15).
Other studies identified only a few such neurons. For example,
a continuous recognition study in the macaque (24) found that
only 2.3% of hippocampal neurons (15 of 660) significantly dif-
ferentiated repeated items from nonrepeated items. Similarly,
we found that only 2.9% of the single units we recorded (1 of 34)
significantly differentiated targets from foils. Findings such as
these have been taken to mean that a small proportion of hip-
pocampal neurons is involved in recognition, but our findings
suggest otherwise. Even though only a few neurons yielded sta-
tistically significant differences in their firing rates in response to
targets vs. foils, most or all of the single units we recorded
appeared to be involved in recognition memory for at least some
of the target items. Their involvement was suggested by the shift
of the entire distribution of t scores to above 0 (Fig. 2 A and B).
By itself, that finding does not distinguish between the three
coding schemes under consideration here (localist, fully distrib-
uted and sparse distributed), although, as noted earlier, the mere
fact that we detected neural evidence of a memory signal weighs
against a strictly localist scheme. A further analysis of the in-
dividual target and foil spike-count distributions—an analysis
that has not been performed in prior studies—showed that our
data (Fig. 4 E and F) accord with predictions made by the sparse
distributed coding scheme illustrated in Fig. 3B.
Although studies often do not find a greater-than-expected

number of hippocampal neurons involved in episodic memory,

some previous studies have identified hippocampal neurons that
significantly differentiated targets from foils in numbers that
were greater than would be expected on the basis of chance. This
result has been observed in studies with humans (19, 20) and
monkeys (21). However, these studies did not examine how
spiking activity was distributed across test items, so it is not
known if the neurons were responding to a general class of items
(e.g., to all previously seen items) or to a relatively small subset
of items that happened to generate strong enough responses to
yield significant t tests. Conceivably, a bimodal distribution of
spiking activity occurred in those studies as well (consistent with
sparse distributed coding), in which case those findings would
accord with the results reported here.
Another difference between the results of our study and those

of previous studies is that we found no evidence of neurons
responding to stimulus novelty (i.e., a stronger response to foils
than to targets), but several prior studies have reported this ef-
fect (19–21). A possible explanation for this discrepancy is that
the stimuli used in prior studies consisted of unfamiliar pictures,
whereas the stimuli we used consisted of familiar words. Pre-
sumably, a novelty response is more likely to be detected when
the foils are truly novel. This difference in stimulus materials
(pictures vs. words) also may explain why prior studies have
detected an episodic memory signal in the amygdala as well as in
the hippocampus (19, 20), whereas we detected an episodic
signal only in the hippocampus.
The pattern of results shown in Fig. 4 E and F indicates sparse

distributed coding of episodic memory, and the pattern was the
same whether the analysis was based largely on multiunits (Fig.
4E) or was limited to single units (Fig. 4F). In both cases, a bi-
modal distribution of spiking activity associated with recently
encoded targets was observed, with the upper distribution con-
sisting of a small percentage of recorded target activity. The most
straightforward interpretation of why single units and multiunits
exhibit the same pattern is that the target items are represented
in the hippocampus by distributed clusters of localized neural
activity. Under those conditions, a bimodal target distribution
would be evident for single units and multiunits alike.
Previous work with humans has suggested that the represen-

tation of semantic memory in the hippocampus is relatively
sparse (11). In addition, one study (10) found that episodic
memory of a particular video clip (tested using recall) was
preceded by the selective reactivation of the same neuron
that had reliably responded to the presentation of that clip on
an earlier test of semantic memory. This finding suggested that
episodic memory (like semantic memory) might be represented
by a small fraction of highly selective hippocampal neurons.
However, episodic memory generally involves the retrieval of
both specific episodic details (e.g., memory for context) as well as
general semantic knowledge (25, 26). Thus, the neural activity
measured when a clip was recalled could easily reflect the same
semantic memory signal that was activated by the initial pre-
sentation of the clip. The goal of our study was to measure neural
activity associated with a series of recently encoded mem-
ories that were unambiguously episodic in nature and that
were formed rapidly on a single learning trial (and then tested
only once).
Most neurocomputational models dating back to Marr (6)

