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Abstract

In recent years, there has been considerable interest in estimating conditional independence graphs

in high dimensions. Most previous work has assumed that the variables are multivariate Gaussian,

or that the conditional means of the variables are linear; in fact, these two assumptions are nearly

equivalent. Unfortunately, if these assumptions are violated, the resulting conditional

independence estimates can be inaccurate. We propose a semi-parametric method, graph

estimation with joint additive models, which allows the conditional means of the features to take

on an arbitrary additive form. We present an efficient algorithm for our estimator's computation,

and prove that it is consistent. We extend our method to estimation of directed graphs with known

causal ordering. Using simulated data, we show that our method performs better than existing

methods when there are non-linear relationships among the features, and is comparable to methods

that assume multivariate normality when the conditional means are linear. We illustrate our

method on a cell-signaling data set.
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1. Introduction

In recent years, there has been considerable interest in developing methods to estimate the

joint pattern of association within a set of random variables. The relationships between d

random variables can be summarized with an undirected graph Γ = (V, S) in which the

random variables are represented by the vertices V = {1, . . . , d} and the conditional

dependencies between pairs of variables are represented by edges S ⊂ V × V . That is, for

each j ∈ V , we want to determine a minimal set of variables on which the conditional

densities pj({Xj | {Xk, k ≠ j}) depend,

There has also been considerable work in estimating marginal associations between a set of

random variables (see e.g. Basso et al., 2005; Meyer et al., 2008; Liang & Wang, 2008;
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Hausser & Strimmer, 2009; Chen et al., 2010). But in this paper we focus on conditional

dependencies, which, unlike marginal dependencies, cannot be explained by the other

variables measured.

Estimating the conditional independence graph Γ based on a set of n observations is an old

problem (Dempster, 1972). In the case of high-dimensional continuous data, most previous

work has assumed either multivariate Gaussianity (see e.g. Friedman et al., 2008; Rothman

et al., 2008; Yuan & Lin, 2007; Banerjee et al., 2008) or linear conditional means (see e.g.

Meinshausen & Bühlmann, 2006; Peng et al., 2009) for the features. However, as we will

see, these two assumptions are essentially equivalent. Some recently proposed methods relax

the multivariate Gaussian assumption using univariate transformations (Liu et al., 2009,

2012; Xue & Zou, 2012; Dobra & Lenkoski, 2011), restrictions on the graph structure (Liu

et al., 2011), or flexible random forests (Fellinghauer et al., 2013). However, we will see

that these methods may not capture realistic departures from multivariate Gaussianity.

For illustration, consider the cell signaling data set from Sachs et al. (2005), which consists

of protein concentrations measured under a set of perturbations. We analyze the data in more

detail in Section 5·3. Pairwise scatterplots of three of the variables are given in Fig. 1 (a)-(c)

for one of 14 experiments. The data have been transformed to be marginally normal, as

suggested by Liu et al. (2009), but the transformed data clearly are not multivariate normal,

as confirmed by a Shapiro–Wilk test, which yields a p-value less than 2 × 10−16.

Can the data in Fig. 1 be well-represented by linear relationships? In Fig. 1 (d), we see

strong evidence that the conditional mean of the protein P38 given PKC and PJNK is

nonlinear. This is corroborated by the fact that the p-value for including quadratic terms in

the linear regression of P38 onto PKC and PJNK is less than 2 × 10−16. Therefore in this

data set, the features are not multivariate Gaussian, and marginal transformations do not

remedy the problem.

In order to model this type of data, we could specify a more flexible joint distribution. How-

ever, joint distributions are difficult to construct and computationally challenging to fit, and

the resulting conditional models need not be easy to obtain or interpret. Alternatively, we

can specify the conditional distributions directly; this has the advantage of simpler

interpretation and greater computational tractability. In this paper, we will model the

conditional means of non-Gaussian random variables with generalized additive models

(Hastie & Tibshirani, 1990), and will use these in order to construct conditional

independence graphs.

