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This study is partially motivated by the validation
of a new two-component multi-scale cell model we
developed recently that treats the lipid bilayer and
the cytoskeleton as two distinct components. Here, the
whole cell model is validated and compared against
several available experiments that examine red blood
cell (RBC) mechanics, theology and dynamics. First,
we investigated RBC deformability in a microfluidic
channel with a very small cross-sectional area
and quantified the mechanical properties of the
RBC membrane. Second, we simulated twisting
torque cytometry and compared predicted rheological
properties of the RBC membrane with experimental
measurements. Finally, we modelled the tank-treading
(TT) motion of a RBC in a shear flow and explored
the effect of channel width variation on the TT
frequency. We also investigated the effects of bilayer—
cytoskeletal interactions on these experiments and
our simulations clearly indicated that they play
key roles in the determination of cell membrane
mechanical, rheological and dynamical properties.
These simulations serve as validation tests and
moreover reveal the capabilities and limitations of the
new whole cell model.
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1. Introduction

Blood is composed primarily of microscopic cellular particles like red blood cells (RBCs),
white blood cells (WBCs) and platelets. The blood cells are suspended in a blood’s liquid
medium called blood plasma, which consists of water and other submicrometre elements such
as proteins, glucose, mineral ions and carbon dioxide. The most abundant cells in vertebrate
blood are RBCs. A human RBC is a nucleus-free cell; it is essentially a membrane encapsulating
haemoglobin solution. Owing to the elastic nature of the RBC membrane and the fluidic nature
of the haemoglobin, the RBC is capable of dramatic deformations and rich dynamics, while the
membrane surface area and volume remain constant [1,2].

The deformability of a RBC is determined by the geometry, elasticity and viscosity of its
membrane. A healthy RBC has a biconcave shape when not subject to any external stress and
is approximately 8.0 pm in diameter and 2.0 um in thickness [3,4]. The RBC membrane consists of
a lipid bilayer supported by an attached spectrin-based cytoskeleton. The resistance of the lipid
bilayer to bending elasticity is controlled by the bending rigidity, k., while the spectrin network’s
resistance to shear strain is characterized by the in-plane shear modulus, us. Various RBC
properties have been measured in a number of experiments, including micropipette aspiration [5],
optical tweezers [6], optical magnetic twisting cytometry (OMTC) [7], membrane thermal
fluctuations [8], atomic force microscopy [9], shear flow [10,11] and optical stretcher [12]. The
micropipette aspiration and optical tweezers techniques subject the RBC directly to mechanical
deformation and predict the macroscopic interfacial shear modulus of healthy RBCs in the
range of 2-12 uN' m~!. Optical magnetic twisting cytometry and membrane thermal fluctuations
provide measurements of membrane rheological properties and characterize the viscoelastic
response of the RBC membrane.

Experimental observations of RBC behaviours in flow mimicking the microcirculation reveal
dramatic deformations and rich dynamics. The extreme deformability allows the RBC to squeeze
without any damage when passing through narrow capillaries in the microcirculation. In a steady
shear flow, an individual RBC exhibits complex dynamic behaviours [2,13-15]. Specifically, a RBC
in shear flow exhibits two types of dynamical motion [10,16,17]: a tumbling (TB) motion that is
characterized by the flipping of the cell resembling a rigid-body motion, and a tank-treading (TT)
motion in which the cell membrane and the interior liquid follow a rotational motion, while the
cell aligning at an angle with respect to the flow direction remains nearly steady.

Dynamic simulation and multi-scale modelling help in predicting how RBCs behave in shear
flow and provide insights into how viscous flow transforms the shapes of RBCs and how
the deformable RBC distorts the surrounding flow. Several computational models, including
spectrin-level and MS-RBC models [18-20], have been recently developed and applied to RBC
simulations at different length scales. In these models, the membrane is usually considered as
a single-component shell with effective properties that seek to estimate the combined effects of
the lipid bilayer and the cytoskeleton. Under normal conditions, the cytoskeleton is attached to
the lipid bilayer from the cytoplasmic side. However, under certain conditions, such as RBCs
which assume a crescent shape in sickle cell disease, the cytoskeleton may become dissociated
from the lipid bilayer [21]. The mechanical properties associated with the bilayer-cytoskeletal
interactions strongly influence biorheology, erythrocyte function and the onset and progression
of RBC diseases. Thus, it is desirable to develop a new two-component, particle-based, whole-cell
model to study the biophysics of RBCs arising from the interactions between the lipid bilayer and
the cytoskeleton.

