
USHERING IN THE STUDY AND TREATMENT OF PRECLINICAL
ALZHEIMER DISEASE

Jessica B.S. Langbaum1, Adam S. Fleisher1, Kewei Chen1, Napatkamon Ayutyanont1,
Francisco Lopera2, Yakeel T. Quiroz3, Richard J. Caselli4, Pierre N. Tariot1, and Eric M.
Reiman1,*

1Banner Alzheimer’s Institute, 901 East Willetta Street, Phoenix, AZ 85006

2Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Calle 62 No. 52 – 59, Medellín,
Colombia

3Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114

4Department of Neurology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ
85259

Abstract

Researchers have begun to characterize the subtle biological and cognitive processes that precede

the clinical onset of Alzheimer disease (AD), and to set the stage for accelerated evaluation of

experimental treatments to delay the onset, reduce the risk of or completely prevent clinical

decline. Here, we provide an overview of the experimental strategies, and brain imaging and

cerebrospinal fluid biomarker measures that are used in early detection and tracking of AD,

highlighting at-risk individuals who could be suitable for preclinical monitoring. We discuss how

these advances have contributed to reconceptualization of AD as a sequence of biological changes

that occur during progression from preclinical AD, to mild cognitive impairment and finally

dementia, and we review recently proposed research criteria for preclinical AD. Advances in the

study of preclinical AD have driven the recognition that efficacy of at least some AD therapies

may depend on initiation of treatment before clinical manifestation of disease, leading to a new era

of AD prevention research.

Introduction

Alzheimer disease (AD) is the most common cause of dementia in older people, and takes a

devastating toll on patients and families1. Owing to the growing number of people living to

older ages, a considerable increase is expected in the number of older adults with AD2–4

unless we can find effective treatments. Concern is increasing that AD treatments in

development may need to be started before clinical onset, when extensive evidence of

disease pathology already exists, to exert their most profound benefit.5 This concern,

together with recent efforts to detect and track cognitive, clinical and biomarker changes

associated with the preclinical stages of AD, has contributed to the interest in the evaluation
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of preclinical AD treatments6–10, which we have previously defined6 as “interventions that

are started in the absence of mild cognitive impairment (MCI) or dementia and intended to

postpone the onset, reduce the risk of, or completely prevent the clinical stages of AD.”

The pathogenic cascade of AD is thought to begin at least 1–2 decades prior to cognitive

impairment, starting with accumulation of the amyloid-β1–42 (Aβ1–42) peptide (the major

constituent of neuritic plaques) into oligomeric and fibrillar assemblies. The cascade

eventually leads to neuroinflammatory changes, synaptic dysfunction and loss, accumulation

and phosphorylation of the microtubule-associated protein tau (the main constituent of

neurofibrillary tangles) and, ultimately, to neuronal degeneration11. Research has also

suggested that some of these processes can be assessed using brain imaging and fluid

biomarkers12, 13. Recent studies, however, have indicated that other changes might precede

Aβ accumulation. Such studies found evidence of mitochondrial dysfunction, accumulation

tau pathology at young ages14–16, and less temporal cortex grey matter and smaller

hippocampi in infants at increased genetic susceptibility for AD, raising the possibility that

some changes may be developmental17, perhaps providing a starting point for the cascade

noted above.

The International Working Group for New Research Criteria for the Diagnosis of AD18 and,

more recently, working groups from the National Institute on Aging (NIA) and Alzheimer’s

Association (AA) have championed efforts to reconceptualize AD as a progressive sequence

of pathophysiological stages, some of which can be assessed using biomarkers, and which

roughly correspond to preclinical, mild cognitive impairment (MCI) and dementia stages.