Throughout this paper, we will assume that we are given n independent and identically

distributed observations from a d-dimensional random vector . Our

observed data can be written as .

2. MODELING CONDITIONAL DEPENDENCE RELATIONSHIPS

Suppose we are interested in estimating the conditional independence graph for a random Γ

vector . If the joint distribution is known up to some parameter θ, it suffices to

estimate θ via e.g. maximum likelihood. One practical difficulty is specification of a
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plausible joint distribution. Specifying a conditional distribution, such as in a regression

model, is typically much less daunting. We therefore consider pseudo-likelihoods (Besag,

1974, 1975) of the form

For a set of arbitrary conditional distributions, there need not be a compatible joint

distribution (Wang & Ip, 2008). However, the conditionally specified graphical model has

an appealing the-oretical justification, in that it minimizes the Kullback–Leibler distances to

the conditional distributions (Varin & Vidoni, 2005). Furthermore, in estimating conditional

independence graphs, our scientific interest is in the conditional independence relationships

rather than in the joint distribution. So in a sense, modeling the conditional distribution

rather than the joint distribution is a more direct approach to graph estimation. We therefore

advocate an approach for non-Gaussian graphical modeling based on conditionally specified

models (Varin et al., 2011).

3. PREVIOUS WORK

3·1. Estimating graphs with Gaussian data

Suppose for now that X has a joint Gaussian distribution with mean 0 and precision matrix

Θ. The negative log-likelihood function evaluated at Θ, up to constants, is

(1)

In this case, the conditional relationships are linear,

(2)

where βjk = −Θjk/ Θkk and ∈j ~ N1(0, 1/Θjj). To estimate the graph Γ, we must determine

which βjk are zero in (2), or equivalently, which Θjk are 0 in (1). This is simple when n > > d.

In the high-dimensional setting, when the maximum likelihood estimate is unstable or

undefined, a number of approaches to estimate the conditional independence graph Γ have

been proposed. Meinshausen & Bühlmann (2006) proposed fitting (2) using an l1-penalized

regression. This is referred to as neighborhood selection:

(3)

Here λ is a nonnegative tuning parameter that encourages sparsity in the coefficient

estimates. Peng et al. (2009) improved upon the neighborhood selection approach by

applying l1 penalties to the partial correlations; this is known as sparse partial correlation

estimation.
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As an alternative to (3), many authors have considered estimating Θ by maximizing an l1-

penalized joint log likelihood (see e.g. Yuan & Lin, 2007; Banerjee et al., 2008; Friedman et

al., 2008). This amounts to the optimization problem

(4)

known as the graphical lasso. Here,  0 indicates that W must be positive definite. The

sparsity pattern of the solution  to (4) serves as an estimate of Γ.

At first glance, neighborhood selection and sparse partial correlation estimation may seem

semi-parametric: a linear model may hold in the absence of multivariate normality.

However, while (2) can accurately model each conditional dependence relationship semi-

parametrically, the accumulation of these specifications sharply restricts the joint

distribution: Khatri & Rao (1976) proved that if (2) holds, along with some mild

assumptions, then the joint distribution must be multivariate normal, regardless of the

distribution of the errors εj in (2). In other words, even though (3) does not explicitly involve

the multivariate normal likelihood, normality is implicitly assumed. Thus, if we wish to

model non-normal data, non-linear conditional models are necessary.

3·2. Estimating graphs with non-Gaussian data

We now briefly review three existing methods for modeling conditional independence

graphs with non-Gaussian data. The normal copula or nonparanormal model (Liu et al.

2009, Liu et al. 2012, Xue & Zou 2012, studied in the Bayesian context by Dobra &

Lenkoski 2011) assumes that X has a nonparanormal distribution: that is, {h1(X1), . . . ,

hd(Xd)} ~ Nd(0, Θ) for monotone functions h1, . . . , hd. After these are estimated, one can

apply any of the methods mentioned in Section 3·1 to the transformed data. The conditional

model implicit in this approach is

(5)

This restrictive assumption may not hold, as seen in Fig. 1.

