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Abstract

Using a case-crossover study design and conditional logistic regression, we compared the relative

odds of transmural (full-wall) myocardial infarction (MI) calculated using exposure surrogates that

account for human activity patterns and the indoor transport of ambient PM2.5 with those

calculated using central-site PM2.5 concentrations to estimate exposure to PM2.5 of outdoor origin

(exposure to ambient PM2.5). Because variability in human activity and indoor PM2.5 transport

contributes exposure error in epidemiologic analyses when central-site concentrations are used as

exposure surrogates, we refer to surrogates that account for this variability as “refined” surrogates.

As an alternative analysis, we evaluated whether the relative odds of transmural MI associated

with increases in ambient PM2.5 is modified by residential air exchange rate (AER), a variable that

influences the fraction of ambient PM2.5 that penetrates and persists indoors. Use of refined

exposure surrogates did not result in larger health effect estimates (ORs = 1.10 – 1.11 with each

interquartile range increase.), narrower confidence intervals, or better model fits compared to the

analysis that used central-site PM2.5. We did observe evidence for heterogeneity in the relative

odds of transmural MI with residential AER (effect-modification), with residents of homes with

higher AERs having larger ORs than homes in lower AER tertiles. For the level of exposure-

estimate refinement considered here, our findings add support to the use of central-site PM2.5

concentrations for epidemiological studies that employ similar case-crossover study designs. In

such designs, each subject serves as his or her own matched control. Thus, exposure error related

to factors that vary spatially or across subjects should only minimally impact effect estimates.

These findings also illustrate that variability in factors that influence the fraction of ambient PM2.5
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in indoor air (e.g., AER) could possibly bias health effects estimates in study designs for which a

spatio-temporal comparison of exposure effects across subjects is conducted.

INTRODUCTION

A recent meta-analysis, which reported a statistically significant 2.5% increase in the risk of

myocardial infarction (MI) associated with each 10 μg/m3 increase in ambient (outdoor-

generated) PM2.5 concentration lagged one day, concluded that acute increases in PM2.5

may trigger MI.1 In our previous work, which was included in this meta-analysis, we

reported an increased risk of transmural (full wall) MI, but not non-transmural

(subendocardial) MI, associated with increased PM2.5 concentration in the 24 hours before

emergency department admission for that infarction.2 In all of these studies, PM2.5 measured

at one or more nearby (within 10 km) central-site monitors was used as a proxy for a

subject’s exposure to PM2.5 of outdoor origin (i.e., exposure to ambient PM2.5). This likely

resulted in exposure error due, in part, to proximity to local sources, human activity patterns

(e.g., time spent in various locations) and temporal and spatial variability in the efficiency

with which ambient PM2.5 penetrates into and persists in the indoor environment. While

other air pollution studies have explored exposure refinements that account for spatial

variability in ambient PM2.5 due to local sources,e.g. 3–6 the variable effects of human

activity patterns and ambient PM2.5 losses with outdoor-to-indoor transport are largely

unexplored.

The fraction of ambient PM2.5 that penetrates and persists indoors (F) varies with multiple

factors including particle size and chemical composition, housing characteristics (e.g., home

age), meteorological conditions (e.g., wind speed and temperature),7,8 and human activities

(e.g., opening windows or using air conditioning).9 Variability in the time spent in various

locations (e.g., outdoors, indoors, or in a vehicle) also influences personal exposure to PM2.5

of outdoor origin due to spatial variability in both outdoor PM2.5 concentrations and the

indoor transport of ambient PM2.5. This exposure error is likely a combination of Berkson

and classical errors, which would bias effect estimates towards the null and/or inflate

variances,10,11 hampering the detection of statistically significant associations between

increased ambient PM2.5 exposures and the risk of MI. Therefore, ambient PM2.5 exposure

surrogates that account for these factors could offer improvement over the direct use of

central-site monitor PM2.5 concentrations in air pollution epidemiology studies.

