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We derive a phase diagram for amorphous solids and liquid super-
cooled water and explain why the amorphous solids of water exist in
several different forms. Application of large-deviation theory allows
us to prepare such phases in computer simulations. Along with
nonequilibrium transitions between the ergodic liquid and two dis-
tinct amorphous solids, we establish coexistence between these two
amorphous solids. The phase diagram we predict includes a non-
equilibrium triple point where two amorphous phases and the liquid
coexist. Whereas the amorphous solids are long-lived and slowly aging
glasses, their melting can lead quickly to the formation of crystalline
ice. Further, melting of the higher density amorphous solid at low
pressures takes place in steps, transitioning to the lower-density glass
before accessing a nonequilibrium liquid from which ice coarsens.

glass transition | putative liquid-liquid transition

Amorphous ices are nonequilibrium, low-temperature phases
of water (1–3). These phases lack long-range order and their

properties are fundamentally dependent on the protocols by
which they are prepared (4, 5). They are molecular glasses that
exhibit a variety of reproducible behaviors, including transitions
between different amorphous states. This paper provides quantita-
tive analysis and numerical simulation of this polyamorphism and
predicts a nonequilibrium phase diagram, offering explanations
of previous experimental observations (1, 3, 6–9) and possibly
guiding future experiments on supercooled water.
Our treatment can be applied generally in many cases where

there is interest in comparing phase behaviors of nonequilibrium
glasses with those of equilibrium liquids and crystals. For water in
particular, however, our results bear on whether observed non-
equilibrium polyamorphism can be interpreted as evidence of more
than one distinct liquid phase of water. It is a topic of current in-
terest and controversy. There are no direct measurements of two-
liquid behavior in water, but the low-temperature critical point that
would accompany such behavior has been offered as an explana-
tion for unusual properties of liquid water, such as maxima in
various response functions (4, 10), and molecular simulation
results are often cited as supporting this theoretical idea, e.g., refs.
11–14. However, water anomalies can be explained with models
for which there is demonstrably only one liquid phase (15), and
seemingly rigorous equilibrium analysis of various simulation models
argues against cold water exhibiting the existence of two distinct
liquids (16, 17). Rather, it seems that an illusion of two-liquid be-
havior in simulation coincides with coarsening of ice, and this paper
shows how arresting those fluctuations yields a multitude of non-
equilibrium amorphous solids.

Phenomenology
A phase diagram is drawn in Fig. 1A. It is partitioned with the
onset temperature, To(p), which is the crossover temperature
below which liquid-phase dynamics is spatially heterogeneous.
This temperature is an equilibrium material property. The pres-
sure dependence of To(p) for water has been determined from
experimental transport data and computation (18). The low-
pressure limit of the onset temperature, To, coincides with the
temperature of maximum density (19). In the phase diagram, we
express temperature T in units of To. Similarly, we express pres-
sure p in units of po = −10−4 Δh/Δv, where Δh and Δv are, re-
spectively, the molar enthalpy and volume changes upon melting

ice at low pressures. With reduced pressure and temperature units,
the phase diagram is reasonably independent of choice of molec-
ular model (19). Requirements for a suitable model are twofold:
(i) The liquid phase exhibits preference for local tetrahedral order,
and (ii) the liquid freezes into an ice-like crystal with global tet-
rahedral order. Values of To and po, specific lattice structures,
absolute melting temperatures, and so forth are sensitive to spe-
cific choices of molecular model, but all have similar liquid-phase
dynamics at temperatures below the onset, and all have ice-melting
temperatures reasonably close to the onset (19, 20). For experi-
mental water, To = 277 K and po = 0.3 bar.
Occurring as it does below the onset temperature, the dynamics

of forming ice at supercooled conditions is complex. For example,
in the initial stages of coarsening at low enough temperatures
relatively large density fluctuations occur associated with dynamic
heterogeneity. These fluctuations take place over a range of time
scales extending to milliseconds (17, 21), and, when viewed on
shorter time scales, are easily confused with the existence of two
distinct liquids. These fluctuations can be arrested and crystalli-
zation can be avoided through rapid enough cooling or confine-
ment, producing nonequilibrium amorphous solids of various types
with different glass transitions. For instance, when hyperquenching
at a cooling rate ν, freezing into glass can occur at a temperature
Tg , where 1/ν = jdτ/dTjT=Tg. Here, τ stands for the structural re-
laxation time of the liquid before freezing. Because the rate of
increase of τ increases with decreasing T, the glass transition
temperature Tg decreases with decreasing ν. Of course, a low
enough cooling rate leads to crystallization, not glass formation.
Importantly, a different ν and therefore a different Tg can imply a