Forest density estimation (Liu et al., 2011) replaces the need for distributional assumptions

with graphical assumptions: the underlying graph is assumed to be a forest, and bivariate

densities are estimated non-parametrically. Unfortunately, the restriction to acyclic graphs

may be inappropriate in applications, and maximizing over all possible forests is infeasible.

The graphical random forests (Fellinghauer et al., 2013) approach uses random forests to

flexibly model conditional means, and allows for interaction terms. However, random

forests do not correspond to a well-defined statistical model or optimization problem, and

results on its feature selection consistency are in general unavailable. In contrast, our

proposed method corresponds to a statistical model for which we can prove results on edge

selection consistency.
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4. METHOD

4·1. Jointly additive models

In order to estimate a conditional independence graph using pseudolikelihood, we must

estimate the variables on which the conditional distributions pj (·) depend. However, since

density estimation is generally a challenging task, especially in high dimensions, we focus

on the simpler problem of estimating the conditional mean Exj (Xj | {Xk: (j, k) ∈ S} ), under

the assumption that the conditional distribution and the conditional mean depend on the

same set of variables. Thus, we seek to estimate the conditional mean fj(·) in the regression

model Xj | {Xk, k ≠ j} = fj (Xk, k ≠ j) + ∈j) + ∈j where ∈j is a mean-zero error term. Since

estimating arbitrary functions fj(·) is infeasible in high dimensions, we restrict ourselves to

additive models

(6)

where fjk(·) lies in some space of functions . This amounts to modeling each variable using

a generalized additive model (Hastie & Tibshirani, 1990). Unlike Fellinghauer et al. (2013),

we do not assume that the errors ∈j are independent of the additive components fjk(·), but

merely that the conditional independence structure can be recovered from the functions fjk(·).

4·2. Estimation

Since we believe that the conditional independence graph is sparse, we fit (6) using a

penalty that performs simultaneous estimation and selection of the fjk(·). Specifically, we

link together d sparse additive models (Ravikumar et al., 2009) using a penalty that groups

the parameters corresponding to a single edge in the graph. This results in the problem

(7)

We consider fjk(xk) = Ψjkβjk, where Ψjk is a n × r matrix whose columns are basis functions

used to model the additive components fjk, and βjk is an r-vector containing the associated

coefficients. For instance, if we use a linear basis function, Ψjk = xk, then r = 1 and we model

only linear conditional means, as in Meinshausen & Bühlmann (2006). Higher-order terms

allow us to model more complex dependencies. The standardized group lasso penalty

(Simon & Tibshirani, 2012) encourages sparsity and ensures that the estimates of fjk(·) and

fkj(·) will be simultaneously zero or non-zero. Problem (7) is an extension of sparse additive

modeling (Ravikumar et al., 2009) to graphs, and generalizes neighborhood selection

(Meinshausen & Bühlmann, 2006) and sparse partial correlation (Peng et al., 2009) to allow

for flexible conditional means.

Algorithm 1. Given initial values for the , perform Steps 1–3 for (j, k) ∈ V × V, and repeat

until convergence.

Step 1. Calculate the vector of errors for the jth and kth variables:
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Step 2. Regress the errors on the specified basis functions:

Step 3. Threshold:

Algorithm 1 uses block coordinate descent to achieve the global minimum of the convex

problem (7) (Tseng, 2001). Performing Step 2 requires an r × r matrix inversion; this must

be performed only twice per pair of variables. Estimating 30 conditional independence

graphs with r = 3 on a simulated data set with n = 50 and d = 100 takes 1.1 seconds on a 2.8

GHz Intel Core i7 Macbook Pro. The R package spacejam, available at cran.r-project.org/

package=spacejam, implements the proposed approach.