Exposure errors associated with variability in F and human activity patterns may modify

ambient-PM-mediated health effect estimates. Multiple studies have reported a lower risk of

morbidity or mortality associated with increases in PM2.5 concentration in communities with

a high prevalence of central air conditioning (AC), compared to risk estimates among

communities with lower AC prevalence.12–16 Central AC use reduces F because indoor air

is filtered as it is recirculated, thus increasing particle losses indoors.17–19 In a previous

study, we reported that conditions resulting in lower calculated values of F (due to spatial

variability in PM2.5 composition and/or residential AER) corresponded to circumstances

under which lower effect estimates had been observed in previous epidemiological studies.
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We concluded that exposure misclassification due to variability in F could partially explain

this observed geographic heterogeneity in ambient-PM-mediated health effect estimates.20

Using a case-crossover study design, herein we estimated the relative odds of transmural MI

associated with increased ambient PM2.5 exposure in the previous 24 hours using three

different PM2.5 exposure metrics that account for variability in human activity patterns

and/or the indoor transport of ambient PM2.5: (a) a stochastic human exposure model that

simulates the ambient PM2.5 concentration and time spent in each of several locations (i.e.

outdoors, indoors, in a vehicle) to estimate population distributions of ambient PM2.5

exposure, (b) a deterministic mass-balance model that estimates residential, indoor

concentrations of ambient (outdoor-generated) PM2.5 using a more refined treatment of

residential air exchange rates (AERs) and PM2.5 penetration and losses with indoor

transport, and (c) a hybrid of these two models (Baxter et al.21 in this issue of the journal).

As noted above, variability in human activity patterns and the indoor transport of ambient

PM2.5 can contribute to exposure error in epidemiologic analyses when central-site

concentrations alone are used to estimate exposure to ambient PM2.5 and, thus, we refer to

the exposure surrogates that account for this variability as “refined” exposure surrogates in

the following text. We hypothesized that these refined ambient PM2.5 exposure surrogates

would have less non-differential exposure error (which tends to bias effect estimates towards

the null) and, thus, would result in larger health effect estimates, narrower confidence

intervals, and better model fits compared to the analysis that used central-site PM2.5

concentrations alone as surrogates for ambient PM2.5 exposures. As an alternative analysis,

we evaluated whether the association between ambient PM2.5 and transmural MI is modified

by residential AER. For this analysis, we hypothesized that associations between transmural

MI and ambient PM2.5 concentrations would be smaller for low AERs because a smaller

fraction of ambient PM2.5 penetrates and persists indoors. Thus, at low AERs, the difference

between central-site PM2.5 concentrations and actual ambient PM2.5 exposure is greater,

resulting in proportionally more non-differential exposure misclassification and larger bias

towards the null (i.e. greater underestimation of effect).

METHODS

Study Population and Outcome Definition

The study population and definition of transmural infarction used in this study have been

described previously.2 Briefly, all unscheduled hospital admissions with a primary diagnosis

of acute myocardial infarction (International Classification of Diseases 9th Revision [ICD-9]

code 410.01, 410.11, 410.21, 410.31, 410.41, 410.51, 410.61, 410.71, 410.31, 410.91) were

extracted from the Myocardial Infarction Data Acquisition System (MIDAS), a New-Jersey-

wide database of hospital discharges and death certificate registrations.22,23 We included

only those patients who were admitted between January 2004 and December 2006, were ≥18

years of age, were residents of New Jersey at the time of their MI, and had no previous

diagnosis of MI. These subjects (n = 1563) were primarily male (63%) and white (69%) and

had a median age of 62. Only subjects who resided within 10 km of a central-site monitor at

the time of their MI were included in this study. This study was approved by the University

of Medicine and Dentistry of New Jersey Institutional Review Board and the University of
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Rochester Research Subjects Review Board. MIDAS was also approved by the New Jersey

Department of Health and Senior Services Institutional Review Board.

Exposure Surrogates

We used four different exposure surrogates generated from central-site monitor

concentrations to estimate personal exposure to PM2.5 of outdoor origin (i.e., exposure to

ambient PM2.5). Because we only observed a significantly increased relative odds of

transmural MI associated with average PM2.5 concentrations in the 24 hours preceding

emergency department admission in the in initial analysis,2 here, hourly ambient PM2.5

exposures were computed and averaged over that 24 hour period for each exposure metric.

Detailed descriptions of each exposure surrogate and comparisons between them are

available elsewhere.21 In the following paragraphs, we provide a brief description of each

exposure metric. The exposure surrogates are labeled based on their level of refinement and

complexity, with higher-numbered Tiers corresponding to a greater degree of refinement.