The NIA-AA proposed revised criteria for clinical diagnosis of MCI19 and dementia due to

AD20, and research criteria were proposed for the preclinical stages of AD21. These

provisional, hypothesis-driven research criteria include three staging categories (Table 1)

and are intended to provide a common language for researchers, to facilitate comparison of

findings from different laboratories, and to help set the stage for evaluation of preclinical

AD treatments. Approximately one- third of cognitively normal older adults over the age of

70 have been suggested to meet NIA-AA criteria for preclinical AD (stages 1–3)22. Of these

individuals, approximately 10% progress to a diagnosis of MCI or dementia within 1 year,

and of those in stage 3, 43% progress to MCI or dementia in this time frame.23

Brain imaging and other biomarker measures have had a considerable impact on the study of

AD, and are expected to have an important role in the effort to find effective preclinical AD

therapies. In this article, we review well-established cognitive, brain imaging, and fluid

biomarkers for preclinical detection and tracking of AD. We also discuss studies in genetic

at-risk groups as well as longitudinal studies examining progression to the clinical stages of

AD. Finally, we note how these efforts are helping to accelerate evaluation of preclinical

AD treatments in cognitively unimpaired individuals who are at increased risk of AD

according to genetic or biomarker findings.

Measurement of AD biomarkers

To date, the most well-established measurements for detection and tracking of the

preclinical and clinical stages of AD include structural (MRI measurements of regional and
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whole-brain tissue shrinkage, fluorodeoxyglucose (FDG) PET measurements of decline in

the regional cerebral metabolic rate for glucose (CMRgl), PET measurements of fibrillar

amyloid-β (Aβ) burden, and cerebrospinal fluid (CSF) measures of Aβ1–42 , total tau (t-tau)

and phospho-tau (p-tau)24, 25 (Box 1). Other increasingly well-studied AD biomarkers

include functional connectivity MRI (fcMRI) and task-related functional MRI. Notably,

information provided by these and other biomarker measures depends not only on the

modality used, but on the manner in which the data are acquired and analysed.

Structural MRI

Structural MRI has been the most extensively used brain imaging method in the detection

and tracking of AD, and shows establishment of brain atrophy at the time of diagnosis

dementia due to AD. These measurements also reveal that patients with MCI and dementia

due to AD have accelerated rates of atrophy of the hippocampus, entorhinal cortex, regional

grey matter, and whole brain26, 27. Many of these measurements correlate with clinical

severity28, 29, subsequent clinical decline29, 30, and neuronal loss31. Moreover, these MRI

changes are apparent before onset of clinical symptoms, with hippocampal volumes reduced

by approximately 10% at least 3 years prior to diagnosis of dementia due to AD, and atrophy

beginning at least 5 years prior to the diagnosis27, 32.

FDG PET

AD is associated with preferential CMRgl reductions in the precuneus, posterior cingulate,

and parietotemporal cortex, some of which are apparent prior to onset of dementia, and

extend to the frontal cortex and whole brain as disease severity progresses33. CMRgl

abnormalities could be related to reductions in activity or density of terminal neuronal fields

or perisynaptic glial cells34, 35, metabolic dysfunction36, 37, or a combination of these

factors. CMRgl reductions are progressive, correlate with clinical severity and are predictive

of subsequent clinical decline38.

Fibrillar Aβ PET

PET measurements of fibrillar Aβ deposition could help to advance the study of AD by

enabling in vivo measurement of fibrillar amyloid in the brain39. Clinically affected patients

with AD show fibrillar Aβ deposition in the precuneus, posterior cingulate, parietal,

temporal and frontal cortices, which mostly occurs in early disease stages, with fibrillar Aβ

levels likely stabilizing later in the disease40. Cortical fibrillar amyloid seen with PET

imaging correlates closely with amyloid pathology at autopsy41, 42.

Functional connectivity MRI

Resting state fcMRI allows characterization of neural network activity when an individual is

not completing a task. The default mode network (DMN) represents a cluster of brain

regions—predominantly consisting of midline and lateral frontal regions, medial and lateral

parietal regions extending into the posterior cingulate–retrosplenial cortex—that have

elevated activity in states of relative rest43, 44. Such regions seem to be suppressed during

various cognitive activities, including encoding of new memories45, 46. Reduced resting

state connectivity47 and alterations in task-induced deactivation responses on functional
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MRI have been identified in normal ageing48, 49, MCI46, 50 and AD43, 49 compared with

younger, healthy controls.

