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Human influenza occurs annually in most temperate climatic zones
of the world, with epidemics peaking in the cold winter months.
Considerable debate surrounds the relative role of epidemic
dynamics, viral evolution, and climatic drivers in driving year-to-
year variability of outbreaks. The ultimate test of understanding
is prediction; however, existing influenza models rarely forecast
beyond a single year at best. Here, we use a simple epidemiological
model to reveal multiannual predictability based on high-quality
influenza surveillance data for Israel; the model fit is corroborated
by simple metapopulation comparisons within Israel. Successful
forecasts are driven by temperature, humidity, antigenic drift, and
immunity loss. Essentially, influenza dynamics are a balance between
large perturbations following significant antigenic jumps, inter-
spersed with nonlinear epidemic dynamics tuned by climatic forcing.

model forecasting | infectious disease | climate | Bayesian epidemic
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Influenza outbreaks have been documented in the scientific
literature in records that extend back to at least 1650 (1),

making it an exceptional example of a persisting, recurrent dis-
ease. Being a respiratory infection, influenza spreads rapidly
from person to person through a population in the form of virus
particles airborne as respiratory droplets or aerosols. Depending
on the circumstances, influenza typically infects between 10%
and 50% of a given population and has become a source of
considerable human morbidity and mortality (2). There is much
controversy in identifying the seasonal drivers that generate an-
nual influenza epidemics and the processes that give rise to their
large variability (3–12). This is an outstanding problem of in-
fluenza research today. Using long-term modeling, a recent study
(9) gave support to the possibility that absolute humidity is the
predominant determinant of influenza seasonality in temperate
zones, driving disease transmission and controlling the timing of
individual wintertime outbreaks. Another study investigated the
physical properties of absolute humidity on influenza virus trans-
mission and influenza virus survival (3). However, a general un-
derstanding of the mechanisms underlying influenza seasonal
variation remains quite limited (8). Here, we use a simple math-
ematical model to unravel the interplay between climate and
evolution to predict long-term influenza dynamics correctly for
the years since June 2010.
A requirement for the generation of recurrent epidemics is

a sufficient and continuous source of new susceptible individuals
arising in the population, enough to fuel each new outbreak (13).
In the case of influenza, infected individuals recover with im-
munity but eventually become susceptible again because of the
rapidly evolving nature of the influenza virus (7, 14). Positive
selection exerted by the host immune system leads to a continual
antigenic drift of the influenza virus’s glycoproteins, particularly
the main antigen, hemagglutinin, thus allowing the virus to even-
tually evade the immune system (15). The process of antigenic
drift thereby creates an important renewed source of susceptible
individuals. Hence, evolutionary forces are considered tremen-
dously important in shaping complex recurrent patterns of infectious

diseases and explain why influenza is regarded as “an invariable
disease caused by a variable virus” (1).
The changing rate of antigenic drift also has a significant im-

pact on the timing and amplitude of influenza outbreaks (16).
Recent studies reveal that the evolution of influenza A H3N2’s
main antigen is punctuated in character such that the drift occurs
within discrete antigenic clusters (neutral periods), but with
jumps to newly arising clusters after irregular periods (17, 18). A
significant jump for the A H3N2 lineage last occurred during the
2003–4 season with the appearance of the A/Fujian virus strain
coinciding with a sharp influenza outbreak approximately 2 mo
earlier than usual, with a normal attack rate. Nevertheless, it is
difficult to demonstrate a consistent and conclusive direct link
between the size of antigenic jumps and changes in influenza
dynamics at the population level (6, 19–21).

Results
Our modeling is based on a high-quality 11.5-y dataset from June
2001 to January 2013 of daily influenza-like illness (ILI) cases
reported in Israel’s largest city, Tel Aviv, as plotted in Fig. 1. The
data were obtained from the Maccabi Health Maintenance
Organization (HMO), whose medical surveillance covers ∼45%
of the local Tel Aviv population. An analysis of laboratory tests
of ILI cases from sentinel clinics showed the ILI dataset to be
highly correlated with the incidence of confirmed influenza cases
(SI Appendix). Its high level of coverage and the data quality
make this one of the finest available influenza surveillance
datasets by world standards. We make use of the classical
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susceptible–infected–recovered–susceptible (SIRS) epidemic
model (Materials and Methods) in which all individuals in the
population are assumed to be in only one of three classes: sus-
ceptible (S), infected (I), and recovered (R). S individuals move
to the I class after contact with an infective and transmission of
the disease. Infective individuals eventually recover and move to
the R class, whereas R individuals eventually become susceptible
once more, closing the SIRS loop (S → I → R → S) in a manner
that mimics the effects of antigenic drift (14).
The model requires six basic parameters, which we provide