different type of glass. This is because the transition at Tg produces a
material with a frozen nonequilibrium correlation length ℓne (22).
This length is the mean-free path between excitations at the glass
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transition (“excitations” are defined precisely in the next section).
Aging or structural relaxation occurs through coupling excitations;
the closer the excitations the more frequent the coupling. In the
liquid, T > Tg, the distribution of lengths between excitations is ex-
ponential, like that of an uncorrelated gas of particles. Dynamics in
that case takes place hierarchically, with the fastest and slowest time
scales dictated by the domains with smallest and largest ℓ, respec-
tively. By contrast, in the glass, T < Tg , the distribution of ℓ is non-
exponential with a dominant andmost-probable length ℓne, and there
is a single activation energy associated with that dominant length. As
Tg decreases with decreasing cooling rate, ℓne grows, and a larger
length implies a greater stability of the glass. In particular, the glass
formed with a specific ℓne can be cooled far below its Tg , and when it
is then heated slowly, it loses its stability at an apparent glass transi-
tion temperature Tag , where Tag< Tg. The difference Tg−Tag grows
as ℓne decreases (or equivalently, as ν increases) (23).
The distinction between Tg and Tag is important for water

precisely because rapid cooling is required to avoid crystallization
of that material. We illustrate the behavior for water in Fig. 1A.
The cooling rate required to produce ℓne ≈ 1.5 nm would
be 108 K/s, and that required to produce ℓne ≈ 5 nm would be
104 K/s. The former is slightly faster than usually estimated for
typical experimental hyperquenching rates, whereas the latter is

somewhat slower than what would be needed to avoid crystalliza-
tion. To reach ℓne ≈ 10 nm would require an even slower ν ≈ 0.1 K/s.
A procedure other than straightforward cooling would be needed to
produce amorphous solids of water with ℓne ≈ 5 or 10 nm.
The dependence of Tg and Tag upon ν emphasizes that these

temperatures are nonequilibrium properties, and their projections
onto a p–T plane depend implicitly upon the protocol by which the
system is driven from equilibrium. The distinction between Tg and
Tag has been noted by Yue and Angell (24), but without the con-
nection to ℓne. Formulas with this connection predict the dashed
and dotted lines in Fig. 1A. They are derived elsewhere (22, 23)
and summarized in SI Text. The formulas allow us to interpret
phenomena that have been observed experimentally, and they
allow us to anticipate phenomena examined later in this paper.
To begin, notice that Tg and Tag are nonmonotonic functions of

pressure. This variation reflects the nonmonotonic variation of the
onset temperature, which in turn reflects a well-known fact about
water: at low pressures, transformations of liquid water to more or-
dered states (whether to ice or to supercooled liquid) occur with
decreases in density, whereas at high pressures they occur with
increases in density. A line passing through the locus of minima in Tg
partitions the high- and low-pressure regimes in Fig. 1A. As the local
structure of the high-density amorphous (HDA) region is necessarily
distinct from that of the low-density amorphous (LDA) region, there
is a possibility of a nonequilibrium transition between the two. This
transition occurs in the vicinity of the line separating the LDA and
HDA regions in Fig. 1A. Indeed, as noted by the circles in that figure,
an HDA–LDA transition is observed experimentally close to that
line. The transition cannot persist into the liquid because fluctu-
ations in the liquid remove long-lived distinction between the two
(17, 25). Determining the nature of the transition and its end point
requires further analysis, which we will get to soon.
Also notice in Fig. 1A that HDA glass with rather small ℓne has

been produced experimentally. Through cycles of changing T and
p, or by other means (6, 9, 26), the stability of that material can be
enhanced, possibly producing a material with ℓne ≈ 1.5 or 2 nm. In
that case Tag ≈ 130 K. Such a material could be cooled to a very
low temperature and depressurized, but still with the high-density
structure and nonequilibrium length locked in. From Fig. 1A
we see that subsequent warming would then cause a transition at
a temperature close to Tag , at which point, given its pressure and
temperature, the destabilized HDA will transform to LDA in cases
where Tag of LDA is higher than that of HDA. Further warming will
thenmelt LDA followed by rapid crystallization. Indeed, a version of
this predictable multistep process has been observed experimentally
(9). SI Text illustrates this behavior with simulation trajectories made
possible from our numerical preparation of HDA and LDA, and it
further discusses this interpretation of the experiments.

