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Integration and modularity refer to the patterns and processes of trait inter-

action and independence. Both terms have complex histories with respect to

both conceptualization and quantification, resulting in a plethora of integration

indices in use. We review briefly the divergent definitions, uses and measures

of integration and modularity and make conceptual links to allometry. We also

discuss how integration and modularity might evolve. Although integration is

generally thought to be generated and maintained by correlational selection,

theoretical considerations suggest the relationship is not straightforward.

We caution here against uncontrolled comparisons of indices across studies.

In the absence of controls for trait number, dimensionality, homology, develop-

ment and function, it is difficult, or even impossible, to compare integration

indices across organisms or traits. We suggest that care be invested in relating

measurement to underlying theory or hypotheses, and that summative, theory-

free descriptors of integration generally be avoided. The papers that follow in

this Theme Issue illustrate the diversity of approaches to studying integration

and modularity, highlighting strengths and pitfalls that await researchers

investigating integration in plants and animals.
1. Introduction
Variation is a fundamental property of life. However, phenotypic traits do not

vary independently, but instead reflect webs of developmental, physiological

and functional interactions of varying strengths [1–3]. Interest in the covariation

of phenotypic traits has a long history in evolutionary biology, dating back at least

as far as Darwin’s discussion of multi-trait correlations in domestic animals ([4],

ch. 1). The concept of morphological integration came into common use following

Olson & Miller’s seminal work [5] on patterns of covariation among traits and

their relationships to functional needs. Olson and Miller did not formally

define the term integration and used it to refer to both statistical correlations

and functional interactions [6,7]. The terms phenotypic and morphological inte-

gration have thus acquired very broad usage, covering both observed patterns

of covariation, the capacity or tendency for covariation, the underlying organis-

mal architecture that gives rise to the tendencies and, ultimately, to the

observed patterns and their evolutionary causes and consequences.

We may thus recognize several distinct conceptual variants of integration.

These include (i) statistical or phenomenological integration, understood as

patterns of strong phenotypic or genetic correlations in standing population

variation; (ii) variational integration, defined as a tendency for covariation, as pro-

posed by Hallgrı́msson et al. [8]; (iii) developmental or structural integration of

organismal architecture, which includes developmental interactions and phenom-

ena such as the partial or complete fusion of parts. We may also recognize
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Figure 1. Potential evolutionary routes to modularity via parcellation and via
increased integration (modified from Wagner & Altenberg [13]). In the case
of parcellation, pleiotropic links between modules are removed, whereas with
increased integration pleiotropic links are added within the modules, so as to
make them relatively more integrated than the whole.
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(iv) functional integration, which refers to parts of the organism

that function together as a unit and (v) evolutionary integration,

which refers to sets of traits with a disposition for evolving as a

unit. See also Klingenberg [9] for a similar classification.

The concept of integration is closely related to the concept of

modularity, which likewise lacks a single definition and is used

in a variety of contexts. Like integration, modularity can refer to

patterns of standing (co)variation, variational independence,

developmental/structural independence or evolutionary inde-

pendence among sets of traits [10,11]. Raff [12] defined

(developmental) modularity in terms of the contextual inde-

pendence of a developmental process, as when a limb bud

develops according to its own rules even when it is grafted to

a different position or body. Wagner & Altenberg [13] defined

variational modules as (clusters of) phenotypic traits that

have a disposition for internal covariation (integration), but

are relatively independent of other such clusters (figure 1).

Hence, modules are (integrated) processes or traits with a

relative lack of integration with the rest of the organism.

Integration has particularly commanded the interest of

modern evolutionary biologists because of its potential to

constrain the course of phenotypic evolution. Indeed, Lewon-

tin [14] postulated that a degree of ‘quasi-independence’

(i.e. evolutionary modularity) of characters was a necessary

prerequisite for adaptive evolution to happen. The idea of

integration as a constraint is reflected in such concepts as

evolutionary lines of least resistance [15], in the idea of

allometric constraints or co-regulation of trait growth as con-

straints [16–20], in the idea of evolution as correlated

progression [21], and in the concept of conditional evolvabil-

ity [22], the last of which may be regarded as a quantification

of quasi-independence.

While increased modularity is generally seen as enhancing

the evolvability of the module in question (but see [23,24]),

integration is not necessarily just a negative constraint. In par-

ticular, Gould [16,25] has argued that constraints may often

play a positive role by channelling variation in directions

where selective challenges are likely to arise, or by creating

‘spandrels’ that can serve as substrate for new adaptations
[25]. Hence, integration may also be a facilitator of adaptation

(see also Riedl [26]). This is particularly easy to imagine when

parts of the organism need to function together in a coordinated

manner. It then benefits the organism if these parts are vari-

ationally linked, because this will reduce maladaptive

uncoordinated variation, and it may also benefit the population

by facilitating adaptive changes.

A key question is thus whether integration (or modu-

larity) can evolve as some form of adaptation. The most

obvious candidates here are as population-level adaptations

for evolvability, by facilitating coordinated variation for selec-

tion to act upon, or as adaptation for robustness, by reducing

potentially maladaptive genetic or environmental variation.

Alternatively, integration may evolve in a non-adaptive

manner as side-effect of selection on traits or on the efficiency

and accuracy of the developmental system. Many of the pio-

neers in the study of integration and modularity were

interested in them as potential adaptations [5,26–36]. How-

ever, it is not a trivial task to assess what mode of selection

may cause a given pattern of integration. We explore these

issues in §3.

Integration is linked conceptually to the extensive litera-

ture on allometry ([37,38]; see [9,18,19]), in which similarly

opposing views on constraint versus adaptation have also

arisen [20]. Allometry is a special case of developmental inte-

gration, because similar explicit underlying developmental or

functional processes are used to explain the proportional size

variation between two or more traits [37,39]. While some

authors have considered allometry as a possible constraint

for evolution resulting from the developmental process

[16,17,38], other have argued that allometry is itself evolvable,

the trajectory being maintained by selection [40–43].
2. Definitions and use of ‘integration’ and
‘modularity’

One of the most confusing issues surrounding the study of

biological integration is the lack of consensus about a proper

theoretical framework. The result is a diversity of different

uses, definitions and methods of measurement.

(a) ‘Statistical’ integration
The concept of integration is often used synonymously with

correlation or pattern of correlation. One may view this as

simply repackaging a study of correlations, but it may also

reflect an expectation of direct links between observed

patterns of variation and underlying developmental and

physiological structure. However, this may also be naive.

One of the fundamental discoveries of evolutionary quanti-

tative genetics in the 1990s was that underlying structure

cannot be inferred from patterns of variation. For example,

it was realized that fundamental trade-offs between traits

do not necessarily, or even usually, lead to negative phenoty-

pic or genetic correlations, because they can be masked by

variation in acquisition [44–47]. Hence, in lacking an explicit

theoretical link to underlying organismal structure or to evol-

utionary consequences, the phenomenological concept of

integration has little content beyond correlation. The term

integration becomes mere window dressing for descriptive

correlational studies, and we suggest that use in this context

be avoided in the future.
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(b) Variational integration
Hallgrı́msson et al. [8] suggested that integration should

be treated as a dispositional concept in the same way as

Wagner & Altenberg [13] suggested for the terms ‘variability’

and ‘evolvability’. Hence, just as variability refers to a

tendency or disposition for variation and not to the expres-

sed variation, integration can be defined as a tendency or

disposition for covariation. This avoids the theoretical

shallowness of using integration as another name for corre-

lation by giving the concept a defined theoretical role.