4·3. Tuning

A number of options for tuning parameter selection are available, such as generalized

crossvalidation (Tibshirani, 1996), the Bayesian information criterion (Zou et al., 2007), and

stability selection (Meinshausen & Bühlmann, 2010). We take an approach motivated by the

Bayesian information criterion, as in Peng et al. (2009). For the jth variable, the criterion is

(8)

where DFj(λ) is the degrees of freedom used in this regression. We seek the value of λ that

minimizes . When a single basis function is used, we can approximate the

degrees of freedom by the number of non-zero parameters in the regression (Zou et al.,

2007; Peng et al., 2009). But with r > 1 basis functions, we use

(9)

where . Although (9) was derived under the assumption of an

orthogonal design matrix, it is a good approximation for the non-orthogonal case (Yuan &

Lin, 2006). Chen & Chen (2008) proposed modifications of the Bayesian information
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criterion for high-dimensional regression, which Gao & Song (2010) extended to the

psuedo-likelihood setting. We leave evaluation of these alternatives for future work.

In order to perform Algorithm 1, we must select a set of basis functions. Domain knowledge

or experience with similar data may guide basis choice. In the absence of domain knowledge

we use cubic polynomials, which can approximate a wide range of functions. In Section 5·1,

we use several different bases, and find that even misspecified sets of functions can provide

more accurate graph estimates than methods that assume linearity.

5. NUMERICAL EXPERIMENTS

5·1. Simulation setup

As discussed in Section 2, it can be difficult to specify flexible non-Gaussian distributions

for continuous variables. However, construction of multivariate distributions via conditional

distributions is straightforward when the variables can be represented with a directed acyclic

graph. The distribution of variables in a directed acyclic graph can be decomposed as

, where SD denotes the directed edge set of

the graph. This is a valid joint distribution regardless of the choice of conditional

distributions pj(xj | {xk : (k, j) ∈ SD) (Pearl, 2000, Chapter 1.4). We chose structural

equations of the form

(10)

with ∈j ~ N(0, 1). If the fjk are chosen to be linear, then the data are multivariate normal, and

if the fjk are non-linear, then the data will typically not correspond to a well-known

multivariate distribution. We moralized the directed graph in order to obtain the conditional

independence graph (Cowell et al., 2007, Chapter 3.2). Here we have used directed acyclic

graphs simply as a tool to generate non-Gaussian data; the full conditional distributions of

the random variables created using this approach are not necessarily additive.

We first generated a directed acyclic graph with d = 100 nodes and 80 edges chosen at

random from the 4950 possible edges. We used two schemes to construct a distribution on

this graph. In the first setting, we chose , where the bjk1,

bjk2, and bjk3 are independent and normally distributed with mean zero and variance 1, 0.5,

and 0.5, respectively. In the second case, we chose fjk(xk) = xk, resulting in multivariate

normal data. In both cases, we scaled the fjk(xk) to have unit variance, and generated n = 50

observations. We compared our method to sparse partial correlation (Peng et al., 2009, R

package space), graphical lasso (Yuan & Lin, 2007, R package glasso), neighborhood

selection (Meinshausen & Bühlmann, 2006, R package glasso), nonparanormal (Liu et al.,

2012, R package huge), forest density estimation (Liu et al., 2011, code provided by

authors), the method of Basso et al. (2005, R package minet), and graphical random forests

(Fellinghauer et al., 2013, code provided by authors). In performing neighborhood selection,

we declared an edge between the jth and kth variables if  or . We performed
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our method using three sets of basis functions: , ,

.

5·2. Simulation results

Figure 2 summarizes the results of our simulations. For each method, the numbers of

correctly and incorrectly estimated edges were averaged over 100 simulated data sets for a

range of 100 tuning parameter values. When the fjk(·) are non-linear, our method with the

basis  dominates the basis sets  or , which in turn

tend to enjoy superior performance relative to all other methods, as seen in Fig. 2 (a).

Furthermore, even though the basis sets  and  do not entirely capture

the functional forms of the data-generating mechanism, they still outperform methods that

assume linearity, as well as competitors intended to model non-linear relationships.