with the best-fitting estimates (and ∼95% credible intervals) found
from the modeling procedure: (i) The parameter Λ = 0.17 ± 0.01
describes the rate of immunity loss due to antigenic drift and the
rate of new susceptible individuals entering the population per
year. (ii) The reproduction number R0 represents the number of
infections transmitted by a typical individual over the lifetime of
the disease in a wholly susceptible population. The model assumes
that the basic reproduction rate, estimated as R0 = 2.9 ± 0.1, is
constant for all years, as discussed further below. (iii and iv)
Seasonal forcing is included by modulating R0 with the locally
observed temperature and relative humidity time series seen in
Fig. 1 (Upper). The forcing δ(t) is specified by weights that control
the influence of these climatic variables: temperature weight wT =
0.13 ± 0.02 and relative humidity weight wRH = 0.028 ± 0.003.
Although for generality we include relative humidity and tem-
perature as climate variables (22), similar but slightly inferior
results also are obtained by using only absolute humidity as a single
driver (3). (v and vi) Two separate parameters are used to take into
account the special characteristics of years with epochal antigenic
jumps. One parameter enhances the loss-of-immunity rate Λ′ = Λ +
Λ* over the entire year (Materials and Methods and SI Appendix).
The other parameter makes it possible to accommodate the early
arrival of outbreaks observed in epochal jump years, e.g., the A/
Fujian outbreak in 2003–4. This may be achieved by enhancing
Reff over the first 6 mo of the season when the epidemic grows,
by δ′ = δ + Δ. We fit the two parameters Λ* and Δ over the
epochal jump years 2003–2004 and 2009–2010 only. Finally, the
model requires a single boundary condition, S(t0) = 0.31 ± 0.02
(fitted value), which represents the fractional size of the sus-
ceptible population on the first of June 2001, at the beginning of
the modeling period. All model runs start out of season on the
first of June; thus, we always have I(t0), = 0 although there is
a small continuous migration influx (Materials and Methods).

The simplicity of this elementary SIRS model would deem it
unlikely to mimic Israel’s complex influenza dynamics, as seen in
Fig. 1. However, the model fit of the first 8 y of the data (June
2001 to June 2009) correlates with the observed data to an un-
usual degree, with correlation r = 0.94 (and r = 0.90 for the full
fitting period, including the unusual pandemic year 2009/10).
Note that all model time series correlations with observed data
reported here are highly significant (P < 0.001).
To assess the quality of the fit further, we calculated the attack

rates and the week of peak incidence in the data and the fit for
each of the seasons (not including the last season, for which we
have only partial data). We then computed the Pearson corre-
lation between the data and the fit of these attributes. Fig. 2
shows the result of this analysis. For the attack rates, we obtained
a correlation of r = 0.74 (P = 0.01) The correlation was driven
down because of the pandemic season of 2009–2010, in which
there were several unusual waves in a single year. Without this
season, the correlation in the attack rates would exceed r =
0.9. For the peak epidemic week, we obtained a correlation of
r = 0.94 (P < 0.001).
The excellent fit is a feature that also holds with the fully

stochastic version of the model (SI Appendix). Because there are
only six degrees of freedom and one boundary condition, this is
not even one parameter per year. Also note that the large year-
to-year variability in epidemic size and timing appears to be
random in character, making it surprising that the mechanistic
model can capture the intricacies of the data despite the major
qualitative differences in the shape of the epidemic from year to
year. For example, compare the large-scale symmetrically shaped
epidemic in 2004–5 with the small, curtailed asymmetric out-
break in 2005–6. The model nevertheless captures both epi-
demics accurately. This accuracy is a result of the complex
interaction among the changing supply of new susceptible indi-
viduals arising due to loss of immunity in the population through
antigenic drift, the strong transient dynamics following the ap-
pearance of a new strain, and the timing of the climate signal
each year (Fig. 1). Note that the years dominated by influenza B
fall effortlessly within the model dynamics, providing possible
population-level observational support for the notion of broader
cross-reactivity of the immune response to influenza, as pre-
viously reported (23–25).
The recent global H1N1 pandemic in 2009–10 deviates the

most from the normal influenza outbreak dynamics. Given that
influenza epidemics almost always are triggered at the beginning
of winter, one cannot expect our model to fit an outbreak be-
ginning as early as April, as was the case for the H1N1 pandemic.
The model can accommodate only the main peak of the out-
break, which occurred at the same time as the 2003–4 outbreak.