Examples of variational use of integration may be found in

studies of patterns of pleiotropy (genetic integration in the ter-

minology of Klingenberg [9]). Here, the focus is not on the

expressed variation, which is also influenced by population

history, patterns of selection, etc., but instead on the under-

lying potential. Studies of patterns of statistical ‘integration’

among new mutations often fall into this category. Following

Wagner & Altenberg [13], the concept of modularity can also

be used in a dispositional manner, referring to a potential for

independent variation.
245
(c) Developmental integration
Developmental integration refers to the underlying develop-

mental and physiological mechanisms that create the

disposition for covariation. These are mechanisms that can

be studied experimentally [35,48]. Studies of developmen-

tal integration may thus be classified as studies of the

genotype–phenotype map, with an emphasis on the causes

of trait covariation. In this category, we find studies of hormo-

nal systems and their ability to create coordinated variation

in different traits [49–51], and studies of growth regulation

and the developmental basis of allometric ‘integration’

[37,52–55]. There is also a number of formal models of how

underlying developmental architecture is converted into trait

(co)variation [46,56–60].
(d) Functional integration
Functional integration is an important but challenging concept,

because it encompasses proximal causes of phenotypic inte-

gration, ultimate causes of genetic integration and even the

absence of detectable covariation within populations. Starting

with Tedin [27], Terentjev [28], Stebbins [29] and Olson &

Miller [5], numerous authors have written about traits working

together to perform some function [33,34,61–63]. Indeed, this

is the underlying logic of most studies of phenotypic inte-

gration and one reason why integration is of interest to

ecologists as well as developmental geneticists.
(e) Evolutionary integration
The terms integration and modularity are also often used

to refer to evolutionary dispositions. Hence, evolutionary

integration is the disposition for two or more traits to

evolve jointly during the divergence of populations or

species. Evolutionary integration is thus related to the con-

cept of evolvability. In the case of evolutionary modularity,

this is expressed in Lewontin’s [14] concept of quasi-

independence, which was clearly intended as a dispositional

concept. As discussed in §3, however, the relationship of inte-

gration and modularity (in any other sense) to evolvability is

not simple and one-to-one.
3. Evolution of integration
Here, we first review the theoretical basis for the evolution of

integration and modularity. We then provide a few empirical

examples of evolutionary responses to apparent selection for

integration in plants and animals.
(a) Theoretical considerations
In discussing the evolution of integration, it is important to

make clear what level of integration we are talking about

[64,65]. Some of the literature on integration simply discusses

the evolution of standing genetic or environmental variation

in the population. In particular, the evolution of genetic vari-

ation commands a large literature, and we do not review the

evolution of ‘statistical’ integration here. Instead, we focus on

the evolution of variational and developmental integration.

Before going into that, however, it is useful to make a few

remarks on the effects of selection on standing variation.

It is well known that selection on variances and covari-

ances depends on nonlinearities in the fitness surface.

Positive second derivatives of fitness with respect to traits

will increase variance, negative second derivatives will

decrease variance, and for selection to alter the covariances

between two traits, it is necessary that the joint second

derivative of fitness with respect to the two traits is non-

zero (correlational selection) [66]. Provided there is no skew

in the trait distribution, a linear (flat) surface will only lead

to weak reduction in variance that is second order in the

strength of selection [67]. More generally, we can say that

convexity in the fitness surface along a certain direction will

favour variation in this direction, whereas concavity will dis-

favour variation. The relationship of this to integration is not

straightforward however. First, if integration is conceptual-

ized as a correlation at the population level, then there is

no direct link to correlational selection, because change in

correlations will depend on changes in both the covariance

and the variances of the traits. Correlations will increase if

selection increases covariances more than variances. Thus,

the simple expectation of correlational selection favouring

correlation needs to be qualified. Second, selection is not evol-

ution. Even if the direct change in variation as a consequence of

selection is precisely described by a simple model [66], the evol-

utionary responses of second moments are complicated and

depend on the details of the genetic architecture [67].

A further complication is that selection on statistical

integration is not transferred to selection on underlying vari-

ational or developmental integration in any simple manner,

because the link between expressed variation and underlying

architecture is not one-to-one, as discussed above. Most

discussion of variational integration and modularity is

couched in terms of patterns of pleiotropy. Hence, a good

starting point for understanding the evolution of variational

integration would be to understand the evolution of pleio-

tropy. Unfortunately, there is not much formal theoretical

work on this question (but see below). Wagner [36] and

Wagner & Altenberg [13] present some of the first explicit,

although verbal, theories by discussing what selection press-

ures could lead to modularity by eliminating pleiotropic

links between functional modules so as to make developmen-

tal modularity align with functional modularity. Wagner [36]

dismissed constant stabilizing selection, including cor-

relational selection as above defined, as a potent force for



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130245

4
the evolution of modularity. Instead, Wagner suggested that

modularity evolves by a combination of stabilizing and fluctu-

ating directional selection where separate (functional) modules

repeatedly find themselves under directional selection, whereas

other modules are under stabilizing selection. This hypothesis

remains to be tested with formal models.

Pleiotropy means that a gene, or more precisely an allelic

substitution, affects more than one trait. Hence, the evolution

of pleiotropy is a special case of the evolution of gene effects,

and we may draw some insights from theoretical work on the

evolution of gene effects on one-dimensional traits. This

theory mostly concerns the evolution of canalization and

we can relate the evolution of integration to canalization

of the gene effects that do not fit the pattern of integration.

Several hypotheses about the evolution of integration can

be drawn from this. First, it is clear that the evolution of cana-

lization depends on epistasis ([68–71], but see below), and

from this, we may infer that epistasis must be a central

element for a working theory of the evolution of integration.

Second, epistatic models show that either canalization or

decanalization is a possible outcome of directional selec-

tion, depending on the directionality of epistasis [71,72].

This indicates that the evolution of integration may also

depend on systematic patterns of gene interaction, and not

just on mode of selection. Third, Waddington’s [73] classic

hypothesis that stabilizing selection leads to canalization

also suggests that stabilizing selection may be important for

integration, but this needs qualifications. Although formal

analysis has shown that stabilizing selection indeed induces

canalizing selection for reduced gene effects [60,68,69,

74–76], the consequent reduction of standing variation also

reduces the opportunity for stabilizing selection. The result

is that the strongest canalization tends to evolve under stabi-

lizing selection of intermediate strength [68,74]. Hence,

integration may also evolve more easily for trait combinations

under intermediate strengths of stabilizing selection. Finally,

Le Rouzic et al. [74] found also that most forms of stationary

fluctuating selection tend to induce canalizing selection,

which suggests that fluctuating selection may also play a

role in the evolution of integration, although this role may

not be straightforward.

Hence, there emerges a picture of the evolution of inte-

gration and modularity with a complex relationship to

mode and strength of selection, and an essential dependency

on patterns of epistasis. There is a need for more theoretical

work on the evolution of pleiotropy to achieve a robust pre-

dictive theory. Some simulation-based studies exist [77,78],

but their interpretation is not straightforward (see Hansen

[79] for critical review). Guillaume & Otto [80] provide a

recent investigation of the conditions under which pleiotropy

can evolve to fit functional trade-offs (see also Rueffler et al.
[81]). Cheverud and co-workers have hypothesized that the

evolution of integration requires differential epistasis, mean-

ing different (directional) patterns of epistasis on different

traits [82–84].