Tier 1. Central-site PM2.5 Concentrations—For Tier 1, hourly ambient PM2.5

concentrations for the study period (January 2004 – December 2006) measured at 7 New

Jersey Department of Environmental Protection monitors were retrieved from the United

States Environmental Protection Agency website.24 The zip code of each patient’s residence

at the time of MI was extracted from MIDAS and subjects were assigned 24 hour average

PM2.5 concentrations, for all case and control periods, from the monitor closest to their

residence.2 Tier 1 exposure estimates varied temporally within and across central-site-

monitor regions with ambient PM2.5 concentrations. Because subjects residing within 10 km

of the same monitor were assigned the same exposure value for a given 24-hour case or

control period, there was no geographic variability in exposure estimates within that 10 km

radius. Within a given case or control period, however, exposure estimates did vary across

monitoring locations.

Tier 2a. SHEDS—In Tier 2a, the exposure-modifying effects of human activity patterns

and the indoor transport of ambient PM2.5 were taken into account using the Stochastic

Human Exposure and Dose Simulation (SHEDS) model.25 Distributions of ambient PM2.5

exposures were generated for a simulated population representative of the study population.

For each census tract within 10 km of a central-site monitor, 10,000 representative

individuals were simulated by sampling from census-tract level demographic data (gender,

age, and employment status) from the 2000 U.S. Census. For each simulated individual, a

time series of human activity patterns was simulated using diary data from the Consolidated

Human Activity Database26 matched by age, gender, season, and day of week. Hourly

central-site PM2.5 concentrations (Tier 1) were used as inputs, and personal exposure to

PM2.5 of outdoor origin was calculated as a time-weighted average of the ambient PM2.5

concentrations in each microenvironment (e.g. home, office, outdoors). Note, indoor PM2.5

sources were set to zero to estimate the distribution of exposures to PM2.5 of outdoor origin

only (i.e., ambient PM2.5 exposures) in each census tract. For residential

microenvironments, SHEDS sampled from a representative distribution of housing types,

AERs, particle penetration efficiencies, and indoor particle deposition rates. It should be

emphasized that the AERs used in this version of SHEDS vary seasonally, but not spatially
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within the study domain. From the distribution of ambient PM2.5 exposures generated for

each hour during the study period, we used the median to calculate 24 hour mean exposures

for each case and control period. The 24 hour mean exposures calculated for each census

tract were then averaged over the 10 km region surrounding each central-site monitor.

Tier 2b. The Aerosol Penetration and Persistence Model—Hourly PM2.5

concentrations measured at the central-site monitors (Tier 1) were modified to account for

the effects of outdoor-to-indoor transport using the Aerosol Penetration and Persistence

(APP) model8,27,28 and the Lawrence Berkeley National Laboratory (LBNL) Infiltration

model.29,30 The APP model is a deterministic mass balance model that predicts the indoor

concentration of ambient PM2.5 based on AER, outdoor PM2.5 concentrations, the efficiency

of particle penetration into the home, the rate of depositional losses in indoor air, and, for

ammonium nitrate, phase changes in the indoor environment.8,27,28 In addition to

accounting for the semi-volatile nature of ammonium nitrate, daily variations in particle

chemical composition were taken into account through the use of particle-size-resolved

deposition loss rates specific to the size distributions of the major PM2.5 species (sulfate,

nitrate, elemental carbon, and organic carbon). Central-site PM2.5 composition data from the

EPA Speciation Trends Network (STN) is available for every third day and was downloaded

from the US EPA website for this purpose.24 For days without measurements, PM2.5 species

mass fractions were interpolated using a weighted average of the two nearest mass fraction

measurements. Subjects were excluded if there was a period of more than nine days between

STN measurements for the case period or all control periods. Because speciation

measurements were not available for all central-site-monitor locations, values for the New

Brunswick monitoring station, which were most highly correlated with data from other

monitors across the state, were used. For details, see Hodas et al.20 and Baxter et al.21. With

this approach, particle losses indoors varied daily with variations in PM2.5 composition.

Note, however, that deposition loss rates did not vary spatially in this work.