Recently, we developed a new two-component MS-RBC model based on the dissipative
particle dynamics (DPD) simulation technique [22]. The two-component RBC model has been
shown to accurately reproduce realistic biophysical and rheological properties of RBCs arising
from the interaction between the lipid bilayer and the cytoskeleton. In this study, we perform
more simulations and compare the predictions of the whole cell model with several available
experiments to confirm that the new RBC model is able to probe the RBC mechanics, rheology
and dynamics. The rest of this paper is organized as follows: in §2, we describe the simulation
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method and employed DPD model. We present and discuss the simulation results in §3. Finally,
in §4, we summarize the findings and present the conclusions. In the video clips, we present the
dynamic processes of RBCs flowing in a microfluidic channel and the microbead responses to
applied oscillating torque in simulations.

2. Simulation model and method

We study the mechanics, rheology and dynamics of RBCs with the help of the two-component
RBC model. For completeness, the method and the multi-scale model are briefly reviewed
below, whereas details on the DPD method and the two-component RBC model are available
elsewhere [22].

(a) Two-component red blood cell model

In the two-component RBC model, the membrane is modelled by two distinct components, i.e.
the lipid bilayer and the cytoskeleton. Specifically, through the DPD approach, each component
is constructed by a two-dimensional triangulated network with Ny vertices, where each vertex
is represented by a DPD particle. Different from the one-component RBC model, where we refer
to the MS-RBC model [19,20], the lipid bilayer of the two-component RBC model has no shear
stiffness but only bending stiffness and a very large local area stiffness, whereas the cytoskeleton
has no bending stiffness but possesses a finite shear stiffness. Also, we include both the elastic
and friction interactions between the lipid bilayer and the cytoskeleton. The potential energy of
the RBC membrane including these two different components is defined as

U=Us + Up + Ugyv + Uint, (2.1)
where U is the elastic energy that mimics the elastic spectrin network, given by

kg Tlm(3x.2 — 2x3) k
Us = L 2.2)
jegNs { 4p(1 — x7) (n =D T

where l]- is the length of the spring j, Iy is the maximum spring extension, Xj= l]-/lm, p is the
persistence length, kgT is the energy unit, k, is the spring constant and 7 is a specified exponent.
The shear modulus of the RBC membrane, independent of the coarse-grained (CG) level of the
triangulated network, is determined by

V3kgT ( X0 1 1) V3ky(n + 1)
dplmxo \2(1 —x0)® 41 —x0)> 4 4+t

, (2.3)

where [y is the equilibrium spring length and xp = lp/Im.
The membrane viscosity is imposed by introducing a viscous force on each spring, which has
the form

D,k
F;" = Wi — v (i - eie (2.4)
and W]
Rk /oL T T 1virS C Tt ij
Fjdt = 2k3T( 2y, AWy + 3y — 3 1> - €jj, (2.5)

where ykT and ykc are dissipative parameters, and k=0, s stands for the lipid bilayer or the
cytoskeleton, respectively. v;; is the relative velocity of spring ends, and dV_V;;’» = dWl.Sj - tr[dW;C}]l /3
is the traceless symmetric part of a random matrix representing the Wiener increment. The
viscosity of the RBC membrane is then calculated as

V3 ¢

Nk = x/g)/kT + R (2.6)

Following Fedosov et al. [20], ykT is set to 3ka in all simulations as ykT accounts for a large portion
of the viscous contribution.
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The bending resistance of the RBC membrane is modelled by

Vo= Y kp[l - cos(6) — )], (2.7)
jel...Ng

where kp, is the bending constant, 6; is the instantaneous angle between two adjacent triangles
having the common edge j and 6 is the spontaneous angle. In addition, the RBC model includes
the area and volume conservation constraints, which mimic the area incompressibility of the lipid
bilayer and the volume incompressibility of the internal fluid, respectively. The corresponding
energy is given by

ki(Aj = Aol | k(A= AR k(V = VEY?

Va+v = Z
2A tot tot 4
T 0 2A% 2V

(2.8)

where N is the number of triangles in the membrane network, Ay is the triangle area, and kj, k;
and k, are the local area, global area and volume constraint coefficients, respectively. The terms
APt and V(P! are the specified total area and volume, respectively.

The last term in equation (2.1), Uiy, is the potential defining the contribution for capturing the
interaction between the lipid bilayer and the cytoskeleton, which has the form

kps(djy — djj 0)?
Un= . —2 0 5 e, 2.9)
j,j’El...Nbs

where ky; and Ny, are the spring constant and the number of bond connections between the
lipid bilayer and the cytoskeleton, respectively. dj; is the distance between the vertex j of the
cytoskeleton and the corresponding projection pointj” on the lipid bilayer, with the corresponding
unit vector nj;; djy o is the initial distance between the vertex j and the point j', which is set to zero
in our simulations. The corresponding elastic force on the vertex j of the cytoskeleton is given by

£ =kus(djy — dj0)mj, (2.10)
and the tangential friction force between the lipid bilayer and the cytoskeleton is represented by
£ = ~fuslvjy — (v - myIng], @.11)

where fj; is the tangential friction coefficient, and vj; is the difference between the two velocities.