Fig. 1. (Lower) The smoothed daily ILI cases reported in Tel Aviv (light gray),
with June 1 indicated on the x-axis for each year. Time series from the cli-
mate-driven deterministic SIRS model fitted to the ILI data (2001–2010) is
shown (red), with fit correlation r = 0.94 to the period leading up to the
pandemic in 2009. (Upper) The climate data consist of centered, normalized
daily temperature (dark blue) and relative humidity readings (light violet),
both scaled according to estimated weight. The pure prediction from June 1,
2010 is driven by the average climate of all years with fit r = 0.93. The
outbreaks dominated by influenza B are indicated, and the asterisk high-
lights the abnormally high amplitude of 2006–2007. The epochal jumps in
antigenic drift are indicated with arrows.
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Fig. 2. Quality of model fit as assessed by correspondence of (A) attack rate
at r = 0.55, P = 0.01. The main outlier in the match of attack rates is the H1N1
outbreak in 2009, without which the fit exceeds r = 0.9. (B) Peak epidemic
week vs. model fit correspondence is r = 0.94, P < 0.001.
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Here, we are fitting δ′ and Λ′ to both the 2003–4 and the 2009–
10 pandemics. When attempting to forecast such outbreaks, we
note that the possibility of an antigenic jump year sometimes is
known in advance, during the previous season, and methods are
being refined to predict the possibility of a forthcoming jump
year. Once expected, we can forecast the epidemic trajectory
using our estimated jump parameters.
Having obtained parameter estimates via the fitting pro-

cedure, we can use the model to predict the ILI dynamics fol-
lowing the severe 2009–10 pandemic. Below, we further discuss
the probability of consecutive antigenic jumps, and we therefore
assume that the seasons following 2009–10 were normal. As
Fig. 1B demonstrates, the model successfully predicts the trajec-
tories of the subsequent three normal outbreaks from June 2010
through March 2013 with a high correlation of r = 0.93, although
these outbreaks are still clearly different in timing, amplitude,
and length. When making pure predictions into the future, it is
assumed that prevailing local climate conditions are unknowable,
and hence the model is driven by daily average climate data
determined from the entire previous period.
To identify the significant components of our model, we apply

a bottom-up approach by first considering the dynamics that
arise with a hypothetical climate that is purely periodic. This is
accomplished by assuming R0 is periodic and sinusoidal of the
standard form R0 =R0½1+ δ sinðωt+ϕÞ� (13, 26). However, si-
nusoidal forcing leaves the model dynamics periodic and uni-
form, as shown in Fig. 3A, and therefore incapable of capturing
any year-to-year variability seen in the real data. This very regular
behavior represents the limit cycle of the outbreak dynamics. Using
a simple square-pulse function for the climate driver, we arrive at
the following analytical approximation for the effective re-
production rate R0S0 ≡ Reff, where S0 is the susceptible pop-
ulation at outbreak (SI Appendix, section 5):

Reff ≈ 1+
δ+ ðR0 − 1ÞΛðδ+ 1Þ

3
: [1]

When inserting realistic parameter values (e.g., R0 = 3.5, δ = 0.2,
Λ = 0.15; for details and references, see SI Appendix), the right-
hand-side term is Reff ∼ 1.22. Note that previous findings from
a multiyear analysis (6) of seasonal data from Australia, France,
and the United States yielded in general Reff ∼ 1.3. Even for wide
ranges of realistic influenza parameters, the approximation
bounds the overall Reff within the interval [1.1, 1.4] (SI Appendix).

The formula also shows how antigenic drift via Λ provides a con-
tribution to raising Reff above unity.
The key factors responsible for the success of the model can be

understood from Fig. 3. The basic sinusoidally forced model
always has an outbreak in the high season (winter) and thus is
endowed with a baseline average correlation of r = 0.65 against
the data at any time, as seen in Fig. 3A. Upon inclusion of an-
tigenic jumps in the years 2003 and 2009, this simple model and
the data appear to lock in synchrony to a much higher degree,
with the correlation jumping to r = 0.84, as shown in Fig. 3B.
Inclusion of the real climate signal, rather than sinusoidal forc-
ing, finally raises the correlation up to r = 0.94 for the model fit
in Fig. 1.
As a further test of the method, we applied the same fitting/