Preparations of Amorphous Ices with the s Ensemble
As noted, amorphous ices (or any other glass) have structures
distinct from those of an equilibrium liquid, distinct in the way
excitations are distributed (22). Preparation of amorphous ices in
the laboratory can take microseconds to minutes to even hours.
This range of time scales required by experiment is inaccessible
by straightforward molecular simulation.† Nevertheless, it is possible

Fig. 1. Liquid, LIQ, and nonequilibrium HDA and LDA solids. (A) Pressure–
temperature phase diagram for water, with the liquid onset temperature line
(solid), glass transition lines (dashed), and apparent glass transition lines (dotted).
Squares locate points where nonequilibrium s-ensemble calculations locate
coexistence between nonequilibrium phases in the mW model. Circles locate
transitions observed in experiments (1, 8, 9) and in nonequilibrium relaxation
simulations of the mW model. (B) The mean reduced density hρi as a function
of nonequilibrium control parameters computed for the mW model with the s
ensemble near the nonequilibrium triple point. (C) Van Hove self-correlation
functions for the three phases at the liquid’s principal wave vector k, all com-
puted for the mW model at conditions near the nonequilibrium triple point.
(D–F) Snapshots from simulations, where a bond connecting molecular centers i
and j is colored according to the value of ηijk averaged over a second neighbor k
(the quantity ηijk being defined below in Distinct Phases and Coexistence). The
bond is red if this value is less than 0.1; otherwise, it is blue. A typical config-
uration of LDA ice is pictured in D, that of a domain of LDA ice in coexistence
with HDA ice is in E, and that of HDA is in F.

†Earlier attempts at numerical simulations of HDA and LDA have ignored this time-scale
issue, imagining that a glass is produced simply when a molecular dynamics trajectory seems
nonergodic over a relatively short simulation time. For example, Giovambattista and co-
workers (27) attempted to create HDA and LDA phases with cooling rates of 3 × 1010 K/s,
and they judged whether a glass is formed by examining changes in configurations over
trajectories no longer than 10−7 s. In contrast, the required cooling rate to produce a rea-
sonably stable glass, such as we prepare and describe herein, is no faster than 108 K/s, and
the time scales for aging such glass is no less than 10−4 s (SI Text). Not surprisingly, the
materials simulated in ref. 27 are not like the HDA and LDA glasses prepared in the labo-
ratory. The alleged HDA phase of ref. 27, for example, cannot transition to a lower-density
material until decompressed to negative pressures, at which point it evaporates, while
experimentally, HDA and LDA are robust and can interconvert reversibly around p ≈ 103 bar.
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to produce robust immobile amorphous states in a computer
simulation. It is done through an importance sampling that focuses
on relevant parts of trajectory space. The procedure is a non-
equilibrium version of large-deviation formalism (28). Such an ap-
proach has been successful in simulating stable glasses of simple-
liquid mixtures (29–32). We adapt that approach here with one
additional feature: while using a dynamical order parameter to
highlight noncrystalline immobile states, as has been done before,
we use a second-order parameter that distinguishes nonequilibrium
immobile states of different densities. Both order parameters are
functions of path, as required to characterize nonequilibrium phases.
The order parameter we use to measure mobility is the total

number of enduring displacements (EDs) occurring in anN-particle
system during a trajectory of length tobs (30). Other functions of
system history could also be used (29, 31, 32). An ED occurs when
a particle jumps from one position to another, and it sticks for a
significant period in the new position (33). Such motions manifest
the elementary excitations in a structural glass former (34). They
occur intermittently, and when one such event occurs, it takes on
average Δt to complete. This instanton time, Δt, is much smaller
than the structural relaxation time of a glass-forming melt. Struc-
tural relaxation follows from coordinated motions of a large num-
ber of elementary excitations (34).
The number of EDs per particle per unit time is