The DMN overlaps anatomically with brain regions that have Aβ deposition51–53, regional

atrophy and areas of reduced white matter integrity as measured on MRI54, and reduced

CMRgl as measured using FDG PET47. Moreover, the DMN overlaps with brain regions

that rely on glucose beyond its usual role, referred to as “aerobic glycolysis” in adequately

oxygenated tissue55. Given the spatial distribution of aerobic glycolysis in young adults (age

20–33 years-old) overlaps spatially with PET measurements of fibrillar Aβ deposition, it is

suggestive that aerobic glycolysis may have a role in preclinical AD, though the biological

processes remain to be clarified.

Cerebrospinal fluid measures

Measurement of CSF Aβ42, particularly when combined with t-tau or p-tau181 measures, is

useful for establishment of a diagnosis in people with MCI or very mild dementia, and for

prognostication56. Clinically affected patients with AD have abnormally low CSF Aβ42

levels, and elevated p-tau181 and t-tau levels57, 58. The reduction in CSF Aβ42 may seem

counterintuitive, but is thought to result from sequestration of Aβ42 in amyloid plaques in

the brain56. CSF changes precede clinical onset by over a decade59–61, and are associated

with smaller whole-brain volumes in cognitively healthy adults60. Although CSF Aβ42

levels are well-established in detection and differential diagnosis of AD62, this measure is

not well correlated with disease duration or clinical severity63. Similarly, elevated t-tau is

consistently reported in patients with clinical AD but is not closely associated with severity

of dementia56, 64.

Detecting the earliest brain changes

Several AD-associated biomarkers show changes years before onset of symptoms in

individuals at increased genetic risk of AD (for example, carriers of the ε4 allele of the

apolipoprotein E (APOE) gene65 and individuals with gene mutations that cause early-onset

AD59) and those with Down syndrome66, as well as cognitively normal individuals who

subsequently progressed to clinical AD67, 68 Considerable research is this area has been

done to date, although the need remains for continued cohort studies with large sample sizes,

and head to head comparisons of identified biomarkers, in conjunction with development of

new biomarkers, to determine the extent to which these measurements, alone or in

combination with other factors, predict subsequent rates of clinical decline.

The sequence of biomarker changes

The hypothetical sequence of biomarker changes proposed by Jack and colleagues are

thought to begin about 10–20 years prior to clinical onset with biomarker evidence of

amyloid plaque deposition (reduced CSF Aβ42 levels and increased fibrillar Aβ PET

measurements)12, 13, 59, 61, 69. Other elements of the pathobiological cascade, however,

might exist that have yet to be discovered. These changes are probably followed by

biomarker evidence of neuronal dysfunction and synaptic loss, such as regional reductions in

cerebral glucose metabolism as measured on PET, altered patterns of functional
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connectivity, alterations in regional brain activity during memory encoding and novel

viewing tasks, and reductions in grey matter and cortical thickness as measured on MRI.

Biomarker evidence of tau pathology, neurofibrillary tangles, neuronal degeneration, and

neuronal loss seem to follow in the sequence of biomarker changes. These changes include

elevated CSF t-tau and p-tau levels, and hippocampal atrophy on MRI.

The exact timing of biomarker changes can depend on many factors, including the analytical

tools used, the underlying pathobiology, and the age at which participants are studied17. We

and others have characterized early biomarker and cognitive changes associated with

preclinical AD by studying individuals with different risk of AD on the basis of genetic

background, biomarker evidence of AD, or other factors. As part of these studies, the

apparent longitudinal trajectory of cognitive and biomarker changes in these at-risk groups

was mapped as the individuals progressed to clinical stages of AD or estimated based on

years from anticipated age at clinical onset. Certainly there are a number of other risk factors

for AD—including but not limited to age, family history, cardiovascular disease and

diabetes—that, although important, are beyond the scope of this Review, given its focus on

at-risk groups for preclinical treatment trials.