Although important, epistasis may not be the only basis for

the evolution of pleiotropy, which can also happen through

systematic modifications of the mutational spectrum by allele

substitutions at a single locus [23,79]. For example, the evol-

ution of pleiotropy could happen through gene duplication

and subsequent subfunctionalization or neofuctionalization

[80,85,86]. Wagner & Altenberg [13] conceptualized the

evolution of patterns of integration in terms of adding or
removing pleiotropic links (figure 1), and this could happen,

for example, through the appearance or loss of cis-regulatory

modules (sensu Wray et al. [87]).

Perhaps the main hypothesis that motivates many studies

of integration and modularity is that patterns of integration

will evolve to match functional relationships. The theoretical

considerations above show that this is not an obvious predic-

tion, although there are some results pointing in this direction

[80,81,88]. It is also often unclear what a match between inte-

gration and function would be an adaptation for. Perhaps the

most interesting possibility is that functional integration is an

adaptation to increase evolvability by making the population

more capable of evolving in likely directions of selection,

because functionally related parts show coordinated variabil-

ity. It is not obvious how this can happen by individual

selection because evolvability is a population-level phenom-

enon, but it could plausibly happen through group or

species selection [89]. Arguably, integration could also raise

individual fitness by making an individual’s offspring more

likely to be adapted to spatial and/or temporal variation in

the environment (especially in organisms with high fecund-

ity and undirected dispersal of offspring). Adaptation for

robustness is another option. The canalization of functionally

uncoordinated variability may be favoured by individual

selection through improving the precision of phenotypic

expression. Armbruster and co-workers [63,90,91] have

argued that adaptation consists of two components: optimiz-

ation of the expected (average) phenotype and improved

precision of its expression. Integration could benefit the

latter. A final important possibility for adaptive evolution

of integration is that it is an adaptation to improve environ-

mental robustness and not genetic robustness. The latter

may then follow as side-effect of the former (the ‘congruence’

hypothesis [68,92,93]).

It is also possible that integration evolves in a largely non-

adaptive manner. Lynch [94,95] has argued that many

aspects of genomic architecture are consequences of genetic

drift as slightly deleterious changes of, for example, gene

duplications cannot be effectively selected against in finite

populations. With a different non-adaptive hypothesis,

Hansen [79] has argued that the major factor likely to affect

the evolution of variational properties is indirect selection

stemming from trait adaptation. The consequence of this

is that integration will evolve in a largely idiosyncratic

manner depending on the genetic details of its relation to

trait change. For example, a mutation creating a new pleiotro-

pic link may be favoured simply because the new trait it

affects is currently under directional selection, even if this cre-

ates an ‘unfavourable’ covariance with other traits [23]. Many

have also argued that integration can be a side-effect of evol-

ution of developmental interactions [59,79,96]. None of these

scenarios predicts a close match between developmental and

functional integration.

Regardless of the mode of evolution of pleiotropy and

developmental integration, we wish to emphasize that a

relationship between, for example, function and developmen-

tal integration does not necessarily transfer to a relationship

between function and variational, evolutionary or statistical

integration. For example, the patterns of pleiotropy that maxi-

mize the average evolvability of given trait modules are not

generally modular [23,24], and standing covariance may fail

to reflect both underlying trade-offs and modules in the

genetic architecture [46,64,97].
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Figure 2. Increased floral integration, from unfused pistil and stamens (a), to
adnate (structurally integrated) pistil and stamens (b). Fusion of filament and
style tissues can lead to an increase or decrease in measured (statistical) phenotypic
integration of pistil and stamen, depending, respectively, on whether the portions
of the stamen filaments fused to the style (dotted lines) are, or are not, included in
the stamen measurements. (The former analysis would depend on phylogenetic/
evolutionary or developmental insights.) (Online version in colour.)
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(b) Some empirical examples
Since the pioneering work of Olson & Miller [5], a huge

number of studies of integration has accumulated. The field

particularly took off with the emergence of evolutionary

developmental biology and its emphasis on the genotype–

phenotype map, and with the rapid development of ever

more sophisticated morphometric methods (reviewed in

[9,48,64,98–100]). Several important model systems have

emerged to yield insights into the developmental basis and

evolutionary consequences of integration. These include the

mouse mandible and cranium [35,65,101–107], the eyespots

on butterfly wings [108–112], limbs and pelvises of hominids

and other mammals [113–118], the primate cranium

[33,34,48,119–123], the insect wing [124–129] and many

others. We do not attempt to review this here, but restrict

ourselves to some general comments illustrated with the inte-

gration of angiosperm flowers, the important model system

introduced by Berg [30,31].

Over half of the papers in this theme issue and a large pro-

portion of the literature on integration concern the integration

and/or modularity of flowers. The origins of this interest can

be traced back to a pair of papers by Berg [30,31], which have

stimulated much of the research on integration and modularity

in plants and other organisms (see review by Murren [7] and

discussion by Conner & Lande [130]). Despite the fact that

Berg’s papers focused primarily on homeostasis and modular-

ity (‘correlation pleiades’), most of the subsequent literature

stimulated by Berg’s work has addressed patterns of inte-

gration [130]. This paradox reflects the fact that there are two

divergent interpretations of her thinking that probably

stemmed from the various ideas developed by Berg regarding

the effects of specialized pollination on flowers. We illustrate

this with the following quotations:

— ‘In the ten [specialized] species of plants possessing tubu-

lar flowers . . . a high positive correlation was observed

between the dimensions of the reproductive parts . . . ’

[30, p. 104].

— ‘All plants with specific insect pollinators . . . have corre-

lation pleiades. All plants lacking specific pollinators,

be they self-pollinated, anemophiles or entomophiles

without specialized insect pollinators, lack correlation

pleiades’ [31, p. 176].

— ‘The adaptations to localize pollen deposition involve: [in

addition to modularity] . . . the development of tubular

parts, reducing the arena where the critical events take

place; the reduction in number (oligimerization) and the

rigid fixation of the number of homologous parts’ [31, p. 177].

The first statement suggests that at least some flowers

with specialized insect pollinators are highly integrated.

The second statement has been interpreted to mean that flow-

ers with specialized pollination are highly modularized,

where floral modules could originate by integration and/or

parcellation (figure 1). The first and third statements suggest

that structural integration (e.g. corolla fusion and tubularity)

is greater in flowers with specialized pollination than in flow-

ers with less specialized pollination (see discussions by

Armbruster et al. [131] and Conner & Lande [130]). Addition-

ally, Berg’s a priori classification of flowers with fused parts as

specialized (see third statement) also lends support to the

idea that she thought that specialized flowers should show

greater structural integration. In Berg’s view, increasing
integration was achieved by the reduction of floral parts

via fusion (third statement), and not by simple stabilizing

selection on the different parts, as often suggested in the lit-

erature. Strong selection for covariation between two organs

may lead to their fusion as a mechanism to maintain their

functional and variational coherence and will promote their

statistical integration in the face of genetic and environmental

variation (figure 2).

Whether Berg imagined only parcellation or instead both

parcellation and integration in the evolution of specialized

modular flowers may never be resolved (but see discussion

by Conner & Lande [130]). Nevertheless, both ideas have

been tested and have received some support, but the debate

is still ongoing as illustrated by the collection of papers in

this theme issue.