ĉ½xðtÞ�= Δt
Ntobs

XN

i=1

Xtobs

t=Δt
ΘðjriðtÞ− riðt−ΔtÞj− aÞ; [1]

where x(t) stands for the trajectory of the system, a is the dis-
placement length (a fraction of a molecular diameter), Θ(x) is
the unit Heaviside function, and riðtÞ is the position of molecule
i, averaged over the time interval t − δt/2 to t + δt/2. The aver-
aging over δt coarse-grains out nonenduring vibrations. Apply-
ing the prescriptions of ref. 34 to models of water gives Δt as
approximately the structural relaxation time at normal liquid
conditions, and δt an order of magnitude smaller. For the cal-
culations illustrated below, we use Δt = 1 ps and δt = 0.1 ps.
Other choices for Δt and δt yield consistent results.
The second-order parameter we use is a dimensionless mea-

sure of density history. For constant pressure and fixed N, it can
be expressed in terms of the system’s instantaneous density, ρ(t):

ρ̂½xðtÞ�= Δt
tobs

Xtobs

t=Δt

ρðt−ΔtÞ− ρxtl
ρliq − ρxtl

; [2]

where ρliq and ρxtl are the average densities of the equilibrium
liquid and crystal, respectively, at a particular thermodynamic state.
These order parameters have associated fields, which render

the spatial patterns associated with distinct phases and inter-
faces. The interexcitation lengths ℓ and ℓne characterize the pat-
terns of the excitation field in the liquid and glass, respectively.
The relevant equilibrium probability distribution function is

Pðc; ρÞ= hδ�c− ĉ½xðtÞ��δ�ρ− ρ̂½xðtÞ��i
A
; [3]

where δ(x) is Dirac’s delta function and the subscripted angle brack-
ets 〈. . .〉A denote equilibrium average over trajectories that include
amorphous microstates only. Such microstates have small values of
the Steinhardt–Nelson–Ronchetti Q6 parameter (35). This parame-
ter is finite for crystalline ice states and vanishes as Oð1= ffiffiffiffi

N
p Þ for

amorphous states. It is therefore possible to identify reasonable
ranges of Q6 values that discriminate between amorphous and
crystalline states of water. The amorphous equilibrium distri-
bution functional is P½xðtÞ�∝ peq½xðtÞ�∏tΘðQp

6 −Q6ðxtÞÞ, where
peq [x(t)] is the unconstrained trajectory distribution, and Q6(xt) is
the crystalline order parameter for the system configuration at

the tth time interval. We have checked that in the region of the
equilibrium phase diagram where our calculations are performed
that our results are insensitive to a cutoff Qp

6, to the extent that it is
large enough to encompass typical liquid fluctuations and small
enough to exclude crystal interface formation (i.e., for an N = 216
particle system, the acceptable range is 0:1<Qp

6 < 0:18). See ref. 16.
Conditioned as it is to sample only amorphous states, P(c,ρ) is

unimodal, with the most probable region near the average values
of c and ρ for the liquid. The distribution, however, exhibits fat
tails at the low values of c typical of glass. These tails (i.e., large
deviations) can be stabilized with nonequilibrium fields that cou-
ple to ĉ½xðtÞ� and ρ̂½xðtÞ�. Specifically, with the fields s and λ, the
equilibrium distribution of trajectories P[x(t)] is reweighted to

Ps;λ½xðtÞ�∝P½xðtÞ�e−
�
sĉ½xðtÞ�−λρ̂½xðtÞ��Ntobs ; [4]

for which the nonequilibrium order-parameter distribution is

Ps;λðc; ρÞ∝Pðc; ρÞe−ðsc−λρÞN tobs : [5]

Positive values of s favor low-mobility (i.e., glassy) states, and
positive values of λ favor high-density states.
We have applied these equations to the mW model of water

(36). The reference temperature and pressure of the mW model
are To = 250 K and po = 1 bar, respectively. The mW model is the
simplest of atomistic models to exhibit reversible thermodynamics,
freezing, and relaxation of water (16, 18, 19, 36, 37). That it also
faithfully exhibits transitions to and from glass, as we detail, is
evidence that the model contains essential features underlying the
physical properties of water both in and out of equilibrium.
Our trajectories fix the number of molecules, N, the pressure p,