When the conditional means are linear and the number of estimated edges is small, all

methods perform roughly equally, as seen in Fig. 2 (b). As the number of estimated edges

increases, sparse partial correlation performs best, while the graphical lasso, the

nonparanormal and the forest-based methods perform worse. This agrees with the

observations of Peng et al. (2009) that sparse partial correlation and neighborhood selection

tend to outperform the graphical lasso. In this setting, since non-linear terms are not needed

to model the conditional dependence relationships, sparse partial correlation outperforms our

method with two basis functions, which performs better than our method with three basis

functions. Nonetheless, the loss in accuracy due to the inclusion of non-linear basis

functions is not dramatic, and our method still tends to outperform other methods for non-

Gaussian data, as well as the graphical lasso.

5·3. Application to cell signaling data

We apply our method to a data set consisting of measurements for 11 proteins involved in

cell signaling, under 14 different perturbations (Sachs et al., 2005). To begin, we consider

data from one of the 14 perturbations with n = 911, and compare our method using cubic

polynomials to neighborhood selection, the nonparanormal, and graphical random forests

with stability selection. Minimizing BIC(λ) for our method yields a graph with 16 edges. We

compare our method to competing methods, selecting tuning parameters such that each

graph estimate contains 16 edges, as well as 10 and 20 edges, for the sake of comparison.

Figure 3 displays the estimated graphs, along with the directed graph presented in Sachs et

al. (2005).

The graphs estimated using different methods are qualitatively different. If we treat the

directed graph from Sachs et al. (2005) as the ground truth, then our method with 16 edges

correctly identifies 12 of the edges, compared to 11, 9, and 8 using sparse partial correlation,

the nonparanormal, and graphical random forests, respectively.

Next, we examined the other 13 perturbations, and found that for graphs with 16 edges, our

method chooses on average 0.93, 0.64 and 0.2 more correct edges than sparse partial
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correlation, nonparanormal, and graphical random forests, respectively, yielding p = 0.001,

0.19 and 0.68 using the paired t-test. Since graphical random forests does not permit

arbitrary specification of graph size, when graphs with 16 edges could not be obtained, we

used the next largest graph, resulting in a larger number of correct edges for their method.

In Section 1, we showed that these data are not well-represented by linear models even after

the nonparanormal transformation. The superior performance of our method in this section

confirms this observation. The qualitative differences between our method and graphical

random forests indicate that the approach taken for modeling non-linearity does affect the

results obtained.

6. EXTENSION TO DIRECTED GRAPHS

In certain applications, it can be of interest to estimate the causal relationships underlying a

set of features, typically represented as a directed acyclic graph. Though directed acyclic

graph estimation is in general NP-hard, it is computationally tractable when a causal

ordering is known. In fact, in this case, a modification of neighborhood selection is

equivalent to the graphical lasso (Shojaie & Michailidis, 2010b). We extend the penalized

likelihood framework of Shojaie & Michailidis (2010b) to non-linear additive models by

solving

where  indicates that k precedes j in the causal ordering. When Ψjk = xk, the model is

exactly the penalized Gaussian likelihood approach of Shojaie & Michailidis (2010b).

Figure 4 displays the same simulation scenario as Section 5·1, but with the directed graph

estimated using the known causal ordering. Results are compared to the penalized Gaussian

likelihood approach of Shojaie & Michailidis (2010b). Our method performs best when the

true relationships are non-linear, and performs competitively when the relationships are

linear.

7. THEORETICAL RESULTS

In this section, we establish consistency of our method for undirected graphs. Similar results

hold for directed graphs, but we omit them due to space considerations. The theoretical

development follows the sparsistency results for sparse additive models (Ravikumar et al.,

2009).

First, we must define the graph for which our method is consistent. Recall that we have the

random vector , and  is a matrix where each

row is an independent draw from . For each (j,k) ∈ V × V consider the orthogonal set of

basis functions ψjkt(·), . Define the population level parameters  as
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Let , sj = |Sj|, and . Then

where ∈1, . . . , ∈d are errors, and Σk∈Sjfjk(Xk) is the best additive approximation to E(Xj |

Xk : k ≠ j), in the least-squares sense. We wish to determine which of the fjk(·) are zero.