This fusion, or developmental (structural) integration,

may result in the near-perfect fit of individual and population

means onto the governing adaptive ridge [132]. This was

originally suggested by Stebbins [133,134], who argued that

connation (fusion of parts from the same floral whorl)

and adnation (fusion of parts from different floral whorls)

represented a major trend in flowering plants, largely respon-

sible for the type of ‘simplified’ (fewer parts, highly fused)

flowers most often seen today (see also [135]). The effect of

organ fusion on statistical integration is illustrated in

figure 2, where we consider the covariance between two

traits defining the position of the anther (pollen) and

stigma in a flower relative to a common landmark (e.g. the

nectary). In figure 2a, the covariance between the length of

the pistil and filament results from the part of the variation

they have in common during their development, which corre-

spond to the general size of the flower, whereas trait-specific

growth and developmental noise will decrease their corre-

lation. Fusing pistil and filament into a common structure

in order to increase the accuracy of pollination by limiting

the variation in the position of the anther and stigma will trans-

form a large amount of the variation in each trait (variation in



Figure 3. Flower of Stylidium bicolor in the staminate phase. The column
bearing the pollen is formed by fusion (adnation) of staminate and pistillate
tissues and will bear the stigma in place of the pollen in one or two days.
Here, comparing column length in the male and female phases shows that
the positions of the anthers and stigmas are tightly correlated because of the
structural integration. (Online version in colour.)
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trait size and developmental noise) into covariation (figure 2b).

Whether or not such developmental integration can be

detected statistically will depend on the definition of the traits.

The fusion of male and female parts into a single column

bearing either the anthers or, later in floral development,

the stigmas in Stylidium (Stylidiaceae) flowers illustrates per-

fectly this issue, because pistil and filament tissues cannot be

distinguished from each other (figure 3). In this case, near-

perfect covariance between stamen and style is achieved by

fusion, but to detect this requires measuring the same struc-

ture twice, once for each function, which are temporally

sequential [90,132,136]. But if the fusion is imperceptible

and unrecognized, as may often be the case in flowers, for

example, petal–filament fusion (epipetally), then the portion

measured will be structurally and potentially statistically

independent of the rest of the other structures.

Considering the increased integration expected among

floral parts in species with specialized pollination, we have

noted a conceptual divergence that has developed in the litera-

ture. Many studies have explored the expectation that all floral

parts should be integrated and flowers modular (decoupled

from vegetative traits) when they are adapted for specialized

pollination. A second, perhaps more realistic, expectation is

that only certain floral traits (e.g. pollination efficiency and pol-

linator fit traits, such as style and stamen lengths) are correlated,

whereas others (e.g. floral advertisement traits, such as petal

size) may not be [61,131,135,137,138]. Consequently, flowers

may comprise several modules, with, for example, pollen-

transfer traits and advertisement traits representing two

partly independent units nested with the module represented

by the flower as a whole [138,139]. Finally, not all floral traits

necessarily belong to the floral module (for example, sepals or

pistils may be correlated with vegetative traits [131]; cf. [140]).

In general, flowers, like the vertebrate skull (see

[141,142]), appear to show integration between some

organs, including by fusion, as well as lack of integration

(and often modularity) between other organs. As Armbruster

et al. [63,131] and Ordano et al. [137] have pointed out, inte-

gration of flowers is best studied in the light of functional

or developmental hypotheses, and measures of overall
statistical integration are not very informative unless possible

modular organization is taken into account.
4. A multi-level perspective on integration
In considering integration at multiple levels of organization, it is

important to recognize the distinction between levels and

causes, where the former are units of organization and analysis

and the latter are sources of variance and covariance (see

Klingenberg [143]). It is these causes that generate the integra-

tion patterns at each level, but the causes are not necessarily

in operation at all levels [62]. For example, Armbruster [144]

distinguished between causal functions generating variation

and covariation among blossoms within genetic individuals

(genets), among genets, and among populations of one wide-

spread plant species. Armbruster hypothesized that variance

and covariance within genets were caused by variation in the

local environment and in ontogenetic stage, whereas variation

and covariation at the among-genet level were additionally influ-

enced by genetic variation, and variation and covariation

among populations were additionally affected by evolutionary

divergence. These can be viewed as emergent processes at the

level of organization at which they first appear. The emergent

processes can be detected and estimated by partitioning out

upper-level variances and covariances from the total variances

and covariances by modifying models developed for nested

analysis of variance (i.e. using ‘nested analysis of covariance’;

[62,144–146]) or by using contextual analysis [147,148].

Multi-level approaches are also important, because stabiliz-

ing selection may reduce the genetic variance (and covariance)

in a population, and a single population may therefore provide

few signs of integration, despite strong functional or develop-

mental integration being in place. Statistical integration (trait

covariation) is then revealed only when multiple populations

are compared (figure 4). For example, in Dalechampia vines

(Euphorbiaceae), an estimated pollination-related adaptive

surface governing the shape and size of blossoms leads to the

expectation that the amount of pollinator reward reflected in

the resin-gland area covaries with the distance between the

gland and the stigma. This is because the gland area influences

the size of the largest bee visitors and gland–stigma distance

influences the size of the smallest bee pollinators [145,149].

This relationship between trait functions almost certainly

generates correlational selection [62,63,135], but neither pheno-

typic covariation nor correlational selection can be detected

across the limited range of variation observed within a single

population [63,148,150,151]. Only when populations and

species with widely varying blossom sizes are compared is

strong phenotypic integration between gland areas and

gland–stigma distance revealed [63] (figure 4).

The multi-level approach has a long tradition in the study

of allometry, where allometric relationships are studied along

individual growth trajectories (ontogenetic allometry), along

individual differences at the level of the population (static allo-

metry), and along differences among populations or species

(evolutionary allometry; [152]). A working hypothesis for

many studies of allometry has been that evolutionary allome-

tries are outcomes of constraints imposed by the lower static,

or ontogenetic, levels. This is, for example, manifest in the

idea that evolution happens through heterochronic changes

along allometric constraints [16,153,154]. However, the

relationships between these levels are not simple [17,55].



(b)(a)

Figure 4. (a,b) Loss of detectable covariance with stabilizing selection acting together with correlational selection. Although populations will evolve only along the ridge
(diagonal dashed line), the variance within each population is too small relative to the width of the adaptive ridge, for any within-population covariation to be detected.
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Static allometries are not simple reflections of ontogenetic

allometries, and constraining a population to evolve along a

static allometry requires that the static–allometric intercept

and slope both remains invariant (not evolvable). Static

and evolutionary allometries indeed often resemble each

other, particularly on the subspecies level [17], but it remains

open whether this is caused by constraints or by similarities

in selection within and among populations [20].

We suggest that the conceptual framework, theory and

hypotheses often studied in relation to allometry can be fruit-

fully extended to the study of integration more generally. We

can recognize ontogenetic, static and evolutionary integra-

tion, and it is a goal to understand their interrelationships.

Like with allometry, it is clear that this relationship will not

be a simple one-to-one mapping.

Several authors have compared integration at multiple

levels of organization, for example, ontogenetic versus static

integration [144,155], within populations versus among

populations [62,63,144,156] and within versus among species

[63,157] (see review in Klingenberg [143]). As previously men-

tioned, the multi-level approach offers the advantage of

highlighting risks and weaknesses in the logic of adaptive inte-

gration within populations, especially when natural selection

has eroded variation and masked patterns of covariation. In

such cases, comparisons of population or species might

reveal the existence of functional integration that only emerges

at higher levels, because differences in population means gen-

erate sufficient variation for adaptive covariance to be detected

(figure 4; [62,63,143]). By contrast, integration that reflects gen-

etic constraints (e.g. pleiotropy) will usually be detected at both

the within- and among-population levels, as will adaptive inte-

gration that has been genetically assimilated by evolution of

the G-matrix (additive genetic variance matrix).
5. Measurement of integration and modularity
There are many experimental and observational methods for

studying integration and modularity. Many of these are

specific to given experimental systems, and we will not

attempt to review them here; instead, we make some general

remarks as to how integration and modularity are measured.