Identification and study of at-risk individuals

Apolipoprotein E: APOE is the major susceptibility gene for late-onset AD. In comparison

with individuals with the ε3ε3 genotype, the ε2 allele is associated with decreased risk of

late-onset AD and older age at dementia onset. By contrast, each additional copy of the ε4

allele, which is found in about 25% of the population and about 60% of patients with AD

dementia, is associated with higher risk of late-onset AD and younger age at dementia onset,

and individuals with two copies of this allele have an especially high risk70, 71. The number

of other confirmed AD susceptibility genes continues to grow, but these genes are associated

with comparatively modest effects on AD risk72–76.

As each APOE genotype is associated with a different level of risk of AD, detection and

tracking of cognitive and biomarker changes in individuals with these different genotypes

can provide researchers with initial information about which preclinical AD biomarker

(baseline measurement or change in measure) or combination of biomarkers is related to

subsequent clinical onset, without having to wait several years to obtain such information in

unselected populations.

Studies of cognitively unimpaired individuals who carry at least one copy of the APOE ε4

allele show considerable differences in AD biomarkers compared with noncarriers,

including MRI-measured accelerated cortical thining77, lower grey matter density78, and

accelerated brain atrophy79. Some changes in brain structure are apparent during infancy in

ε4 carriers17, although the relationship between such changes and development of AD

dementia remains uknown. FDG PET studies of cognitively unimpaired APOE ε4 carriers

reported reduced CMRgl in the same posterior cingulate, precuneus, parietal, temporal and

frontal regions as in AD dementia80–85, some of which are apparent almost 50 years prior to

the expected onset of symptoms86, are progressive87, and are correlated with ε4 allele

dose88. Recent evidence suggests that the preclinical hypometabolism in the posterior

cingulate precedes hippocampal volume loss associated with APOE ε4 allele dose89, and
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some findings in cognitively normal older adults (average age 75 years) with greater

amyloid deposition and in patients with MCI and Down syndrome, irrespective of APOE,

suggest that hypermetabolism may precede metabolic decline in certain brain regions90–92.

A study of adults (49–79 year-old) APOE ε4 carriers reported a pattern of reduced

deactivation while performing a semantic categorization task compared with noncarriers,

consistent with the DMN, though there was no allele dose effect93. Similarly, relative to

age-matched non-carriers, differences in resting state connectivity were detected in both

older adult (50–65 year-old)94 and young (20–35-year-old)95 APOE ε4 carriers.

Amyloid PET studies of cognitively unimpaired adult APOE ε4 carriers found substantial

fibrillar Aβ deposition in brain regions affected by AD pathology, including frontal,

temporal, posterior cingulate–precuneus, and parietal regions compared with

noncarriers69, 96–101. Fibrillar Aβ deposition is correlated with ε4 allele dose96, is apparent

approximately 10–15 years prior to estimated onset of AD dementia, and might be

associated with greater cognitive impairment in ε4 carriers97, 102, 103. Differences in CSF

measures of Aβ and tau have been reported, with APOE ε4 carriers having reduced

Aβ42
85, 101, 104–106, elevated Aβ40/Aβ42 ratios107, and higher t-tau and p-tau181

106, 108, 109

compared with noncarriers.

In addition to tracking biomarker changes in cognitively unimpaired APOE ε4 carriers, we

and others have also examined the cognitive differences between carriers and noncarriers.

Differences have not been consistently identified in early-life110 but, starting in late-middle

age, decline in long-term recall memory performance is more prominent in APOE ε4

carriers111–114 and is associated with ε4 allele dose115, 116, despite having no apparent

clinical symptoms.