The RBC membrane interacts with the fluid particles through DPD forces, and the temperature
of the system is controlled through the DPD thermostat [23,24]. The internal and external fluids
are modelled by collections of free DPD particles and their separation is enforced by bounce-back
reflections of these particles at the RBC membrane surface. Similar to the MS-RBC model, the
two-component RBC model is multi-scale, as the RBC can be represented on the spectrin level,
where each spring in the network corresponds to a single spectrin tetramer with the equilibrium
distance between two neighbouring actin connections of approximately 75 nm. On the other hand,
for more efficient computation, the RBC network can also be highly CG with equilibrium spring
lengths of up to 500-600 nm. As suggested by Pivkin & Karniadakis [19], the equilibrium length
of the springs depends on the CG level through an approximate formula, which is given by

o6 — L | N (2.12)
0 =70 y/ NCG” :
v

where NS& and NSC are the number of vertices in the spectrin-level and CG models. Using a
similar geometric argument, we adjust the spontaneous angle as

CG SL lgG
0
On the other hand, the mechanical properties of the RBC membrane, such as the shear and elastic
area compression moduli, are independent of the CG level of the triangulated network. Therefore,
we will use the same physical values of k, and g for different CG levels.
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(b) Model and physical units scaling

In a DPD approach, it is convenient to use reduced units [23]. The unit of length is defined by the
cut-off radius r.; the unit of the mass is defined by the mass of a particle; and the unit of energy
is defined by kgT. It is difficult to have a precise idea of the scales involved in DPD simulations.
The real size of a DPD particle may vary from one to several dozens of atoms, depending on the
interaction potential and the time scale. Several recent papers have dealt with this issue and have
attempted to map the computed results into dimensional units [20,25-28]. A mapping strategy
developed by Fedosov et al. [20] is adopted to provide an estimate of the physical length and time
scales in the DPD simulations of RBC flow. Following their mapping strategy, we obtain the DPD
length and time scale,

a? d? P
__0 0 0
™M= dg/l m and t©= dT/I —M W , (2.14)

where the superscript M denotes a quantity in reduced DPD units, while P identifies physical
units. dp is the cell diameter, ng is a characteristic viscosity of fluid or RBC membrane and Yj is
the membrane Young’s modulus. In the current simulations, the RBC diameter, the membrane
Young s modulus and the interior fluid viscosity are M =78M, YM =485 (kgT)M / ()2 and
’70 =18 (kgT)Mz/(XM)3, respectively, corresponding to d> ~8.0um, YO =189uNm~"! and 7; ~
0.006 pN um~2's (6 cP) in physical units; thus, the DPD length scale is ¥ ~ 1.0 um and the time
scale is T >~ 8.7 ms.

We model the RBC using the stress-free membrane model with the following properties: Ny =
500, RBC area A6°t =135.2 pm? and volume Vg’t =94.5um?>, RBC membrane bending and shear
stiffness are kept at k. =2.4 x 10719 and po=6.3 pN pm—1, respectively. The simulations are
performed using a modified version of the atomistic code LAMMPS [29]. The time integration of
the motion equations is computed through a modified velocity Verlet algorithm [23] with A,y =
0.50 and time step Af = (0.0005-0.002)7 ~ (4.3-17.4) ps. It takes 5.0 x 10° time steps for a typical
simulation performed in this study.

3. Results and discussion

In this section, the two-component RBC model is compared against several available experiments
that investigate RBC mechanics, rheology and dynamics. First, we probe the mechanical
properties of a RBC traversing a microfluidic channel with very small cross-sectional area and
quantify the cell deformation. Second, we study the rheological properties of the modelled
membrane and validate them against OMTC experiments. Finally, we simulate the RBC dynamics
in shear flow and investigate the effect of channel width variations on the TT frequency.

(a) Measurement of red blood cell large deformation in a microfluidic system

A RBC is highly deformable, allowing it to travel through in vivo capillaries with diameter smaller
than the RBC’s size [30]. When RBCs flow through capillaries, they undergo severe deformation
by shear stress. Accordingly, microfluidic channels are used to mimic human capillaries and study
RBC deformability.

The microfluidic channel, as illustrated in figure 1a, is filled with fluid particles containing
RBCs. A narrow cuboid channel with length I = 30.0 um, width w = 4.0 um and height h = 2.7 um
is created in the middle of the microfluidic channel, and two symmetrical wide channels with
width W=23.4pum and height H=2.7 um are then created on the left and right domains of the
narrow channel. The wide and narrow channels are connected by inclined walls. The solid walls
of the microfluidic channel are formed by stationary DPD particles, and an adaptive boundary
condition is adopted for fluid DPD particles to control their density fluctuations [31,32].