In this context, we mean measurement in the technical sense

of quantification, i.e. how numbers are used to represent an

underlying (theoretical) entity (e.g. [158]). Hence, to be able

to talk about measurement at all, we need to identify both
what is being measured and the actual procedure of measure-

ment. In the study of morphological integration, the former is

actually much harder than the latter. There is a whole zoo of

quantitative methods and statistics that are used to ‘measure’

integration, but owing to the lack of a well-defined common

theoretical framework, it is often hard to say precisely what is

being measured by these methods.

For example, there are many different one-dimensional

indices of integration in use (table 1; see [164,170] for over-

views). The first of these was Olson and Miller’s index of

morphological integration [5], which consisted of tabulating

statistically ‘significant’ correlations between traits and divid-

ing by the number of possible pairwise trait combinations.

This measure is unsatisfactory by modern standards, because

it relies on statistical significance testing and thus does not

capture the strength of correlations, but it also has a more

interesting theoretical problem in that it is merely a descriptor

of a pattern of correlation with no further connection to theory.

Like Cheverud [35], Hallgrı́msson et al. [8], Mitteroecker et al.
[48,64] before us, we argued above that the concept of inte-

gration is most usefully defined in relation to the

underlying developmental and functional mechanisms that

created the potential for correlation and not as the corre-

lations themselves. Indeed, Olson & Miller [5] were clearly

interested in this connection, and most of their methods

were directed toward this end. In their commentary pub-

lished in a reprinting of the Olson and Miller book,

Chernoff & Magwene [6] went as far as defining integration

as the correspondence between patterns of covariation and

underlying ‘hypotheses’.

Most indices of integration have the above-described pro-

blem of being mere summaries of correlation with no link to

formal theory. This is true of Van Valen’s [159] mean-squared

correlations and Cane’s [160] mean absolute correlation, and

of various measures based on variances or standard devia-

tions of eigenvalues in the correlation (or variance) matrix

[159,161–166]. It is important to realize that none of these

measures is derived from any model of relationship to either

development or evolution. While they are valid descriptors of

various aspects of correlation, they are not measures of inte-

gration in any sense beyond this. For this reason, it is also

impossible to evaluate which one is the best measure of (under-

lying) integration. The evaluations and comparisons of these

indices recently presented by Pavlicev et al. [164] and Haber

[170] are concerned with their ability to describe or contrast

aspects of a given statistical correlation matrix, and not with



Table 1. Overview of published indices related to the concept of integration. In the definitions, N is the number of traits, l is the eigenvalues of the
correlation matrix, r is the set of pairwise correlation coefficients, E denotes the expectation (the average) and jxj denotes the absolute value of x.

index notes references

Ir ¼
4(Bo;r)2

Kr(N2 � N)2 a complex index related to the fraction of correlations above a fixed threshold,

and scaled to lie between 0 and 1a

Olson & Miller [5]

Iz ¼ tanh(E(jzj)) average of Fisher’s z-transformed correlation back transformed to 0 – 1 scaleb Van Valen [32]

Ir2 ¼ E(r2) average coefficient of determination, estimated as the mean of the squared

pairwise correlations

Van Valen [159]

Ir ¼ E(jrj) average of the absolute pairwise correlations Cane [160]

I ¼ 1�
QN

i¼1 li

� �1=N
one minus the geometric mean of the correlation-matrix eigenvalues Cheverud et al. [161]

var(l) variance of the correlation-matrix eigenvalues Wagner [162], Cheverud

et al. [163]

varrel(l) ¼ var(l)=ðN � 1) relative variance of the correlation-matrix eigenvalues; the value N 2 1 is the

maximum possible variance of an eigenvalue

Pavlicev et al. [164]

SDrel(l) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(l)=ðN � 1Þ

p
relative standard deviation of the correlation-matrix eigenvalues Cheverud et al. [161],

Pavlicev et al. [164]

EV ¼ var(lP)=tr(P)2 the variance of the variance-matrix eigenvalues (lP) scaled by the total variancec Young [165], Willmore

et al. [166]

ICV ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
var(lP)

p
=E(lP) the standard deviation of the variance-matrix eigenvalues scaled by the mean of

the eigenvalues

Shirai & Marroig [167]

T ¼ N2

N � 1
varðlPÞ
trðPÞ2

one of Van Valen’s [159] measures of ‘tightness’, the closeness of the distribution

to the major axis, varying between 0 and 1

Van Valen [159]

nD ¼
PN

i¼1
lGi=lG1 the sum of the genetic variance matrix eigenvalues (lG) scaled by the leading

eigenvalue (lG1)

Kirkpatrick [168]

RV ¼ tr(P12P21)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr(P1P1)tr(P2P2)
p a measure of the total amount of covariation between the two sets of variables

over a measure of the total amount of variation in the within the two groupsd

Klingenberg [98]

a(x) ¼ c(x)
e(x)
¼ (xTG�1x)

�1

xTGx
the fraction of independent additive genetic variation (autonomy) for a particular

linear combination of the traits (x)e

Hansen & Houle [169]

i(x) ¼ 1� a(x) the fraction of non-independent additive genetic variation (integration) in the

direction of x

Hansen & Houle [169]

�a ¼ E(a(x)) the average autonomy of uniformly distributed random directionsf Hansen & Houle [169]
�i ¼ 1� �a the average integration of uniformly distributed random directions Hansen & Houle [169]

aBo;r is number of correlations above, or equal to, the lower statistical significance level (a function of sample size) of a fixed arbitrary threshold correlation
given by r. Kr is the number of non-contained r-groups, where non-contained means the largest group which can be formed where all elements have
pairwise correlations � r.
btanh is the inverse Fisher transformation (the hyperbolic tangent), z is a set of Fisher’s z-transformed pairwise correlation coefficients.
ctr is the trace function. P is the phenotypic variance matrix.
dP1, P2, P12 and P21 are the sub matrices of a phenotypic variance matrix. The sub matrices P1 and P2 are the variance matrices for the two sets of traits,
respectively. The sub matrices P12 and P21 are the covariances between the two sets of traits.
ee(x) is the evolvability and c(x) the conditional evolvability along a unit length vector (or direction) of the traits x, G is the additive genetic covariance matrix,
T denotes the transpose, and 21 denotes the inverse. To calculate the autonomy to a specific trait with respect to the rest, we can use a vector x with the
coefficient 1 for the focal trait and zero for the rest. The different indices from Hansen & Houle [169] are easily computed using the R package ‘evolvability’
(see [156]).
fThis can be approximated by ð1þ 2ðIðlGÞ þ Ið1=lGÞ � 1þ HðlGÞ=EðlGÞ þ 2IðlGÞIð1=lGÞ=ðN þ 2ÞÞ=ðN þ 2ÞÞHðlGÞ=EðlGÞ, where H(l) ;
1/E(1/l) is the harmonic mean, and I(l) ; var(l)/E(l)2 is the mean-standardized variance. The average autonomy can alternatively be measured as the
average of the individual trait autonomies (see [90,114]).
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their ability to capture integration on the developmental,

variational, evolutionary or functional levels.

The theoretical literature we discussed above shows that

patterns of standing variation and covariation stand in complex

relation to organismal structure and evolutionary mechanisms

(see also Marquez [97]). For this reason, the correlation-

based indices of integration and modularity should not

be used to make inferences about either developmental

integration or evolutionary potential. Similar considerations

apply to many methods aimed at describing patterns of multi-

variate variation such as principal component analysis or

exploratory factor analysis. If such methods are to be informa-

tive, they need to be connected to a priori hypotheses about

the developmental structuring of the variation [11,97,98], or to

hypotheses about evolutionary consequences of the variation

(evolutionary integration).