and the temperature T. The system is evolved over a time Δt with
a Nosé–Hoover barostat (38). At every Δt, all N-particle momenta
are randomized, and this process is repeated up to a trajectory of
length tobs.We typically useN= 216 and take tobs to be 10 to 400 times
the structural relaxation time of the reversible melt. The non-
equilibrium distribution for these trajectories, Eq. 4, is then sampled
using transition path sampling (39).Ref. 30 provides an illustration of
such a calculation for a supercooled simple-liquid mixture, but
without the extra field λ. The field λ has a thermodynamic meaning,
like a chemical potential, but affecting a time-averaged density rather
than an instantaneous density. In contrast, s has a dynamical mean-
ing, essentially the rate at which EDs are suppressed (40).
Although this protocol overcomes huge time scales associated

with glass transitions (41), the calculations are nevertheless time-
consuming. As such, we have considered limited system sizes, large
enough to exhibit clear signatures of glass transitions but not larger.
The side length of a simulation box with N = 216 is slightly larger
than 6σ, where σ is a molecular diameter. That side length is large
compared with the equilibrium correlation length of the homoge-
neous liquid, which is about σ or smaller. However, 6σ can be small
compared with nonequilibrium lengths that characterize robust
glasses. Prior work (29, 30) has found that anomalous responses
of glass transitions begin to disappear from simulations when
system sizes are decreased below 200 particles. With N ≈ 200, the
stability of glasses we produce is limited to ℓne ≈ 6σ = 1.5 nm (41).

Distinct Phases and Coexistence
The nonequilibrium phase behavior we find in this way is illustrated
in Figs. 1 and 2. We find three distinct amorphous phases: one
ergodic liquid and two glasses. For a finite tobs with fixed p and T,
anomalous responses consistent with first-order transitions occur at
specific values of s and λ, which we label as s* and λ*, respectively.
Glasses formed at the higher temperatures require higher s and are
thus intrinsically less stable than those formed at lowerTwith lower s.
The amorphous solid regions end where no value of s can stabilize
a glass distinct from the liquid. That region cannot extend above To.
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The first-order characters of the glass transitions are man-
ifested by precipitous changes in density and mobility that tend
to discontinuities as Ntobs → ∞. Transitions between the two
amorphous solids are illustrated in Fig. 1B, and transitions be-
tween the amorphous solids and the liquid in Fig. 2B. Consistent
with experiments on salty water (42), our coexistence line be-
tween the HDA and LDA solids ends at a triple point, not a
critical point as supposed by Mishima et al. (3). In a long tra-
jectory at this nonequilibrium triple point, the system will visit
each of the three phases and transition between them. Fig. 1E
shows a configuration near the triple point, transitioning be-
tween LDA and HDA.
From our explicit phase-coexistence calculations, like those il-

lustrated in Fig. 2, we have located the square points on Fig. 1A.
These points lie in accord with the predictions of our ana-
lytical formulas for the glass transition temperature with ℓne =
6σ = 1.5 nm. This agreement provides numerical support for
our understanding of the glass transition. Further support comes
from comparison with experiment.
The coexistence line between LDA and HDA occurs at the

effective pressure p − kBTλ*tobs/Δv = (5 ± 3) × 103 po. (The un-
certainty reflects the error estimates illustrated in Fig. 2D.) With
po ≈ 0.3 bar, the value of the reference pressure for water, the
predicted coexistence is in harmony with experiments for the
pressures found to produce reversible transitions between HDA
and LDA (3). The predicted density differences between LDA,
HDA, and liquid are also consistent with experiment within our
corresponding states. For example, converting the reduced density
ρ to absolute experimental densities (43), the results illustrated in
Fig. 2 imply that at low pressures (p/po = 1) the density of the
liquid is higher than that of LDA by 0.08 g/cm3. Similarly, at high
pressures (p/po = 104), the computed results imply that the density
of HDA is higher than that of LDA by 0.12 g/cm3; and at p/po =
2 × 104, the computed results imply that the density of HDA is
higher than that of the liquid by 0.005 g/cm3.
The structure of the LDA glass is locally tetrahedral, as il-

lustrated by the typical configuration shown in Fig. 1D. The LDA
basin has the same density as the crystalline phase, ordinary ice
Ih, consistent with experimentally prepared LDA ices (4). The
local order is quantified with ηijk = (uij · uik + 1/3)2, where uij and
uik are the unit vectors pointing between a tagged molecule i to
a pair of nearest neighbors j and k, respectively. For the LDA
phase we have stabilized with the s ensemble, 〈ηijk〉A ≈ 0.05. In
comparison, for the liquid and the HDA phase, 〈ηijk〉A ≈ 0.2.
HDA ice rendered in Fig. 1F has an average structure similar