Figure 1b and the electronic supplementary material, video clip S1, show a typical dynamic
process of a pressure-driven RBC flowing through the microfluidic channel. They can help in
clearly understanding the process of RBC traversal across a microfluidic channel and reveal that
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(b)

k,,=46.0 pN pum™! ky,;=4.6 pN um™!

Figure 1. (a) Schematic representation of a RBC traversing across a microfluidic channel, with a constriction 30 um long, 4 jum
wide and 2.7 um high. The cell, fluid and wall particles are rendered in dark grey, light grey, and grey, respectively (in red, cyan,
and grey, respectively, in the online version). (b) Shape characteristics of a RBC traversing across microfluidic channels from
the experimental (left) and simulation (right) data. (c) Bilayer—cytoskeletal detachment for a RBC traversing the microfluidic
channel at different bilayer—cytoskeletal elastic interactions. The lipid bilayer and the cytoskeleton are shown as dark and light
grey (red and blue in the online version) triangular networks, respectively, and only half of the triangular network of the lipid
bilayer is shown for clarity. (Online version in colour.)

the RBC initially drifts along the flow direction due to collisions with the fluid particles. The
RBC is also disturbed by the fluid particles near the narrow channel because of the mismatch
between the RBC size and the pore size of the narrow channel. That is, the RBC undergoes a
continuous and severe transition from its normal biconcave shape to an ellipsoidal shape by the
elongation of its size in the flow direction (longitudinal axis) and shortening of its size in the
cross-flow direction (transverse axis). The RBC enters into the entrance of the narrow channel by
undergoing these deformations. Once the entire RBC enters the constriction, it deforms further to
pass through the microfluidic channel. Figure 1b shows a qualitative comparison of the simulation
observations with experimental results by Quinn et al. [30]. The dynamic observations of the
shape deformation of RBC traversal across the microfluidic channel are in accordance with the
experimental phenomena.

Next, we study the effect of the bilayer—cytoskeletal elastic interaction coefficient k;; and
monitor the instantaneous position of the RBC during the transit processes as shown in figure 1c.
We find that when using the default value of ks = 46.0 pN pm~!, which is estimated on the basis
of simulating a channel flow stretching experiment [22], the target particles on the lipid bilayer
and the cytoskeleton move together. This is indicated by the simulation data in figure 24. A small
difference in the detachment length, which is defined as the distance along the longitudinal axis
from the rightmost part of the lipid bilayer to that of the cytoskeleton, is present. The deviations
are sufficiently small or purely due to statistical fluctuations; hence, there is no significant bilayer-
cytoskeletal detachment in this case. However, assuming a pathological RBC state where ky; is
significantly lower, an apparent bilayer-cytoskeletal detachment occurs when the RBC traverses
the microfluidic channel (see figure 1c and the electronic supplementary material, video clip
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Figure 2. (a) Measured detachment length, /p, between the lipid bilayer and the cytoskeleton at different locations of the right-
end of the RBC when it passes through the microfluidic channel. In the figure, I represents the distance from the far rightmost
edge of the lipid bilayer to that of the cytoskeleton. Vertical dashed lines indicate the locations of the narrow channel entrance
and exit. Inset shows a sketch of the bilayer—cytoskeletal detachment. (b) Dependence of the cell transit velocity on the local
pressure difference for the microfluidic channel with w = 4.0 um. Experimental data (black circles) from [30] are shown. v*
is a reduced velocity that is obtained through the physical velocity divided by a certain value at AP = 0.1kPa, and AP* isa
reduced pressure difference that is obtained through the physical pressure difference divided by the value of 0.1kPa. (Online
version in colour.)

S2). Specifically, the detachment length between the lipid bilayer and the cytoskeleton is less
than 30nm in the case with kps =46.0pN um™L; however, it is up to 600nm in the case with
kps =4.6 pN pm~L,

We then calculate the cell transit velocity, which is defined as the average transit distance
divided by the transit time. The transit time is the time it takes from when a RBC enters the
narrow channel to when it exits from the rightmost part of the narrow channel. Figure 2b shows
the dependence of the cell transit velocity on the local pressure difference for the RBC traversal
across the microfluidic channel. The simulation results of the two-component RBC model at
kps = 46.0pN um ™! are consistent with the experimental measurements and the prediction of the
one-component RBC model by Quinn et al. [30]; however, the cell velocity is decreased in the case
of kps =4.6 pN pm~!, which indicates that the bilayer—cytoskeletal elastic interaction coefficient
kps plays a key role in the RBC traversing narrow microfluidic channels. When k, is large, there
is a strong coupling between the lipid bilayer and the cytoskeleton, i.e. they behave as if they
were one effective membrane. If kj; is small, the bilayer—cytoskeletal coupling is weak, and the
detachment of the lipid bilayer from the cytoskeleton is much more likely to occur.