Hansen & Houle [169] developed unidimensional measu-

res of evolutionary integration and autonomy derived from

measures of evolvability. This approach started with an

attempt at quantifying Lewontin’s [14] concept of quasi-

independence by Hansen et al. [22], who did this by defining

the conditional evolvability of a trait (or set of traits) as their

evolvability when other (defined) traits were not allowed to

change. In their model, conditional evolvability was shown

to equal the conditional additive genetic variance of the

trait(s). The conditional variance is the residual variance

from a regression on the constraining traits. The conditional

evolvability is thus a measurement of evolutionary modu-

larity as above defined. From this, Hansen & Houle [169]

proposed to use the autonomy, defined as the ratio between

the conditional and the unconditional evolvability, as a relative

measure of how much the focal trait is constrained by other

traits. The autonomy varies between 0 and 1, with 1 meaning

that the traits are completely unconstrained. Their integration

measure is simply 1—autonomy. Note that these measures

can be defined for any trait or trait vector, and that evolvability,

and consequently evolutionary integration, may differ in

different directions of morphospace. If an overall measure of

(evolutionary) integration is desired, then Hansen & Houle

[169] proposed using the average integration over different

directions in morphospace.

Many other measures of evolutionary potential can like-

wise be informative about evolutionary integration and

modularity. Schluter’s [15] method of comparing species diver-

gence to the direction of maximal evolvability can be used to

test whether trait integration acts as a constraint (but see

[156,171]). Agrawal & Stinchcombe [172] proposed to test

how traits constrain each other by comparing evolvabilties

with or without putting trait correlations to zero. Kirkpatrick

[168] developed an alternative decomposition showing how

trait correlations affect evolvability. Marroig & Cheverud

[120] proposed to compute ‘evolutionary flexibility’ defined

as the average angle deviance of a predicted selection response

from a set of random selection gradients. Although not a direct

measure of evolvability, it tells us something about the evol-

utionary ability to stay on target. We can thus appreciate that

there are now several quantitative measures of how patterns

of statistical integration influence evolutionary potential.

There are also many methods that are based on compar-

ing patterns of statistical integration to a priori hypotheses

about developmental structure. Measurement theory tells us

that decisions about the attributes to be measured should

be based on precise theoretical descriptions of the physical
processes that generate these attributes and their relation-

ships. Consequently, these confirmatory methods thus often

provide a valid link between integration statistics and devel-

opmental or functional hypotheses. Many of the comparisons

of r and F statistics in Olson & Miller [5] and tools such as

conditional independence [173,174], confirmatory factor analy-

sis [97,131,175], block-correlation methods based on ‘partial

least-squares’ [11] and proximity graphs [176] may fall into

this category. In the search for valid measurement methods,

Mitteroecker & Bookstein [11] first used path models to for-

malize the relationship between hypothesized developmental

systems and the modularity and integration they generate.

Using these models, they explored how various statistical

methods performed in identifying and measuring integration.

Klingenberg [98] showed how the RV coefficient, a measure of

statistical modularity in landmark data, could be used to

compare different developmental models of Drosophila wing

modularity with observed patterns of integration. Marquez

[97] developed a general statistical framework for combining

different hypothetical ‘modules’ of variation. Marquez used

this to show how variation in rodent mandibles results from

several underlying and partially overlapping developmental

modules (as in the ‘palimpsest’ of Hallgrı́msson et al. [8]). In

other cases, however, the link between the measurement and

underlying biological questions and theory is weak or absent,

as discussed above for integration indices.

Developmental integration can also be studied through pat-

terns of pleiotropy derived from using molecular markers to

map quantitative-trait loci (QTLs) or from other genetic data.

Several studies test whether patterns of pleiotropy conform to

a priori hypotheses of developmental or functional integration

and modularity [35,102,104,177–182]. In essence, a few QTLs

with statistically significant effects are identified, and used to

check whether hypothesized integrated traits share QTLs. Of

particular interest for the evolution of pleiotropy and inte-

gration are studies of differential epistasis [83,84,103,183].

These studies identify relationship QTLs that modify the pleio-

tropic effects of other QTLs, and thus give evidence for genetic

variation in trait covariance. Studies of gene effects suffer from

serious methodological problems, however, in particular

because of the use of significance testing which leads to strong

bias towards genes of large effect [184]. In addition, studies of

pleiotropy have the measurement/theoretical challenge of sensi-

bly comparing gene effects across different traits, and to develop

proper measures of gene effects in the context of modularity and

integration. There is, however, a lot of research on developing

methods to deal with the problem of not detecting genes

of small effects [185–189]. Given that the statistical and

theoretical issues can be overcome, studies of gene effects may

give us important insights into the genetic architecture of

trait integration.
(a) Defining the characters
Any discussion of integration presupposes an a priori-defined

set of characters. This gives an element of circularity to its

study. The very definition and recognition of a biological

character presupposes that it has some level of variational inde-

pendence [59,190–192]. Characters are integrated modules!

This makes it clear that the results of any analysis of integration

is highly sensitive to the definition of traits, and also that com-

parison of and generalization from studies having used

different trait definitions are highly problematic [9].
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Current biological theory is not sufficiently developed to

provide an operational definition of character, and a degree

of vagueness is therefore unavoidable. Here, we provide

only some general observations. The first concerns the role

of size in the analysis. Size itself suffers from a similar vague-

ness as character (nevertheless see Mosimann [193]), but it is

clear that most ratio-scale traits share a strong component of

positive covariation along an axis we often call ‘size’. Whether

or not such size is included in an analysis of integration will

strongly affect the results, and we cannot compare studies

that have and have not corrected for size. How to correct for

size is another thorny task. Usually, the covariation with size

is on a proportional scale, i.e. it is allometric. Correcting for

size requires fitting an allometric relationship and the allometric

relationships may differ in different systems, making compari-

son very hard. For example, in their comparison of allometric

slopes in different groups, Voje et al. [17] encountered the pro-

blem that size was often defined from a principal component

analysis, and then it was not clear if a difference in allometric

slope between populations would be owing to a difference in

the size definition or in the allometric slope itself.

In morphometric studies, this problem arises in the choice of

landmarks, and conclusions are contingent on the assumption

that the landmarks are homologous. The problem of homology

has also made it difficult to test the Berg hypothesis with respect

to the decoupling of the phenotypic variation between floral and

vegetative traits, because this requires a comparison of floral

and vegetative traits that are not normally homologous. Just

choosing some floral and some vegetative traits and comparing

an index of integration may yield a difference, but it is hard to

know if this difference is due to the choice of traits or to a real

difference in integration. Hansen and co-workers [140,194]

tried to circumvent this problem by comparing floral involucral

bracts with a function in pollination with partially homologous

leaves, but the homology was not perfect, and this will not be

possible in most pollination systems. Similarly, Ordano et al.
[137] pointed out that tests of the hypothesis that flowers with

more specialized pollination should be more integrated are

inconclusive because they have been based on comparing inte-

gration indices over very different systems, including different

numbers of non-homologous traits, some of which not being

involved in pollen transfer (see also [195,196]).
(b) Integration and allometry
As noted above, allometry can be viewed as a special case of

integration [9,35], and similar to developmental integration,

morphological allometry has been considered both a possible

constraint on adaptive evolution [17,20,37,38], and itself an

adaptation to functional needs [43,197,198]. Thus, studies

of allometric covariation are relevant to the development of

integration studies.