to that of high-pressure liquid water (44). Our computed radial
distribution functions for these phases are shown in Fig. 3. The

structures of the liquid and glass phases differ in the fluctuations
from the average. Spatial arrangements of excitations are un-
correlated in the liquid, but are anticorrelated with a large cor-
relation length in a glass (22). This difference is most evident in
the dynamics, Fig. 1C, because the anticorrelation arrests mo-
bility (22, 45). Notice from the plateau values of Fs(k,t) that
fluctuations in molecular positions in HDA are larger than those
in LDA. This juxtaposition predicted from our simulations is
consistent with experiment (46).

A B C D

Fig. 2. Nonequilibrium distributions for mobility c, reduced density ρ, and the susceptibility χðsÞ for cold water. (A) −ln Ps,λðc,ρÞ calculated with the mWmodel
for tobs = 300Δt, s≈ s*, and λ= 0 at the state point T=To =0:8, p=po = 1. (B) Mean mobility and susceptibility calculated at the state point in A for different
trajectory lengths, tobs, illustrating scaling consistent with a first-order phase transition in trajectory space. The susceptibility peaks at nonequilibrium co-
existence, s= s*. (C) −ln Ps,λðc,ρÞ calculated with the mW model for N= 216, s≈ s*, λ≈ λ*, and tobs = 200Δt at the state point T=To =0:75, p=po = 104. (D)
Marginal distribution functions of ρ calculated for LDA–HDA coexistence at the state point in C. Shading indicates error estimates of 1 SD. Contours in A and C
are spaced by unity, and the coloring is a guide to the eye.

Fig. 3. Relaxation behavior of amorphous ices produced with the s ensemble.
(A, Left) Average potential energy per particle, in units of To, as a function of time
for the mW model prepared in an ensemble at s> s*, T=To = 0:8, p=po = 0, and
tobs = 200Δt and evolved with s= 0, T=To = 0:76, p=po = 0. The dashed black line
is an exponential functionwith characteristic time, 200Δt. (A, Right) Average pair
distribution functions at two indicated points in time. Faint lines show the gðrÞ
for the alternative solid. (B, Left) Average reduced density as a function of time
for themWmodel prepared in an ensemble at s> s*, T=To = 0:76,p=po = 2× 104,
and tobs =200Δt and evolved with s= 0, T=To = 0:6, p=po = 5× 103. (B, Right)
Average pair distribution functions at the two indicated points in time. Faint
lines show the gðrÞ for the alternative solid.
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The marginal distribution of c,
R
dρ Ps,λ(c,ρ), has mean value

〈c〉, and its variance gives the susceptibility, χðsÞ=−ð∂hci=∂sÞλ =
Ntobshðc− hciÞ2i. In the thermodynamic limit, 〈c〉 and χ(s) are
singular functions at the point of a glass transition, s = s*. In sim-
ulations, the development of this singular behavior can be detected
from system-size dependence. Specifically, for a first-order transi-
tion, the width of the change in 〈c〉 around s = s* should decrease
proportionally to 1/Ntobt, and the height of χ(s) at s = s* should
grow proportionally to Ntobs. This scaling with respect to space–time
volume is exhibited by the functions graphed in Fig. 2B. Similarly, at
coexistence, the free-energy barrier between the two stable basins
should grow proportionally to space–time surface area, (Ntobs)

3/4.
This scaling is consistent with the growth exhibited in Fig. 2D, al-
though a compelling demonstration is beyond the scope of the small
system size and statistics we are able to treat. Also, as space and time
obey different symmetries, finite size scaling may depend on other
combinations of N and tobs. See, for example, analogous issues in
theory of quantum phase transitions (47).