(b) Membrane rheology from twisting torque cytometry

Blood cells are subjected to intense mechanical stimulation from both blood flow and vessel
walls, and their rheological properties are important to their effectiveness in performing their
biological functions in the microcirculation. The latest experimental techniques have explored the
mechanical properties of RBCs and can shed light on their deformation in terms of the shear,
bending, area expansion moduli and relaxation times. Recently, dynamical experiments on RBC
rheology using OMTC have allowed researchers to explore the time-dependent responses of
RBCs. The rheological measurements of RBC membrane properties provide a detailed description
of the complex time-dependent membrane response and may reveal complex behaviour, i.e. yield
stress, shear thinning and viscoelasticity. Here, we simulate the membrane rheology from twisting
torque cytometry (TTC). TTC is a numerical analogue of the OMTC used in experiments [7],
where the magnetic twisting cytometry applies both a static and oscillating magnetic field to a
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Figure 3. (@) Schematic representation of the set-up of the twisting torque cytometry. The microbead, lipid bilayer and
cytoskeleton are shown in light grey, dark grey, and silver, respectively (purple, red, and green, respectively, in the online
version). An oscillating torque is applied to the microbead and deforms the RBC, which causes the microbead to rotate and
translate. (b) Characteristic response of an attached microbead (dashed line) subjected to oscillating torque. ¢bry represents the
phase shift angle between the applied oscillating torque and the displacements of microbead. (Online version in colour.)

microbead bonded to the surface of a cell membrane. In analogy with the experimental set-up,
in simulations a microbead is attached to the top of a RBC membrane and is also subjected to an
oscillating magnetic field, as shown in figure 3a. The RBC—wall adhesion is simulated by keeping
15% of vertices stationary on the bottom of the lipid bilayer component of the RBC membrane,
while the RBC—microbead adhesion is simulated by including several RBC vertices in the lipid
bilayer component near the bottom of the microbead in its rigid motion.

Figure 3b shows a typical microbead response to an oscillating torque measured in simulations.
The microbead presents a periodic displacement of the same oscillating frequency as the applied
torque, but with a shifted phase angle ¢ with respect to the latter. The complex elastic moduli are
computed from ¢ as

= %cosd) and ¢’= i—;sin o, (3.1)
where ¢’ and ¢” are the two-dimensional storage and loss moduli, and AT and Ad are the torque
and microbead displacement amplitudes. The values of AT and Ad can be directly determined
from the limits of the displacement—torque loop (figure 4a) and the area, A, bounded by the loop,

and are related to ¢ by
¢ =sin"! A (3.2)
B TATAd ) '

For a single RBC with an applied oscillating field, the phase shift ¢ between the applied torque
and the resulting displacement increases with increasing frequency. The increasing phase shift is
reflected by the larger area A enclosed by the displacement-torque loop at a higher frequency
(figure 4a).

The values of AT, Ad and ¢ can also be obtained by fitting the simulation data with sinusoidal
functions, which are given as

T(H)=1 AT sin(wt) and d(t)=1 Ad-sin(ot + ). (3.3)

After these values are obtained using these two different approaches, the apparent storage ¢’ and
loss ¢’ moduli can be calculated using equation (3.1) and compared with the experimental data
(figures 4b and 54). Similar to the experimental measurements, the values of ¢’ and ¢’ obtained
from these two different approaches are almost the same. The only discrepancy between the
approaches occurred at the very highest frequency, that is, ¢’ firstly increases then decreases
with the increase in the applied oscillating frequency when we use the second method shown
in equations (3.1) and (3.3) (figure 5a), while it continues to increase when we use the first one
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shown in equations (3.1) and (3.2) (figure 4b), in which case the displacement-torque loop does
not approximate an ellipse, and a rather large error would occur. Thus, the second method using
equations (3.1) and (3.3) is thought to be preferable at very high frequencies.