Autosomal dominant Alzheimer disease: More than 200 mutations of the presenilin 1

(PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP) genes have been

shown to cause autosomal dominant AD (ADAD)117. As carriers of the genes will almost

certainly develop AD, they provide a unique group in which to characterize the trajectory of

preclinical AD changes in relationship to their family’s estimated age at clinical onset118.

ADAD differs from the more common, late-onset form of AD in several respects—for

example, by a generally younger age at clinical onset and overproduction rather than

reduced clearance of Aβ1–42
119, 120, though the question of overproduction versus clearance

is still under study121. The two forms of AD do, however, have common features,

particularly in regard to clinical phenotype122, 123. Investigation of ADAD, therefore,

provides another approach to preclinical study of AD.

Autosomal dominant versus sporadic AD: Findings from biomarker studies of cognitively

unimpaired ADAD mutation carriers are generally consistent with those from cognitively

unimpaired APOE ε4 carriers, although the exact timing and patterns (for example, fibrillar

Aβ deposition) can differ. Comparison between ADAD and groups who are genetically at-

risk of sporadic AD—in this case, APOE ε4 carriers—is important for determination of how

findings from trials in ADAD carriers relate to sporadic AD, given the planned preclinical

treatment trials, discussed below.
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Cognitively unimpaired, young adult ADAD mutation carriers can have reduction in grey

matter volume as measured by voxel-based techniques124, 125 in the same brain regions

preferentially affected by AD, even before CSF or PET evidence of Aβ42 deposition61, with

changes in hippocampal volume apparent approximately 15 years before expected symptom

onset59, 126 that continue to decline over time127. Research by the Dominantly Inherited

Alzheimer Network (DIAN) will be crucial in teasing apart the timing and trajectory of MRI

changes, although to date it has only reported findings in regard to hippocampal volume59.

Studies in ADAD mutation carriers have also reported CMRgl reductions in the posterior

cingulate, precuneus, parietal, and temporal cortex at least 10 years prior to expected

symptom onset59, 128–130.

Findings in amyloid PET studies to determine the pattern and timing of preclinical fibrillar

Aβ deposition are generally similar in ADAD mutation carriers and APOE ε4 carriers, with

deposition apparent approximately 10 years prior to the expected age at clinical onset59, 61.

Some studies, however, have reported preferential deposition in the striatum in at least

certain ADAD mutations131, 132. A notable difference, highlighted by data from DIAN, is

that in clinically affected ADAD mutation carriers, fibrillar Aβ deposition may continue to

rise after clinical onset of AD. Conversely, this finding has not been replicated in the PSEN1

E280A kindred61, perhaps owing to the difference in fibrillar Aβ patterns observed with

different ADAD mutations. In cognitively unimpaired ADAD mutation carriers, the

direction of CSF Aβ differences between carriers and noncarriers seems to depend on the

age of participants, though the assay and batching of samples likely also play an important

role. For example, in a recent study by our group, young adult PSEN1 E280A mutation

carriers had significantly higher CSF Aβ42 levels and significantly lower CSF t-tau/Aβ42 and

p-tau/Aβ42 ratios compared with kindred non-carriers125, in contrast to most findings

reported in older preclinical individuals and in the clinical stages of late-onset AD and

autosomal dominant AD63, 133. Findings from the DIAN study, which involved a larger

number individuals of different mutations at different ages, has suggested that CSF Aβ42

levels begin to decline 25 years before their estimated age at clinical onset. The researchers

did not, however, detect differences in CSF, plasma, or brain imaging measures between the

13 carriers and 13 non-carriers who were studied more than 20 years before their estimated

age at clinical onset, perhaps owing to the small sample size59. Similar to findings in APOE

ε4 carriers, cognitive decline—including changes in memory, visuospatial and executive

function—was reported in ADAD mutation carriers despite ongoing normal clinical

status134–138.