AERs calculated with the LBNL Infiltration model, which was modified to include air flow

through open windows (details in Supplemental Information), were used as inputs to the

APP model. The LBNL infiltration model predicts AER for single-family homes based on

normalized leakage rates (which describe the effective area of openings in the building shell

through which air can flow, normalized by home floor area and a parameter accounting for

building height and validated against measurements in 70,000 closed homes) and

meteorological conditions.29,30 Meteorological data were gathered from four airports in

New Jersey (Newark, Caldwell, Somerset, and Trenton) and subjects were assigned the

weather data from the monitor nearest their residence at the time of MI. The normalized

leakage area was calculated using a model resulting from a statistical analysis relating

leakage to housing characteristics (home age, floor area)31 using census-tract level housing

data from the 2000 U.S. Census and the American Housing Survey. Notably, the model used

to calculate normalized leakage rate differs for homes above and below the poverty line

because home leakiness varies with resident poverty status, with low-income homes tending

to be leakier.31 Thus, variations in calculated AERs arise from temporal and spatial

variability in meteorological conditions and with spatial variability in housing stock. Unlike

Tier 2a, detailed human activity patterns are not accounted for in this metric, but Tier 2b
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provides a more refined treatment of residential AER and PM2.5 penetration and losses with

indoor transport. Census-tract-level ambient PM2.5 exposures were averaged over the 10 km

area around each central-site monitor.

Tier 3. SHEDS and APP Hybrid—The final exposure metric combined the refined

treatment of human activity patterns from Tier 2a, with the more temporally- and spatially-

resolved estimates of residential AER from Tier 2b (but without variations in PM2.5

deposition rates with variations in PM2.5 composition). PM2.5 exposures were estimated

with SHEDS as described above, but using residential AERs estimated with the LBNL

Infiltration model.

Statistical Analyses

Study Design—For each ambient PM2.5 exposure surrogate (tier), we used the same time-

stratified case-crossover design32,33 as in the initial analysis2 to estimate the relative odds of

a transmural infarction associated with increased exposure in the previous 24 hours. In this

design, each patient contributed information both as a case during the period immediately

before the MI, and as a matched control during times when a MI did not occur. Since each

subject serves as their own control, factors that differ only across subjects are controlled by

design. Case periods were defined as the 24 hour period before emergency department

admission for MI. Control periods (3–4 per case depending on the number of days in the

calendar month), defined as 24 hour periods in which no MI occurred, were matched to the

case period by day of the week, time of day, year, and calendar month. Central-site PM2.5

concentrations (Tier 1) and modeled ambient PM2.5 exposures (Tier 2a, 2b, 3)

corresponding to these case and control periods were then contrasted in the statistical

analyses.

Modeled Exposure Tier Analyses—We used the same conditional logistic regression

model as in the initial analysis,2 stratified by study subject, to examine the multiplicative

interaction between ambient PM2.5 exposure and transmural MI. We regressed case-control

status (i.e., case period = 1, control period = 0) against the mean estimated ambient PM2.5

exposure in the 24 hour period before emergency department admission for the index

infarction or the corresponding control period. We also included a natural spline (3 degrees

of freedom) of the mean apparent temperature,34,35 from the same 24 hour period, to

estimate each subjects’ perceived ambient air temperature. Hourly temperature and relative

humidity data used to calculate apparent temperature were gathered from the same airports

as the data used to calculate AER in Tiers 2b and 3. The relative odds of transmural MI was

estimated using each exposure surrogate (Tier 1, 2a, 2b, or 3) scaled to the Tier-specific

interquartile range (IQR) increase in the ambient PM2.5 exposure. For each Tier, we present

the odds ratio (OR), its 95% confidence interval, and its Akaike’s Information Criterion

(AIC) value, which was used to compare the fit of these non-nested models to Tier 1.

We also examined whether the refined exposure estimates (Tiers 2a, 2b, 3) added

explanatory power over the Tier 1 estimate. In other words, we evaluated whether the

refined exposure estimates provided supplementary exposure information beyond that

accounted for in the Tier 1 estimates and whether including that information in effect-
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estimate calculations resulted in additional MI risk over that associated with the central-site

PM2.5 concentrations (Tier 1 estimates) alone. For each case and control time period, the

Tier 1 exposure estimate and each of the refined exposure estimates were converted to z-

scores based on their respective means and standard deviations. The conditional logistic

regression model described above was run again with the Tier 1 z-score and the z-score

difference (e.g., the difference between the Tier 1 z-score and the Tier 2a z-score) as

covariates. Z-scores were used in order to create scale- and location-invariant versions of the

exposure metrics. Given that variables that differ only by scale and location may contribute

equivalently to explaining a response in the context of linear modeling, entering the

difference (between the refined and the original z-scores) into a linear model in addition to

the original represents the additional contribution that the refined variable can make over the

original in explaining the response in a linear model. The regression coefficient for the Tier