Morphological allometry can be derived from explicit

models of co-regulated growth [17,37,199]. This means that its

parameters can be given precise biological interpretations on

the developmental level. Most pertinently, the narrow-sense

allometric slope can be related to the ratio of the co-regulated

growth rates of the two traits. This explicitness clarifies the

biological meaning of parameters and helps the development

of appropriate statistics for their study. For example, the pro-

blems related to identifying proper indices for quantifying

developmental integration can be solved only by formulating a

biological model and identifying integration with parameters in
this model. This will not only aid the biological interpretation of

the results, but also guide and constrain the statistical methods

that can be used. Similarly, the study of the evolution of allome-

try has been facilitated by the existence of explicit models that

can identify the exact targets of selection.

One of the most striking observations about ontogenetic

and static allometries is their invariance. Although there

are many examples of differences between allometric slopes

in related species, the recent review of Voje et al. [17] conclu-

ded that there is almost no evidence for evolvability of static

allometric slopes, nor are there examples of changes that

have happened on timescales below millions of years. This is

a strong indication that at least some aspects of integration

may be severely constrained. On the other hand, changes in

allometric relationships may be an important mode of

evolution for developmental integration.

Morphological allometry and developmental integration

have both been considered to represent possible constraints on

adaptive evolution [17,20,37,38]. A major difference, between

the two concepts, however, lies in the importance placed on

the trajectory of the covariance by allometric studies. While

usually only covariances or correlations are used as parameters

in studies of phenotypic integration (but see [131]), the slope (i.e.

s(x, y)=s2
x) is of major interest in studies of allometry. Although

many integration studies err in failing to consider the allometric

slope (see discussion in Armbruster et al. [131]), many allometry

studies err in failing to consider the coefficient of determination

(r2) when assessing relationships between traits [200].

Shallower or steeper allometric slopes do not necessarily

indicate weaker or stronger integration, and considering both

the allometric slope and the tightness of the relationship

(i.e. the integration) may provide additional information

about the possible correlational selection generating the covari-

ance among traits or the developmental constraint generated by

it. For example, floral canalization has been achieved by some

tropical monocot species, despite strong floral–vegetative inte-

gration, by the expression of very shallow allometric slopes

[131]. Other examples include the difference between static allo-

metric slopes of primary and secondary sexual characters in

many insect species. Genitalia of male insects generally display

shallow allometric slopes (b , 1), a phenomenon explained by

the one-size-fits-all hypothesis [201]. Armbruster et al. [131]

reported a similar phenomenon in some tropical flowers. By

contrast, horns and other secondary sexual characters display

steep allometric slopes [17,202]. However, both relationships

are similarly tight (similar r2; [17]). Together, these observations

suggest that assessments of phenotypic integration would be

improved by examining the direction of integration or auton-

omy (sensu Hansen & Houle [169]), as well as the strength of

the relationship (see discussion in [131]).
6. Discussion and conclusions
Integration and modularity are clearly important concepts in

evolutionary biology, but as with most heavily used concepts,

there is a diversity of opinions as to how best to use and define

these terms. Some of this diversity is reflected in the papers that

follow in this theme issue. Integration and modularity can refer

to the genetic, developmental, evolutionary and functional

capacities to covary or not, respectively, but they are

also used to describe the statistical properties of traits. These

concepts have also been applied at among-population and
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among-species levels, where definitions can become even

broader. For example, the capacity to covary adaptively may

only be detected when examining among-population covaria-

tion. This complexity has dogged the field as it struggles to find

a common language of communication. Another problematic

issue is that the evolution of integration is more complicated

than usually recognized and is not necessarily just the pro-

duct of correlational selection. Measurement of integration

has been compromised by unclear relevance of indices to

theory and uncertainty in what they actually measure owing

to complications generated by lack of trait homology and

heterogeneity in trait dimensionality and number. Neverthe-

less, there has been considerable advancement in our

empirical knowledge through the development of well-studied

systems such as the vertebrate cranium, mandible and limbs,

insect wings, and angiosperm flowers.

The papers that follow display a diversity of interpreta-

tions of not only the Berg hypothesis, but also key concepts

such as integration itself. This plurality reflects the state of

the field, so it seems natural to let it stand as exemplary of

the present diversity of approaches. Nevertheless, we hope

we have begun to build a framework for common terminol-

ogy and have pointed the way forward for greater synthesis

across studies of both plants and animals, and of genes,

development, ecology and evolution.

Conner & Lande [130] discuss Berg’s contributions to the

study of genetics, canalisation and modularity, pointing out

that she had far less to say about integration than most

people think. Klingenberg [143] reviews biological concepts

and analytical methods for characterizing patterns of vari-

ation, with emphasis on geometric morphometrics and

comparisons across hierarchical levels of organization.

Several of the papers that follow address aspects of floral

integration. Vallejo-Marin et al. [19] assess the allometric scaling

of floral traits in association with the reductions of flower size

and reduced heteranthery (anther dimorphisms) in Solanum
(Solanaceae) clades, finding evidence of repeated parallel tran-

sitions of nearly identical nature. A study by Pérez-Barrales et al.
[203] finds dramatic differences in integration and variance pat-

terns in dimorphic and monomorphic populations of Narcissus
(Amaryllidaceae); these differences were associated with dif-

ferences in type and behaviour of the main pollinators. Diggle

[138] raises an additional layer of complexity in reminding us

that flowers usually vary phenotypically with position in an

inflorescence (reflecting both positional and temporal effects),

and that we lose insights into floral development and function

if flower position is ignored. Diggle also develops the idea that

flowers often comprise two or more modules and these may

vary in their response to position in the inflorescence; for

example, in the Nicotiana study, system efficiency (fit-with-pol-

linator) is usually invariant with position, whereas attraction

traits are often variable with position. Ellis et al. [204] report cor-

related variation in fly-mimic traits associated with sexual

deception of the main pollinators of Gorteria diffusa (Asteraceae)
in South Africa. Gómez et al. [205] use geometrical morpho-

metrics to quantify integration of flowers of Erisimum spp.

(Brassicaceae), plants with generalized pollination. Despite

the largely generalized pollination, these plants show a trend

towards greater integration in populations/species with fewer

kinds of pollinators (more specialized pollination). Stock et al.
[206] explore the covariance patterns of floral and growth

traits of Ipomoea hederacea (Convolvulaceae) along a latitudinal

gradient. They find evidence of polygenic clines in response

to shallow environmental gradients. These patterns are con-

sistent with past findings of natural selection on flowering

phenology, presumably owing to season-length variation

across latitudes. Finally, Bolstad et al. [156] assess the role of

genetic integration of floral traits (architecture of genetic corre-

lations) in constraining the multivariate trajectory of population

divergence. Paradoxically, they find clear evidence of constraint

despite estimates of evolvability that are sufficiently large to

allow unfettered multivariate evolution.

Transitioning to animals, Conner et al. [141] compare

patterns of integration across plants and animals, finding

evidence that plants (vegetative traits), hemimetabolous

insects and vertebrates are similarly integrated, with mean

correlations of about 0.5. Holometabolous insects were strik-

ingly more integrated as adults than the other organisms

surveyed. Floral and vertebrate-skull traits had similarly

low integration, perhaps because both represent multiple

modules. This underscores the importance of recognizing

modules a priori, as emphasized above (see also Murren

[7]), rather than simply calculating overall integration across

heterogeneous groups. Pitchers et al. [207] compare rates of

multivariate evolution also across both plants and animals,

attempting to assess the role of genetic architecture in

limiting the response to selection; they argue that sexually

selected traits may have evolved more rapidly than natu-

rally selected traits, and that this reflects differences in

evolvability rather than strengths of selection.