On observed data, we use a finite set of basis functions to model the fjk(·). Denote the set of r

orthogonal basis functions used in the regression of xj on xk by Ψjk = {ψjk1(xk),..., ψjkr(xk)}, a

matrix of dimension n × r such that . Let  denote the

first r components of . Further, let  be the concatenated basis functions in

{Ψjk : k ∈ Sj} and βSj be the corresponding coefficients. Also let ,

, and , and Λmin(ΣSj,Sj) be the minimum eigenvalue of

ΣSj,Sj. Define the subgradient of the penalty in (7) with respect to βjk as gjk(β). On the set Sj,

we write the concatenated subgradients as gSj, a vector of length sjr.

Let  be the parameter estimates from solving (7), let  be

the corresponding estimated edge set, and let S* = {(j,k) : k ∈ Sj or j ∈ Sk} be the graph

obtained from the population level parameters. In Theorem 1, proved in the Appendix, we

give precise conditions under which  as n → ∞.

THEOREM 1. Let the functions fjk be sufficently smooth, in thesense that if

, then , uniformly in (j,k) ∈ V ×

V for some . For j = 1,..., d, Assume the that the basis functions satisfy Λmin(ΣSj, Sj) ≥

Cmin > 0 with probality tending to 1. Assume the irrrepresentability condition holds with

probality

(11)

for (j,k) ∉ S* and some δ > 0, where . Assume the followint conditions on the

number of edges , the neighborhood size sj, the regularization parameter λ, and the

truncation dimension r:

Voorman et al. Page 10

Biometrika. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where . Further, assume the variables ξjkt ≡ ψjkt(Xk)∈j have

exponential tails, that is pr(|ξjkt| > z) ≤ ae−bz2 for some a,b > 0.

Then, the graph estimated using our method is consistent:  as n → ∞.

Remark 1. The conditions on |S*|, sj, λ, and r hold if, for instance, λ ∝ n−γλ, d ∝ exp(n γd), r

∝ nγr, maxjSj ∝ nγs, m = 2, and ρ* > δ > 0 for positive constants γλ, γd, γr, γs, and δ, while

γr + γs < 2γλ < 1 − γr − γs − γd, 2γs + γλ and n → ∞.

8. EXTENSION TO HIGH DIMENSIONS

In this section, we propose an approximation to our method that can speed up computations

in high dimensions. Our proposal is motivated by recent work in the Gaussian setting

(Witten et al., 2011; Mazumder & Hastie, 2012): the connected components of the

conditional independence graph estimated using the graphical lasso (4) are precisely the

connected components of the marginal independence graph estimated by thresholding the

empirical covariance matrix. Consequently, one can obtain the exact solution to the

graphical lasso problem in substantially reduced computational time by identifying the

connected components of the marginal independence graph, and solving the graphical lasso

optimization problem for the variables within each connected component.

We now apply the same principle to our method in order to quickly approximate the solution

to (7). Let  be the maximal correlation between Xj and Xk

over the univariate functions in  such that f(Xk) and g(Xj) have finite variance. Define the

marginal dependence graph ΓM = (V, SM), where (j, k) ∈ SM when . If thejth and kth

variables are in different connected components of ΓM, then they must be conditionally

independent. Theorem 2, proved in the Appendix, makes this assertion precise.

THEOREM 2. Let C1, . . . , Cl be the connected components of ΓM. Suppose the space of

functions  contains linear functions. If j ∈ Cu and k ∉ Cu for some 1 ≤ u ≤ l, then (j, k)

∉S*.

Theorem 2 forms the basis for Algorithm 2. There, we approximate  using the canonical

correlation (Mardia et al., 1980) between the basis expansions Ψkj and Ψjk:

.

Algorithm 2. Given λ1 and λ2, perform Steps 1–4.

Step 1. For (j, k) ∈ V × V, calculate , the canonical correlation between Ψkj and Ψjk.
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Step 2. Construct the marginal independence graph  when .