hold that episodic memory representations in the dentate gyrus/
CA3 region of the hippocampus are supported by a sparse dis-
tributed neural code (Fig. 3B). Although our electrodes were not
localized to particular hippocampal subfields, our findings nev-
ertheless are consistent with this idea. Other evidence consistent
with a sparse code in the hippocampus has been reported in
studies using rats (e.g., 27, 28). However, these studies involved
tasks in which memories were acquired over an extended period
(allowing for the development of place fields), not tasks in which
multiple memories were formed in rapid succession on a single
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trial. The same is true of prior evidence for sparse coding of
semantic memory in the human medial temporal lobe (11). Our
findings suggest that, as has long been predicted, rapidly formed
episodic memories are supported by a sparse distributed code in
the human hippocampus.

Materials and Methods
Participants. The participants were nine patients with drug-resistant epilepsy
requiring the implantation of depth electrodes (Ad-Tech Medical) for clinical
evaluation and consideration of possible surgical resection of their seizure
focus. The mean age of the patients was 39 y (range 19–50 y), five were
female, eight were right-handed, and all had temporal lobe epilepsy. All
patients provided informed consent to participate in the research using
a protocol that was approved by the Institutional Review Board of St.
Joseph’s Hospital and Medical Center.

Materials. Stimuli for the experimental trials consisted of 192 words taken from
the Medical Research Council Psycholinguistic database (29), three to seven
letters in length, with a range in concreteness rating of 550–700. Half of the
words (i.e., 96) were high-frequency words, and half were low-frequency
words. The 192 words were randomly divided into three unique sets for each
patient (64 words per set). Each set consisted of 32 targets (words that would
appear on the study list and again on the recognition test) and 32 foils (words
that would appear only on the recognition test) with equal representation of
high- and low-frequency words. Therefore, participants could perform up to
three recognition memory study/test cycles with different words.

Memory Task. Participants were told that they would be presented with
a series of words and that, following the presentation of the list, their
memory would be tested. During the study phase, a trial began with a fix-
ation cross that appeared in the center of the computer screen for 750 ms,
followed by the presentation of a word for 2 s. Half of the study words were
presented at the top of the screen, and the other half were at the bottom,
randomly selected on each trial for each participant.

During the test phase, 2 min later, 32 targets and 32 foils were presented in
a randomly determined order. Test trials began with a 450-ms fixation cross,
which appeared in the center of the screen, followed by a centrally presented
test word. After 500 ms, a confidence rating scale appeared at the bottom of
the screen, with boxes labeled from 1 (very sure new) to 8 (very sure old). To
indicate their memory decision, participants clicked one of the boxes using

a computer mouse. When responses were equal to or greater than 5 (“old”
decision), participants then made a Remember-Know-Guess (R-K-G) judg-
ment about their subjective memory experience. All R-K-G judgments were
followed by “source” judgments, in which participants clicked one of two
boxes (labeled “top” and “bottom”) to indicate whether the word had been
studied at the top or the bottom of the screen. The confidence ratings, R-K-G
judgments, and source memory decisions are not directly relevant to the
issue of sparse vs. distributed coding and are not analyzed here. All responses
were self-paced.

Participants received practice trials to familiarize themselves with the task.
A session (involving a single 32-item list and a 64-item recognition test) re-
quired ∼20 min to complete. Four participants completed three recognition
memory tests in separate sessions, one participant completed two tests in
separate sessions, and the remaining four participants completed one test
(Table S1). Thus, there were 18 recognition tests in all. Different sets of
words were used for each test.

Microwire Recordings. Microwire implantation, recording, and spike-sorting
details are described in SI Materials and Methods. The test period during
which spike counts were recorded (200–1,000 ms after the presentation of
the test item) was chosen because a previous study (9) found that selective
responses of hippocampal neurons began ∼300 ms after stimulus presentation
and because the large majority of behavioral responses occur after 1 s. Fig. S3
shows waveforms for a single unit recorded from the hippocampus.

Because some patients received up to three recognition memory tests on
three separate days, it is possible, although unlikely, that some units con-
tributed to recordings made in more than one session (the microwires are
fixed to the skull 3–4 cm from their tips). However, each recognition test
involved an entirely different set of words for both targets and foils. In
addition, our analyses were not based on selected units (30). Thus, our
findings were not disproportionately influenced by the activity of selected
units that might have been responsive to particular words.
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