Other at-risk individuals: Individuals with biomarker evidence of AD pathology but no

clinical symptoms represent another group in which to track the trajectory of preclinical AD.

Amyloid PET studies suggested that approximately one-third of cognitively unimpaired

older adults have significant fibrillar Aβ deposition, which is consistent with intermediate or

high likelihood of pathological AD69, 98, 139–141, with most of the rise in deposition

occurring during the preclinical stage of AD142. Notably, most studies report that cognitive

function is normal or only mildly affected in older individuals with PET evidence of Aβ

deposition98, 143–145, and that Aβ deposition could be more closely associated with

Langbaum et al. Page 7

Nat Rev Neurol. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



longitudinal cognitive decline in older adults, particularly in regard to episodic

memory146–149.

Predicting clinical progression

Retrospective and longitudinal studies have been helpful for tracking of changes that occur

from preclinical AD to AD dementia. For example, retrospective analyses of individuals

who eventually progressed to AD dementia have generally reported decline in memory—

particularly episodic, semantic and working memory—to be a defining feature of preclinical

AD,150, 151, with the rate of cognitive decline and affected domains greatly accelerating 5–6

years prior to diagnosis of dementia152. Importantly, cognitive decline in older age may be

specific to those who progress to MCI or AD dementia and might not be an inevitable part

of ageing per se152, supporting the utility of cognition as a predictive marker of clinical

progression. We and others have been particularly interested in determining the optimal

combination of cognitive assessments for tracking cognitive decline prior to clinical

progression of AD153–155.

Non-biomarker-enriched populations

AD biomarkers could be useful for prediction of clinical AD progression in populations who

are not selected on the basis of AD biomarker profiles. For example, people with MCI who

subsequently progress to probable AD dementia show significantly greater declines in

CMRgl (measured on FDG PET) in AD-related brain regions than do individuals with MCI

who remain stable during the same time interval156, 157. MRI-measured reductions in

hippocampal and entorhinal cortex volume parallel very early memory decline and are

associated with subsequent progression to MCI or AD dementia30, 158, 159.

Functional connectivity MRI could also be useful in predicting conversion from MCI to AD

dementia160, 161. Increased activity in “task positive” networks (as opposed to brain

networks that deactivate during tasks such, as the DMN) in patients with MCI or AD

dementia have been interpreted as attempts at compensation, although this hypothesis

remains to be demonstrated conclusively. Alternative explanations include dedifferentiation

of cortical function and aberrant excitation—a finding that has also been seen in animal

models of AD162. In addition, lifelong patterns of increased brain activity might themselves

predispose an individual to Aβ deposition163. The latter hypothesis is intriguing, particularly

given that Aβ deposition, as measured by amyloid PET, is associated with longitudinal

cognitive decline in some normal adults and with progression to AD dementia68, 98. As

clinical progression occurs, however, Aβ accumulation slows98, 159 and probably plateaus by

the time of diagnosis of AD dementia164. Similar to functional MRI, elevated ratios of CSF

tau/Aβ42 and p-tau/Aβ42 are predictive of subsequent clinical progression in preclinical AD

or MCI to AD dementia63, 165. Together, positivity for PET and CSF measures of Aβ seem

to confer a threefold to fivefold higher likelihood of progression from preclinical AD or

MCI to AD dementia166–171.

Biomarker-enriched populations—Several studies have examined clinical outcomes in

individuals with biomarker evidence of AD pathology. Multiple positive AD biomarkers

might have additive predictive value. For instance, in people with MCI, having abnormal
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CSF t-tau and p-tau concentrations and hippocampal atrophy predicted time to AD

dementia172. Similarly, lower CSF Aβ42 concentration, hypometabolism as measured on

FDG PET, and hippocampal atrophy were associated with a faster time to AD dementia in

people with MCI173, supporting the hypothetical dynamic biomarker model discussed

previously12, 13. Moreover, in the latter study, people with MCI who were positive for all of

the three AD biomarkers consistently progressed to AD dementia during a 3-year period,

whereas those with no positive biomarkers were unlikely to progress. These findings in MCI

are supported by findings in cognitively normal individuals in which abnormal amyloid

levels on PET imaging and CSF biomarkers, when examined together, are associated with

faster time to cognitive impairment, whereas no differences were identified in the predictive

value of individual biomarkers174.