Step 3. Find the connected components C1, . . . , Cl of .

Step 4. Perform Algorithm 1 on each connected component with λ = λ1.

In order to show that (i) Algorithm 2 provides an accurate approximation to the original

algorithm, (ii) the resulting estimator outperforms methods that rely on Gaussian

assumptions when those assumptions are violated, and (iii) Algorithm 2 is indeed faster than

Algorithm 1, we replicated the graph used in Section 5·1 five times. This gives d = 500

variables, broken into five components. We took n = 250, and set .

In Fig. 5, we see that when λ2 is small, there is little loss in statistical efficiency relative to

Algorithm 1, which is a special case of Algorithm 2 with λ2 = 0. Further, we see that our

method outperforms neighborhood selection even when λ2 is large. Using Algorithm 2 with

λ2 = 0.5 and λ2 = 0.63 led to a reduction in computation time by 25% and 70%, respectively.

Theorem 2 continues to hold if maximal correlation  is replaced with some other

measure of marginal association , provided that  dominates maximal correlation in

the sense that  implies that . That is, any measure of marginal association,

such as mutual information, which detects the same associations as maximal correlation (i.e.

 if ) can be used in Algorithm 2.

9. DISCUSSION

A possible extension to this work involves accommodating temporal information. We could

take advantage of the natural ordering induced by time, as considered by Shojaie &

Michailidis (2010a), and apply our method for directed graphs. We leave this to future work.
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APPENDIX 1: TECHNICAL PROOFS

A·1. Proof of Theorem 1

First, we restate a theorem which will be useful in the proof of the main result.

Theorem A1. (Kuelbs & Vidyashankar, 2010) Let {ξn,j,i : i = 1, . . . , n; j ∈ An} be a set of

random variables such that ξn,j,i is independent of ξn,j,i′ for i ≠ i′. That is, ξn,j,i, i = 1, . . . , n

denotes independent observations of feature j, and the features are indexed by some finite set

An. Assume E(ξn,j,i) = 0, and there exist constants a > 1 and b > 0 such that pr(|ξn,j,i| ≥ x) ≤
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ae−bx2 for all x > 0. Further, assume that |An| < ∞ for all x all n and that |An| → ∞ as n →

∞. Denote . Then

We now prove Theorem 1 of Section 7.

Proof of Theorem 1. First,  is a solution to (7) if and only if

(A1)

where  is the subgradient vector satisfying  when

, otherwise .

We base our proof on the primal-dual witness method of Wainwright (2009). That is, we

construct a coefficient-subgradient pair  and show that they solve (7) and produce the

correct sparsity pattern, with probability tending to 1. For (j, k) ∈ S*, we construct  and

the corresponding subgradients  using our method, restricted to edges in S* :

(A2)

For (j, k) ∈ S*c, we set , and use (A1) to solve for the remaining  when k ∉ Sj.

Now,  is a solution to (7) if

(A3)

In addition,  provided that

(A4)

Thus, it suffices to show that that conditions (A3) and (A4) hold with high probability.

We start with the condition (A4). The stationary condition for  is given by
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Denote by  the truncation error from including only r

basis terms. We can write . And so

or

(A5)

using the assumption that  is invertible. We will now show that the inequality

(A6)

holds with high probability. This implies that  if .

From (A5) we have that

Thus, to show (A6) it suffices to bound T1, T2, and T3.

We first bound T1. By assumption,  uniformly in k. Thus,

 uniformly in j.

This implies that

In the above, we used that .

We now bound T2. Here, we use Theorem A1 which bounds the l∞ norm of the average of

high-dimensional independent vectors. First, by the definition of ∈j we must have that

E{ψjkt(Xk)∈j} = 0, i.e. the errors are uncorrelated with the covariates.

Let zjkt ≡ ψjkt(xk)Τ ∈j, which is the sum of n independent random variables with exponential

tails. We have that
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the maximum of 2r|S*| elements. We can thus apply Theorem A1, with An indexing the 2r|

S*| elements above, to obtain

We now bound T3. We have that  for (j, k) ∈ S*, so

Altogether, we have shown that

By assumption,

which implies that  with probability tending to 1 as n → ∞.