Looking at the evolution of the vertebrate skeleton,

Goswami et al. [142] address questions about the macro-

evolutionary consequences of patterns of integration and

modularity and use a modelling approach to explore the effects

of phenotypic integration on rates of evolution and long-term

evolutionary trends in disparity (phenotypic diversity). In a

focused longitudinal study, Firmat et al. [18] examine the

evolution of static allometry in rodent toot shape over

time, showing that this aspect of integration has remained

remarkably invariant over some 600 000 years.
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2014 Allometric constraints and the evolution of
allometry. Evolution 68, 866 – 885. (doi:10.1111/
evo.12312)

18. Firmat C, Lozano-Fernández I, Agustı́ J, Bolstad GH,
Cuenca-Bescós G, Hansen TF, Pélabon C. 2014 Walk
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2003 Evolvability and genetic constraint in
Dalechampia blossoms: genetic correlations and
conditional evolvability. J. Exp. Zool. Mol. Dev. Evol.
B 296, 23 – 39. (doi:10.1002/jez.b.14)

23. Hansen TF. 2003 Is modularity necessary for
evolvability? Remarks on the relationship
between pleiotropy and evolvability. Biosystems 69,
83 – 94. (doi:10.1016/S0303-2647(02)00132-6)

24. Pavlicev M, Hansen TF. 2011 Genotype – phenotype
maps maximizing evolvability: modularity revisited.
Evol. Biol. 38, 371 – 389. (doi:10.1007/s11692-011-
9136-5)

25. Gould SJ. 2002 The structure of evolutionary theory.
Cambridge, MA: Belknap Press.

26. Riedl R. 1978 Order in living organisms: a systems
analysis of evolution. New York, NY: Wiley.

27. Tedin O. 1925 Vererbung, Variation, und Systematik
in der gattung Camelina. Hereditas 6, 275 – 386.
(doi:10.1111/j.1601-5223.1925.tb03143.x)

28. Terentjev PV. 1931 Biometrische Untersuchungen
über die morphologischen Merkmale von Rana
ridibunda Pall. (Amphibian, Salientia). Biometrika
23, 23 – 51.

29. Stebbins GL. 1950 Variation and evolution in plants.
New York, NY: Columbia University Press.

30. Berg RL. 1959 A general evolutionary principle
underlying the origin of developmental homeostasis.
Am. Nat. 93, 103 – 105. (doi:10.1086/282061)

31. Berg RL. 1960 The ecological significance of
correlation pleiades. Evolution 14, 171 – 180.
(doi:10.2307/2405824)

32. Van Valen L. 1965 The study of morphological
integration. Evolution 19, 347 – 349. (doi:10.2307/
2406444)

33. Cheverud JM. 1982 Phenotypic, genetic, and
environmental integration in the cranium. Evolution
44, 520 – 538.

34. Cheverud JM. 1984 Quantitative genetics and
developmental constraints on evolution by natural
selection. J. Theor. Biol. 110, 155 – 172. (doi:10.
1016/S0022-5193(84)80050-8)

35. Cheverud JM. 1996 Developmental integration and
the evolution of pleiotropy. Am. Zool. 36, 44 – 50.

36. Wagner GP. 1996 Homologues, natural kinds and
the evolution of modularity. Am. Zool. 36, 36 – 43.

37. Huxley JS. 1932 Problems of relative growth.
New York, NY: Dial Press.

38. Gould SJ. 1966 Allometry and size in ontogeny and
phylogeny. Biol. Rev. 41, 587 – 638. (doi:10.1111/j.
1469-185X.1966.tb01624.x)

39. Klingenberg C. 1998 Heterochrony and allometry:
the analysis of evolutionary change in ontogeny.
Biol. Rev. 73, 79 – 123. (doi:10.1017/
S000632319800512X)

40. Emlen DJ, Nijhout HF. 2000 The development and
evolution of exaggerated morphologies in insects.
Annu. Rev. Entomol. 45, 661 – 708. (doi:10.1146/
annurev.ento.45.1.661)

41. Bonduriansky R. 2007 Sexual selection and
allometry: a critical reappraisal of the evidence and
ideas. Evolution 61, 838 – 849. (doi:10.1111/j.1558-
5646.2007.00081.x)
42. Eberhard WG. 2009 Static allometry and animal
genitalia. Evolution 63, 48 – 66. (doi:10.1111/j.
1558-5646.2008.00528.x)

43. Frankino WA, Emlen DJ, Shingleton AW. 2009
Experimental approaches to studying the evolution
of animal form. In Experimental evolution: concepts,
methods, and applications of selection experiments
(eds T Garland, MR Rose), pp. 419 – 478. Berkeley,
CA: University of California Press.

44. Van Noordwijk A, De Jong G. 1986 Acquisition and
allocation of resources: their influence on variation
in life history tactics. Am. Nat. 128, 137 – 142.
(doi:10.1086/284547)

45. Charlesworth B. 1990 Optimization models,
quantitative genetics, and mutation. Evolution 44,
520 – 538. (doi:10.2307/2409433)

46. Houle D. 1991 Genetic covariance of fitness
correlates: what genetic correlations are made of
and why it matters. Evolution 45, 630 – 648.
(doi:10.2307/2409916)

47. Fry JD. 1993 The ‘general vigor’ problem: can
antagonistic pleiotropy be detected when genetic
covariances are positive? Evolution 47, 327 – 333.
(doi:10.2307/2410143)

48. Mitteroecker P, Gunz P, Neubauer S, Müller G.
2012 How to explore morphological integration in
human evolution and development? Evol. Biol. 39,
536 – 553. (doi:10.1007/s11692-012-9178-3)

49. Emlen DJ, Allen C. 2004 Genotype to phenotype:
physiological control of trait size and scaling in
insects. Integr. Comp. Biol. 634, 617 – 634.

50. Flatt T, Tu MP, Tatar M. 2005 Hormonal pleiotropy
and the juvenile hormone regulation of Drosophila
development and life history. Bioessays 27,
999 – 1010. (doi:10.1002/bies.20290)

51. Flatt T, Heyland A. 2011 Mechanisms of life history
evolution: the genetics and physiology of life history
traits and trade-offs. Oxford, UK: Oxford University Press.

52. Shingleton AW, Frankino WA, Flatt T, Nijhout HF,
Emlen DJ. 2007 Size and shape: the developmental
regulation of static allometry in insects. Bioessays
29, 536 – 548. (doi:10.1002/bies.20584)

53. Nijhout HF. 2011 Dependence of morphometric
allometries on the growth kinetics of body parts.
J. Theor. Biol. 288, 35 – 43. (doi:10.1016/j.jtbi.2011.
08.008)

54. Parker J. 2011 Morphogens, nutrients, and the basis
of organ scaling. Evol. Dev. 13, 304 – 314. (doi:10.
1111/j.1525-142X.2011.00481.x)
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203. Pérez-Barrales R, Simón-Porcar VI, Santos-Gally R,
Arroyo J. 2014 Phenotypic integration in style
dimorphic daffodils (Narcissus, Amaryllidaceae) with
different pollinators. Phil. Trans. R. Soc. B 369,
20130258. (doi:10.1098/rstb.2013.0258)

204. Ellis AG, Brockington SF, de Jager ML,
Mellers G, Walker RH, Glover BJ. 2014 Floral
trait variation and integration as a function of
sexual deception in Gorteria diffusa. Phil.
Trans. R. Soc. B 369, 20130563. (doi:10.1098/
rstb.2013.0563)
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