prediction scheme to ILI data from Jerusalem, which has a 10%
health insurance coverage rate. The returned fit correlated to the
data with r = 0.84 (compare with Tel Aviv, where r = 0.94); the
lower correlation is a result of the poor fit of the June 1, 2004–
2007 period (see Fig. 4A). Because thousands of Jerusalem
residents commute daily to Tel Aviv and surrounding areas, we
included a fitted fraction, ψ = 0.30 ± 0.05, of the infected
population in Tel Aviv to infect the susceptible population
of Jerusalem, and vice versa, to make an interacting two-city
model. The model then could fit the observed Jerusalem ILI
data with a much higher correlation of r = 0.94 (Tel Aviv
slightly diminished at r = 0.93), largely because of the June 1,
2004–2007 period (see Fig. 4B). The results thus demonstrate
a metapopulation in action and further corroborate that the
SIRS model is working effectively, even for two geographically
separated cities.

Discussion
The model’s transient dynamics after large perturbations (e.g.,
the 2003–4 A/Fujian antigenic jump) have an important impact
on the epidemic system (Fig. 3). After large antigenic jumps
(asterisks in Fig. 3), the trajectory of the infective population
follows a damped double-period oscillation (27) that corresponds
well to the observed disease dynamics for at least 3 y. This overall
dynamical motif may be characterized as “high–high–low–(med/
high),” or simply HHL(H), in terms of coarse-grained epidemic
peak amplitudes. During such a transient, the climate driver
variability seems to be a second-order modulating effect. Upon
exiting the transient, however, the model returns to seasonal out-
breaks in which the detailed variability is dominated by climate
dynamics. Long-term predictions in this latter regime depend on

Fig. 3. (A) Model outcome of fitting (red) a pure sinusoidal seasonality driver: r = 0.65. The prediction (blue) is the continuation of the model after the fitting
period ends. (B) Model outcome by including only antigenic jumps (*) together with the pure seasonality driver: r = 0.84. (C) Data collapse showing the HHL(H)
motif (gray shade) also exhibited by the model (red and blue).
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access to high-accuracy prediction of local climate, which cur-
rently is not available.
In Fig. 3C, we compare the influenza dynamics following the

appearance of new strains by plotting the 4 y beginning with the
A/Fujian year in 2003–4 together with the 3.5 y beginning with
the A/H1N1 pandemic in 2009–10. Also included are model runs
(red and blue) based on a pure sinusoidal climatic driver. The
data seemingly collapse in the sense that the observed data in
both windows sit closely on top of each other, except for the
fourth year. In other words, they form the same HHL(H) motif.
It appears more than just coincidence that on the two occasions
an epochal jump year appears, the double-period damping
transient or the motif in the time series ensues, as this data
collapse identifies. To explore the randomness of the underlying
motif idea, we can assume that years have random independent
peak heights (H, M, or L). The probability of the motif occurring
by chance alone is significantly small, P < 1% (SI Appendix).
Unsurprisingly, the major deviance of the data collapse—and the
worst correspondence to the model—is the early part of the
unusual 2009 H1N1 pandemic, during summer/fall of 2009 (visible
as two “humps” before the main winter outbreak). In Fig. 3C, the
fourth-year predictions also are degraded, as the transient oscil-
lations will have died down to a level at which the climate starts to
dominate again. This explains the prediction errors in Fig. 3B,
in which sinusoidal rather than true climatic forcing is used.
The true climatic signal provides a superior prediction of the
2006–7 outbreak (compare Fig. 1 with Fig. 3B and SI Appendix).
Similarly, by using average climate data, we successfully trace
the 2012–13 outbreak, predicting a normal outbreak initiation
time and matching the amplitude peak closely (Fig. 1, time
series end).
That the simple model fits the data well raises many questions.

Most plausibly, the population mixing inside Israel conforms
closely to the basic SIRS model assumptions so that the mean
field dynamics provide a faithful caricature of influenza trans-
mission and immunity loss in a large population. Historically, the
success of the SIR model for single epidemics derives from this
feature, but what is new here is the unusual long-term year-to-
year predictability reproduced in addition. It would appear that
the dynamics are completely explainable by the combined time
evolution of the model equations, the antigenic jumps, and the
climatic forcing. The hypothesis outlined here prescribes not
only that climate is a key seasonal driver of influenza in semi-
isolated coastal Mediterranean populations (Tel Aviv) with hot
and humid climates, but also that one city may act as a hub for
disease and drive satellites. The latter of these statements we
derive from the fact that the model fit to Jerusalem influenza
dynamics improves considerably when coupled with Tel Aviv,
but not vice versa. The forecasting ability is increased strongly
through the predictability of the system’s transient dynamics.