Melting and Transitioning Between Amorphous Solids
Having prepared glassy configurations with the s ensemble, we
can now study two experimental observations. The first is the
nonmonotonic thermal responses found when heating LDA.
The material first takes in heat, then it precipitously releases heat
and crystallizes (1, 6). The experimental LDA coincides with the
LDA that is first prepared with the s ensemble at some temper-
ature T < To and then cooled to a lower temperature where it
remains stable for essentially all time. Melting LDA occurs when
that low temperature is increased, a process that can be simulated
by simply turning off s at the initial preparation temperature.
Results of such simulations are shown in Fig. 3A. The non-

equilibrium average potential energy per molecule in units of To,
eðtÞ, is computed by averaging over 1,000 independent trajecto-
ries initiated from configurations taken from the ensemble of
inactive states. With s = 0, these amorphous solid states are
thermodynamically unstable. The stable basin is the crystal, but
that basin cannot be accessed without reorganization, and re-
organization requires access to ergodic liquid states. The inactive
glassy states are at a low potential energy state relative to the
supercooled liquid. Upon instantaneously turning off the s field,
the system remains immobile for a relatively long time, on aver-
age about t = 200Δt. This waiting time corresponds to the time
for a rare fluctuation to produce an excitation. Once this re-
organization begins, the system immediately begins to crystallize,
and by t = 1,000Δt on average the system has begun releasing
energy as long-ranged order builds up. Fig. 3A (Right) shows the
average radial distribution functions g(r) for the beginning and
end of the trajectory. Initially, the radial distribution function shows
the local order characteristic of LDA, indicated by the separation
between the first and second solvation shell (48). At the end of the
trajectory, this local ordering has developed into a long-ranged
ordered crystal, as indicated by the splitting of the second solvation
shell and the persistent correlations at large separations.
The second experimental observation we consider is the finding

of an abrupt transition fromHDA to LDAwhenHDA is quenched
to lower pressures keeping temperature low (3). This process can be
simulated by initiating trajectories at configurations from an im-
mobile HDA basin, prepared with s > s* and p/po > 104, and run-
ning these trajectories with s = 0 and p/po < 104. Fig. 3B shows the
result from averaging over 1,000 such trajectories. The average

waiting time to transition across the HDA–LDA boundary is only
10Δt, reflecting that only relatively small reorganization is required
for transitioning between these two amorphous phases. The excess
free energy due to the change in pressure is dissipated through an
average concentration ofmobility c that is only 0.02. After the initial
burst of excitation, the system monotonically relaxes into the LDA
state. Initially, the structure reflects the HDA configurations where
the dynamics were initialized, whereas at later times the structure
adopts the open local order of LDA.
Other illustrations of behaviors deduced from our preparations

of amorphous ices are given in SI Text. For example, reversal and
hysteresis of the process illustrated in Fig. 3B is shown, demon-
strating that the glassy states prepared in our simulations are ro-
bust. To our knowledge, no prior simulations of low-temperature
water have achieved this quality.

Conclusions
The most important and general results of this work are twofold:
the demonstration that it is possible with molecular simulation
to systematically prepare and predict properties and transitions of
experimentally realizable amorphous solids, and the demonstra-
tion of analytical theory that can predict and interpret various
behaviors of these materials. We illustrate here for water pre-
dictions and simulations of LDA–HDA transitions at conditions
consistent with experimental observations; we also present the
predictions of density differences between LDA, HDA, and er-
godic liquid phases in accord with experimental observations; and
finally, we present predictions of pathways by which HDA and
LDA phases melt, again in accord with experimental observations.
Much has been written suggesting that the HDA–LDA tran-

sition might reflect a transition between two distinct phases of
liquid water, e.g., refs. 2–5, 10, 49. This extrapolation from glass
to liquid seems difficult to justify in light of the singularity that
separates the nonequilibrium amorphous solids from the ergodic
liquid. Occurring as they do through driving a material out of
equilibrium over a finite period, the space–time transition is
precipitous but not discontinuous. Nevertheless, a singularity
underlies the phenomena. This fact about glass physics may have
its first experimental demonstration in ref. 42, where coexistence
lines for reversible transitions between different glasses of salty
water are established and shown not to extend above the line of
glass transition temperatures.
That particular experimental work finds more than one coex-

istence line separating distinct amorphous phases. Our discussion of
phenomenology emphasizes that any onematerial can exhibit a range
of glass behaviors reflecting a range of values of ℓne. How this vari-
ability can translate in general into distinct nonequilibrium phases is
not yet known, and the answer is likely system dependent. For ex-
ample, distinct amorphous phases seem generally possible in cases of
a poor glass-forming liquid, as it is for water, because coarsening
of crystal phases of one density can compete with vitrification of
the liquid of another density. Whether other competing effects can
be imagined and realized experimentally is an open question.
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