We now consider the dual problem, condition (A3). We must show that 

for each (j, k) ∉ S* . From the discussion of condition (A4), we know that

We will proceed by bounding ,  and ,

which will a bound for the quantity of interest, .
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We first bound M1. When bounding T1 earlier, we saw that n−1/2||wj||2 = Op(sj/rm). Now

 is a projection matrix with eigenvalues equal to 1, and by design

n−1/2Ψjk is orthogonal, so that all the singular values of n−1/2Ψjk are 1. Therefore

and

which tends to zero because sj(λrm)−1 → 0 uniformly in j.

We now bound M2. First, note that

Then, applying Theorem A1, as in the bound for T2, we get

Thus,  when

We now bound M3. By the irrepresentability assumption, we have that

 with probability tending to 1.

Thus, since , we have that for (j, k) ∈ S*c

with probability tending to 1. Further, since we have strict dual feasibility, i.e,

 for (j, k) ∈ S*c, with probability tending to 1, the estimated graph is

unique.
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A·2. Proof of Theorem 2

We now prove Theorem 2 of Section 8.

Proof of Theorem 2. Consider a variable j ∈ Cu. Our large-sample model minimizes E|Xj −

Σk≠j fjk(Xk)|2 over functions . We have that

By assumption, . Thus,

collecting terms, get

Minimization of this quantity with respect to  only involves the last term,

which achieves its minimum at zero when fjk(·) = 0 almost everywhere for each k ∉ Cu.
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Fig. 1.
Cell signaling data from Sachs et al. (2005). (a)–(c) Pairwise scatterplots for PKC, P38 and

PJNK. (d) Partial residuals from the linear regression of P38 on PKC and PJNK. The data

are transformed to have normal marginal distributions, but are clearly not multivariate

normal.
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Fig. 2.
Summary of simulation study. The number of correctly estimated edges is displayed as a

function of incorrectly estimated edges, for a range of tuning parameter values, in the (a)

non-linear and (b) Gaussian set-ups, averaged over 100 simulated data sets. Dots indicate the

average model size chosen by minimizing BIC(λ). The lines display our method with

, ( ),  ( ), and

 ( ), as well as the methods of Liu et al. (2012)

( ), Basso et al. (2005) ( ), Liu et al. (2011)

( ), Fellinghauer et al. (2013) ( ), Yuan & Lin (2007)

( ), Meinshausen & Bühlmann (2006) ( ), and Peng et

al. (2009) ( ).
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Fig. 3.
Cell signaling data set; graph reported in Sachs et al. (2005) is shown on the left. On the

right, graphs were estimated using data from one perturbation of the data set. From top to

bottom, panels contain graphs with 20, 16 and 10 edges. From left to right, comparisons are

to Peng et al. (2009); Liu et al. (2012); Fellinghauer et al. (2013). We cannot specify an

arbitrary graph size using graphical random forests, so graph sizes for that approach do not

match exactly.
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Fig. 4.
Summary of the directed acyclic graph simulation. The simulation is exactly as in Section

5·1 and Fig. 2. Again, (a) contains the non-linear simulation and (b) contains the Gaussian

simulation. For each method, the number of correctly and incorrectly estimated edges are

averaged over 100 simulated data sets, for a range of 100 tuning parameter values. The

curves displayed are those of our method with  ( ),

 ( ), and  ( ), as well as the

method of Shojaie & Michailidis (2010b) ( ).
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Fig. 5.
Performance of Algorithm 2. The number of correctly and incorrectly estimated edges are

averaged over 100 simulated data sets, for each of 100 tuning parameter values. The curves

displayed are from our method with λ2 = 0 ( ), λ2 = 0.5 ( )

and λ2 = 0.63 ( ), as well as the method of Meinshausen & Bühlmann (2006)

( ).

Voorman et al. Page 24

Biometrika. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