Compared with the values obtained from the one-component RBC model, a decrease in the
storage modulus ¢’ at high frequency with the two-component RBC model appears; however,
the difference, Ag"=gne-component — g@wo_componem, is reduced when we increase the friction
between the lipid bilayer and the cytoskeleton (figure 5b). This is because there is no bilayer—
cytoskeletal slip with large fys and the local area deformation of the cytoskeleton is the same as
that of the lipid bilayer; hence, we have local conservation of the surface area of the cytoskeleton.
However, if fy,; is small, we do not have local conservation of the surface area of the cytoskeleton,
and an apparant bilayer—cytoskeletal slip occurs during the oscillation. In addition, the responses
of the attached particles in the lipid bilayer and cytoskeleton of RBCs at different CG levels are
obtained (figure 5c). We can see that there is a small phase shift in the displacement between
the lipid bilayer and the cytoskeleton. The difference in phase shift, A¢pc = ¢1c — ¢1B, becomes
smaller with increasing Ny. For example, at f =105 Hz, the values of A¢pc are 26.9°, 25.8° and
22.4° at Ny =500, 2000 and 5000, respectively. The electronic supplementary material, video clips
S3 and S4, shows the microbead responses to the same oscillating torque frequency measured in
simulations with the one-component and the two-component RBC models. We can find that the
apparent bilayer—cytoskeleton slip occurs after a few oscillating cycles for the latter case. Figure 54
shows Ag’ for different f;; and different CG levels for an individual RBC with Ny =500, 2000
and 5000. We find that Ag’ rapidly decreases with f;5, whereas it smoothly approaches saturation
at high fj; in these three different cases. The critical value of f;; is smaller for the RBC model
with Ny =5000 due to the finer resolution, in which the effective tangential friction coefficient
of a single junctional complex connection is larger, so that it reaches saturation faster. Hence, by
explicitly incorporating the bilayer-cytoskeletal friction in the two-component RBC model, we
successfully test that the whole cell model can be used to quantify the bilayer—cytoskeletal slip
and probe its role in cell rheology.

(c) Single-cell dynamics and deformation

Using the two-component RBC model, we have also simulated the motion of a RBC in shear
flow. An important characteristic of the dynamics of an individual RBC in shear flow is the TT
frequency. Although many experimental studies have been devoted to the measurement of TT
frequency, considerable uncertainty exists with respect to the dependence of the TT frequency f
of a RBC on the shear rate y and viscosity ratio A of the internal to suspending fluid viscosities.
For example, Fischer et al. [10] and Tran-Son-Tay et al. [11] found that f increases linearly with y.
By contrast, Fischer found that f increases with y in a nonlinear fashion satisfying a scaling law
f ~ y# with scaling exponents ranging between 0.85 and 0.95 [33]. With regards to the dependence
of f on A, Fischer et al. [10] found no dependence of f/y on A, whereas Tran-Son-Tay et al. [11] found
that f/y increases with decreasing 1. Fischer [33] also found a similar dependence of f/y on A, but
with a reduced slope that was less than half of that reported by Tran-Son-Tay et al. [11]. Here, we
simulate the TT motion of a RBC in shear flow to investigate the correct functional relationship
between f and y (or A). Specifically, by placing a single RBC in shear flow between two planar
solid walls, we simulate the TT motions of a RBC over a wide range of three relevant parameters:
the suspending fluid viscosity 19 ranging from 0.0 to 109.3 cP, the shear rate y varying from 0.0
to 285.057!, and the degree of confinement given by the ratio of the diameter of the RBC to the
channel width, t, = d{)\/l /W, which varies between 0.22 and 0.67.

The fluidic channel is filled with fluid particles containing a RBC. Periodic boundary
conditions are used in the y and z directions, whereas the flow is bounded by solid walls in the
x direction. The domain dimensions are set to 45.0 um x 15.0 um x W, where W is the channel
width between the two planar solid walls. An extra bounce-back rule, i.e. the velocity of a DPD
particle that collides with the solid wall is reflected back into the fluidic channel, is applied to
the RBC and fluid particles to prevent them entering the solid wall domain. To produce a shear
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flow in the fluidic channel, a Couette flow driven by the two solid walls at the top and the bottom
having same speed but moving in opposite directions is applied to the suspending fluid. Different
shear rates can be obtained by changing the speed of the solid walls.

First, we consider ng =28.9 cP and y =212.0s~! for which the RBC can tank-tread in a steady
shear flow according to the Keller-Skalak model [34] and the experiment [33]. The RBC is released
in the shear flow at time f = 0.0s. It gradually deforms its shape and eventually obtains an oblate
or a convex ellipsoid shape. The RBC membrane and the internal fluid are observed to make a TT
motion, while the RBC aligns at an inclination angle with the flow direction. To gain insight into
RBC dynamics in the TT motion, we investigate the TT frequency of the RBC by tracking a marker
particle in the RBC membrane. The instantaneous position of the marker particle is monitored in
time (figure 6a). We find that the marker particle moves back and forth in the RBC membrane. At
the end of one cycle, the marker particle comes back to its starting point. The simulation data are
fitted with a sinusoidal function sin(wt + ), where w = 2xf, in order to extract the frequency f in
s~1. The time-dependent angular trajectories of the marker particle in figure 6b provide a more
direct way to calculate the TT period Py, and, thus, to obtain f through f =1/Py. By decreasing
the degree of confinement from ¢, = 0.67 to ¢, = 0.22, a similar dynamics is observed during which
the RBC orientation remains nearly the same while the marker particle moves slower, and the Py
becomes larger compared with its motion at f, = 0.67 as shown in figure 6, which means that there
is a decrease in f when increasing the channel width.