Preclinical AD populations

In preclinical AD populations, high Aβ levels on PET imaging correlates with decreased

performance on episodic memory and language assessments148 and increased hippocampal

atrophy rate175 over 18 months. Additional follow-up is needed to assess the predictive

value of high abnormal amyloid levels on PET imaging in cognitively healthy individuals

for progression to MCI or AD dementia.

An important related issue is determination of the cut-off value that defines ‘amyloid

positivity’. A level could be selected that is consistent with an intermediate to high

likelihood of AD pathology, or one that signifies the presence of any Aβ above that observed

in low-risk (young APOE ε4 noncarriers) individuals176. The optimal approach probably

depends on the question being explored. An intermediate value between these two cut-offs

could be a suitable approach for tracking change over time—something that is particularly

important as the field begins preclinical AD treatment trials in biomarker-enriched

populations—but researchers will need to ensure that this cut-off is associated with a high

likelihood of progression to AD.

Needs, challenges and opportunities

Biomarkers of preclinical-treatment response

As growing evidence from natural history studies indicates that brain imaging and other

biomarker measurements begin to change years before clinical symptoms emerge, it is

plausible that these measures could have a role in evaluation of preclinical AD treatments.

However, as we enter this era in AD prevention research and treatment trials, it is important

to examine how biomarkers behave in response to treatment, irrespective of what is

suggested by longitudinal data in observational studies. Prominent examples of unexpected

biomarker responses to experimental treatment include MRI-measured brain shrinkage in

response to the anti-Aβ vaccination AN-1792 (despite possible cognitive benefit on a subset

of memory measures)177 and in response to the passive Aβ immunotherapy bapineuzumab.

Crucially, therefore, trials should incorporate all the established AD biomarker measures to

determine how they behave in response to treatment.
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Refining and expanding biomarker knowledge

Observational longitudinal cohort studies stand to make important contributions to the field

of preclinical AD biomarkers. For example, they are needed to improve our understanding

of the trajectory of biomarker changes, enabling determination of the accuracy of prevailing

hypotheses regarding the sequence of biomarker changes, and identification of which

biomarkers, alone or in combination, predict subsequent clinical course. Additionally, new

biomarkers are needed to detect other aspects of disease pathology and process and, if

developed, could help in evaluation of potential treatments throughout the disease spectrum.

Examples of needed biomarkers include those for assessment of oligomeric Aβ species, tau

burden, and neuroinflammation, and more-specific measures of synaptic density.

Preclinical treatment trials

A number of preclinical treatment trials are in the planning stages or are already under way

in several at-risk populations of cognitively unimpaired individuals—namely, individuals

with biomarker evidence of Aβ as measured by amyloid PET, individuals who carry ADAD

mutations, those who are homozygous for the APOE ε4 allele, and individuals with variable-

length polymorphisms in TOMM40. Although observational studies conducted to date have

been valuable in preparing researchers for preclinical treatment trials, an important point to

consider is that prevalence estimates of factors such as amyloid burden in older adults,

which are derived from population-based studies, might not be observed in clinical trials

owing to recruitment biases.

Over the next several years, the field will certainly see more trials as a result of initiatives

including, but not limited to, the National Alzheimer’s Project Act, the French Alzheimer

Plan, and Alzheimer Europe. These prevention trials, which will embed currently available

AD biomarkers among sensitive composite cognitive test scores, are designed to show that

the treatment effects on biomarker measures are reasonably likely to predict clinical benefit,

with the intent that one or more of these biomarkers may receive regulatory agency

qualification as a surrogate end point for use in preclinical AD treatment trials5–7. In some

cases, all of the data and biological samples will be made available to the scientific

community following trial completion, with the aim of accelerating development of new

biomarkers and sensitive data analysis methodologies. Moreover, these trials should provide

a better test of the amyloid hypothesis than do trials in AD dementia or MCI.