These characteristics serve to enhance the effect of climate on
influenza spread in a truly unique and predictable fashion, and
they help explain why the quality of our model fits has not yet
been found elsewhere.

Materials and Methods
The ILI data were obtained from the Maccabi HMO for the period June 1,
2001 to January 2013. The period from June 2001 marked a fundamental
switch in surveillance and coding used by the HMO. We smoothed the data
by interpolating the missing weekend reports and subsequently using a
wavelet approximation to minimize noise (SI Appendix, section 3). All ILI and
climate datasets may be obtained from the following link: www.tau.ac.il/~lewi/
Data_flu_climate.txt.

Climate data of relative humidity and temperature in Tel Aviv were
obtained from monitoring stations of the Israeli Meteorological Society and
the Ministry of Environmental Protection of Israel. The time series were
smoothed analogously to the ILI time series above. The resulting time series
then were centered to zero mean and normalized to unit variance, which is
why there are no units in Fig. 1, Upper.

The dynamics of the epidemic outbreaks were modeled based on a de-
terministic age-of-infection SIR model (28), which we extended to an SIRS
model by adding a simple feedback from the recovered population to the
susceptible population via loss of immunity caused by steady antigenic drift.
In this model, the number of newly infected at time t is

iðtÞ= SðtÞ
N

R0ð1+ δðtÞÞ
Xd

τ=1
Pτiðt − τÞ, [2]

where S is the number of susceptible, R0 is the basic reproduction rate of
a fully susceptible population, P is the 7-d infectivity profile (d = 7) chosen as
a gamma distribution with a mean of 2.7 d and variance of 1.8 d (11), and N
is the reporting population at a reporting rate of 10%. The average period
of immunity of a typical individual immunity, here 1/Λ, usually is 2–10 y (Λ ∈
[0.1: 0.5]). For a model with a daily time step, we set λ = Λ/365. The infectives
pool follows: I(t) = I(t − 1) + i(t) − i(t − d); the dynamics of the susceptible
pool then is

SðtÞ= Sðt − 1Þ− IðtÞ+ λRðt − 1Þ: [3]

The infected individuals recover after d days; thus, the recovered population
growth is

RðtÞ=Rðt − 1Þ+ Iðt −dÞ− λRðt − 1Þ: [4]

Finally, there also is a constant influx of influenza arriving in Tel Aviv from
any destination in the world, which was set at one person per day all year
round. The influenza influx cannot be higher than 10 per day, as this gives
a model baseline ILI above one influenza case per day in the low season (10 ×
10% = 1, taking into account a 10% reporting rate). Conversely, an influx
rate much below 0.1 sick persons per day eventually will render the model
unable to reproduce the “small” outbreaks because the infected and sus-
ceptible populations may never reach the epidemic threshold Reff = 1 in
those years.

In this model, the disease dynamics are modeled neutrally for all strains
and compositions thereof between punctuations, i.e., the ILI cases are treated

A

B

C

Fig. 4. Jerusalem ILI. (A) Data (gray) and model (blue) of a fit to Jerusalem influenza epidemics, r = 0.84. We fit Jerusalem and Tel Aviv simultaneously,
although uncoupled, with the same universal R0. (B) The metapopulation model with mutual exchange of infectives between Tel Aviv and Jerusalem, r = 0.94.
(C) Network diagram of the coupled populations.
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as one disease only. Although this is a nontrivial approximation, it is not
uncommon in the seasonal flu-modeling literature (4, 10, 11, 29); further-
more, recent findings indicate the possibility of broad cross-reactivity, fur-
ther justifying the approximation. These recent studies seem to find in vivo
and in vitro evidence of functional cross-reactivity between human mono-
clonal antibodies and epitopes from hemagglutinin of both influenza A and
influenza B (30).

The simple climate driver is modeled as R0 =R0½1+ δ sinðωtÞ�. The real climate
driver is expressed as a linear combination; thus, δ(t) =wTT(t) +wRHRH(t), where
T is daily average temperatures and RH is relative humidity, both normalized
to the interval [−0.5, 0.5]. The antigenic jump is a modification first to δ′(t) =
δ(t) + Δ, Δ = 0.26(0.02), for the period June 1 to December 1. A modification in
immunity-loss rate λ′ = λ + λ*, λ* = 0.04(0.01) is modeled throughout the year.

Inference is performed by Bayesian Monte Carlo sampling of the a priori
likelihood function; see SI Appendix for details and analysis.
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