It has been assumed that changing the channel width of the solid walls can affect the TT
frequency, and the relationship between f and y is channel width dependent [33], i.e. it is linear
in a narrow channel flow while it is nonlinear with increasing the channel width. We demonstrate
here the plausibility of the effect of channel width variations on the RBC dynamics. Figure 7a
shows the TT frequency f as a function of shear rate y at suspending fluid viscosity ng =28.9 cP.
The simulation results show that f increases linearly with y at t, =0.67, which is consistent
with the experimental findings by Fischer et al. [10] and Tran-Son-Tay et al. [11]. One interesting
observation is that, when we decrease the degree of confinement to a small value such as t, = 0.22,
a nonlinear dependence of f on y is obtained (figure 7a). For this case, there is a decrease in f for
large y. The f—y relationship is nonlinear and satisfies a scaling law f ~ y# with scaling exponent
B~ 0.91. The simulation results agree with the results by Fischer [33] in his experiment with a
wide channel.

When the RBC rotates in shear flow, the velocity field of fluid flow around the RBC changes
significantly [35]. In figure 8, we present the flow streamlines and the two-dimensional velocity
contours within the x — z cross-section for two different degrees of confinement. In a narrow
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channel, the strong confinement enforces fluid particles and induces a flow parallel to the channel
walls, resulting in enhanced local shear stress around the RBC. In a wide channel, the influence
of solid walls on the local flow field around the RBC is very small or even negligible. Thus, there
is a slight decrease in f compared with that for the RBC in a narrow channel. The functional
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relationship between f and y is similar for both the one-component and the two-component RBC
models, although the values of f for the latter are somewhat lower.

Next, we study the effect of the bilayer—cytoskeletal friction coefficient f,; on the RBC TT
frequency as shown in figure 7b. We find that when using the value of f5; = 0.194 pN (um - s) 1,
which is derived on the basis of experimentally measured diffusivities of transmembrane proteins
and the fluctuation dissipation theorem [36,37], two marked particles on the lipid bilayer and
the cytoskeleton move together, and there is no significant bilayer-cytoskeletal slip, thus the TT
frequency of the lipid bilayer and the cytoskeleton is almost the same. However, assuming a
pathological RBC state where fj,; is decreased by one or two orders of magnitude, an apparent
bilayer—cytoskeletal slip occurs after a few TT cycles, and the marked particle on the lipid bilayer
moves faster than the marked particle on the cytoskeleton, resulting in a difference between
the two TT frequencies. Specifically, the TT frequency of the lipid bilayer increases as fys is
decreased, while the TT frequency of the cytoskeleton shows an opposite trend (figure 7b).
From the figure, we find that the TT frequency of the lipid bilayer and the cytoskeleton with
fps =0.194pN (um - 5)~! is lower than the frequency of the lipid bilayer but greater than the
frequency of the cytoskeleton in the case with fis =0.0194 or 0.00194 pN (um - s)~'. Hence, our
two-component RBC model can be used to quantify the existence of the bilayer—cytoskeletal slip
and probe its role in the TT frequency.

Using the two-component RBC model, we also investigate the dependence of the TT frequency
on the suspending fluid viscosity 7 in shear flow with different degrees of confinement. The
measurement of the f—y relationship of the RBC is performed at several 79 and two f,. We find
that the ratio of f to y always satisfies a linear dependence at ¢, = 0.67, while f increases with y
in an exponential fashion that satisfies a scaling law f ~ y# with the scaling exponent 8 varying
in the range from 0.85 to 0.96 when the degree of confinement decreases to t, = 0.22 (figure 9a).
These results agree with the experimental results by Fischer [33].

Considering the uncertainty between f/y and 15, in experiments [10,11,33], here, we want to
investigate whether the f/y ratio depends on 7, or not in the DPD simulations. Because the
dependence of f on y is nonlinear in a smaller f;, the definition of the slope of f/y requires an
approximation. Following Fischer [33], values of f/y of the fitted curves at y =212.0s~! are used
to estimate the slopes. In figure 9b, the semilogarithmic plot of the ratio of f to y on 7, is shown.
It can be seen that a linear dependence of f/y versus 1, exists, and the slope of this dependence
obtained at t, = 0.67 is close to the one in previous experimental data by Tran-Son-Tay et al. [11];
however, compared with this slope, the one obtained at t, = 0.22 has a slight increase, which is
different from Fischer [33], who found that the slope is much lower than that by Tran-Son-Tay
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et al. [11]. Actually, the value of scaling exponent f increases with increasing 1, (figure 9a);
thus, at the same y the difference in f between the two different degrees of confinement,
Af =fi.—067 — fr.—022, becomes smaller with increasing 1,. For example, at y =212.0s7, the
values of Af are 0.71, 0.47, 0.44 and 0.40 s71 at 5, =12.9, 28.9, 53.9 and 109.3cP, respectively.
Thus, the values of f/y at t, =0.22 are gradually closer to the ones at ¢, = 0.67 with increasing
No from 12.9 to 109.3 cP, resulting in a slight increase in the slope of the dependence between
f~y and no.