Conclusions

The pathogenic cascade of AD is thought to begin at least 10–20 years prior to cognitive

impairment, and AD biomarkers have played a crucial role in the detection and tracking of

the preclinical and clinical stages of AD. As we begin this era of AD prevention research,

biomarkers and sensitive cognitive measures are poised to continue to make important

contributions. For instance, AD biomarkers, alone or in combination, could provide both

scientific advances and regulatory approval for treatments under “Accelerated Approval

provisions” or under the standard approval process if the biomarker has been validated to

predict clinical benefit. Although there is no guarantee that treatments in the development

pipeline will be effective, interest is growing in evaluation of these treatments in the
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preclinical stage of AD. Given the potential benefits to society if an effective AD or

preclinical AD treatment is found, researchers and other involved parties should have a

sense of urgency. Moreover, this enthusiasm needs to be shared with the general public,

informing them how to volunteer in prevention-focused research, given the likelihood that

for every prevention trial, thousands of individuals will need to be screened in order to find

enough eligible participants. With these factors in mind, we will be better prepared to deal

with the complexities and uncertainties that lay ahead.
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Key points

• The pathogenic cascade of Alzheimer disease (AD) is thought to begin at least

1–2 decades prior to cognitive impairment

• Disappointing results of several AD drugs in late-stage development have

suggested the need for early therapeutic intervention, calling for development of

biomarkers and sensitive cognitive measures for preclinical disease. The better

established measurements for detection and tracking of preclinical and clinical

stages of AD include MRI, fluorodeoxyglucose PET, amyloid PET, and

cerebrospinal fluid measures of Aβ42, total tau, and phospho-tau

• Individuals at genetic risk of AD can provide insights into cognitive and

biomarker changes that precede clinical manifestation of AD, and are suitable

candidates for ongoing monitoring and early-intervention strategies

• We are entering an era of AD prevention research, with a number of preclinical

AD treatment trials in the planning stages or under way for several at-risk,

cognitively unimpaired populations
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Box 1. Biomarkers of Alzheimer disease

Markers of amyloid-β accumulation

  Amyloid-β in cerebrospinal fluid

  PET amyloid imaging using 11C-Pittsburgh compound B or 18F radiotracers to bind to fibrillar amyloid-β

Markers of neurodegeneration

  Tau and phospho-tau in cerebrospinal fluid

Markers of neuronal activity

  Functional MRI measures of task-based neuronal activation, and resting neuronal connectivity

Markers of neuronal loss

  MRI measures of cortical thinning, hippocampal volume, and whole-brain volume

Markers of synaptic dysfunction

  18F-fluorodeoxyglucose PET
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Figure 1.
Reconceptualizing Alzheimer’s Disease
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Figure 2.
Well Established Brain Imaging Techniques in the Detection and Tracking of AD

Langbaum et al. Page 23

Nat Rev Neurol. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Hypothetical dynamic biomarkers of the AD pathological cascade12
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Figure 4.
Temporal link between amyloid deposition and onset of AD dementia

With permission from Chris Rowe, reprinted from69
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Table 1

Staging of preclinical AD21

Stage Pathological features Biomarkers

Amyloid-β
(PET or CSF)

Neurodegeneration
(tau, FDG, MRI)

Cognitive
change

1 Asymptomatic amyloidosis Present Absent Absent

2 Asymptomatic amyloidosis and neurodegenration Present Present Absent

3 Asymptomatic amyloidosis, neurodegenration and subtle cognitive decline Present Present Positive

Abbreviations: CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose.
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