A RBC in shear flow can undergo dramatic changes in shape from an oblate to a prolate
ellipsoid where a constant surface area of RBC membrane is maintained. A direct means of
characterizing the RBC deformation is given by measuring the stretching of the RBC [11,17,33].
To do this, we first calculate the surface area of the RBC to verify whether the RBC membrane
conserves its surface area during the TT motion at different shear stresses. As evident in figure 10g,
the maximum deviation from the given value Ag’t is less than >~ 8 um?, corresponding to a 5.7%
increase in the maximum percentage deviation. Even though there is a small deviation between
the measured data and the given value of 135.2 um?, the surface area of the RBC is considered to
be always maintained during the simulations as the deviation is within the statistical uncertainty.
We then calculate the stretch ratio L/B of the elongated RBC and determine its variation with the
increase of shear stress, o =gy (figure 10b). There are two regimes for L/B dependence on o,
that is, L/B increases rapidly with o at low shear stress (regime I), while it increases slightly or
approaches smoothly a saturation value for larger o (regime II). In the latter regime, an increase
of o does not significantly affect the stretch ratio, which means the inclination angle between the
RBC and the flow direction is almost the same.
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In regime I, clearly, there is a shape transformation of the RBC from its biconcave shape to an
oblate then to a convex ellipsoid with increasing o (figure 10c). Thus, the deformation of the RBC
increases continuously in the regime. Interestingly, we find that there is only a slight increase
in the surface area of the RBC membrane in regime I from figure 104, which means that the
RBC responds to the variation of the shear stress by deforming its shape in order to control the
membrane tension. In regime II, we see that the biconcave shape is completely absent, and the
RBC always has a convex elongated shape (see the last three shapes of the RBC in figure 10c,
in which the RBC is behaving as strain hardening as the surface area and the volume of RBC are
preserved). The RBC already has an elongated shape, thus its shape remains basically the same.
Instead, the elongated RBC increases its major axial length by the imposed fluid flow but the
average inclination angle is kept almost constant when increasing the shear stress o.

4. Summary

RBCs exhibit complex rheological response and rich dynamic behaviour governed by their
membrane mechanical properties and the external/internal fluid viscosities. In this paper, we
have studied the RBC mechanics, rheology and dynamics by applying the two-component
RBC model to simulate three independent experiments on RBCs. First, we simulated the flow
dynamics of human RBCs in a microfluidic system and quantified cell deformation and pressure—
velocity relationships. The results show that the bilayer—cytoskeletal elastic interaction coefficient,
kps, plays a key role in the RBC traversing small microfluidic channels. Second, the RBC membrane
rheology was probed by TTC, showing good agreement with the experiment measurements.
Compared with the one-component RBC model, a decrease in the storage modulus at very high
frequency with the two-component RBC model appears; however, the difference is reduced when
we increase the friction coefficient between the lipid bilayer and cytoskeleton. Finally, the RBC
dynamics was studied in a simple shear flow. The effect of channel width variations between the
two planar solid walls on the TT dynamics of the RBC was investigated. The simulation results
with the two-component RBC model are demonstrated to capture the dependency between the
TT frequency f and the shear rate y for RBCs with different degrees of confinement, i.e. it follows
a linear relationship for a narrow channel but a nonlinear one for a wide channel. In addition,
we probed the effect of the bilayer—cytoskeletal friction efficient f,; on RBC TT dynamics; our
results demonstrate that the TT motion is too fast for the bilayer—cytoskeletal slip to occur for
healthy RBCs. However, if fy is significantly reduced for certain diseases, the apparent bilayer—
cytoskeletal slip occurs, which results in a difference in the TT frequency between the lipid bilayer
and the cytoskeleton. We also presented some simulation results of the influence of suspending
fluid viscosity on TT frequency. The results show that linear dependencies of the ratio of f to
y exist, and the slope of the dependence obtained in wide channel flow has a slight increase
compared with that in a narrow one.

These findings demonstrate that the two-component RBC model based on the particle-based
DPD method can be used for qualitative and quantitative interpretation and predictions of
mechanical, rheological properties and dynamic behaviour of RBCs in health or in haematological
diseases. Assuming healthy RBC properties and under normal physiological conditions, in
most cases the one-component and two-component RBC models do not differ too much;
however, we want to emphasize that, under extreme mechanical conditions or disease states, the
two-component RBC model is needed.
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