1 z-score, times the observed IQR, estimated the increase in log-odds of transmural

infarction associated with each IQR increase in the Tier 1 PM2.5 concentration, while the

regression coefficient for the “z-score difference” provided an estimate of the additional

increase in log-odds of a transmural infarction associated with each IQR increase in the

refined PM2.5 exposure estimate, independent of the Tier 1 PM2.5 concentration. A

significance test of the “z-score difference” regression coefficient provides a test of whether

the refined Tier adds any statistically significant relative odds beyond what is provided by

Tier 1. We ran this same model separately for each refined metric (Tiers 2a, 2b, and 3).

AER Effect Modification Analyses—We also explored whether residential AER alone,

without the other components contributing to the refined exposure surrogates, modified the

association between the Tier 1 exposure surrogate and transmural infarction. We did this

because AER estimates have smaller uncertainties than the more expansive exposure models

and are important predictors of the fraction of ambient PM2.5 that penetrates and persists

indoors. However, as explained below, this approach also differs from the main analysis in

that it introduces a spatial comparison.

AERs from the Tier 2b exposure estimates were ranked into tertiles (high AER, middle

AER, and low AER). See supplemental information, Table 2 for summary statistics of AERs

in each tertile. We then re-ran the Tier 1 conditional logistic regression analysis adding two

interaction terms to the model, as well as indicator variables for AER. The base model is

where Yij equals one if the jth period for the ith subject is a case and zero if control. Further,

AERlow,i, AERmid,i and AERhigh,i are indicator variables equal to one if subject i has a low,

middle or high AER and zero otherwise. The term f(Tempij; γ) represents the natural spline

that is added to adjust for apparent temperature and αi represents the sum of a random

intercept for subject i as well as any between-subject variables. Upon conditioning on
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subject, αi becomes a nuisance parameter which cancels out of the conditional logistic

likelihood and is not estimated. From this model, we estimated the relative odds of a

transmural infarction and its 95% confidence interval associated with a 10.3 μg/m3 (IQR)

increase in Tier 1 PM2.5 concentration, within each tertile of AER. This was done for the

cool (November to April) and warm (May to October) seasons separately because PM2.5

concentrations and composition are distinctly different over these two periods

(Supplemental Information, Table 3).36

In this alternative analysis using interaction terms to estimate the relative odds of a

transmural MI associated with increased PM2.5 concentration within the low, middle, and

high AER groups, we essentially stratified the case-crossover analysis described above by

modeled residential AER and compared estimates of the relative odds of transmural MI

across AER tertiles. In contrast with the “Modeled Exposure Tier Analysis”, which was

strictly a within-subject, temporal analysis, this “AER Effect Modification Analysis” is a

spatio-temporal comparison of exposure effects across AER tertiles and, thus, across

subjects. Here, we also focused on a single parameter that influences the indoor transport of

ambient PM2.5 in order to reduce the number of assumptions and associated uncertainty in

comparison to the more complicated refined exposure surrogates explored above.

To evaluate whether spatially varying factors in addition to AER (e.g. PM2.5 chemical

composition, study population characteristics) could contribute to variability in relative risk

of MI across AER tertiles, we also conducted a case-crossover analysis stratified by

monitoring-site community and compared study population characteristics across AER

tertiles. All data sets were constructed using SAS software (version 9.1.3; SAS Institute Inc.,

Cary, NC), and all analyses were conducted using R (version 2.6.1; R Foundation for

Statistical Computing, Vienna, Austria).

RESULTS

Modeled Exposure Tier Analyses—The summary statistics for Tiers 1, 2a, 2b, and 3

ambient PM2.5 exposure estimates have been described previously.2,21 While the refined

ambient PM2.5 exposure concentrations (Tiers 2a, 2b, 3) for each case and control period

were approximately half of Tier 1 (central-site) values on average, they were all highly

correlated with the Tier 1 concentrations (r = 0.98, 0.98, and 0.98 for Tiers 2a, 2b, and 3,

respectively). All relative odds estimates reported below were scaled to the IQR increase of

each Tier: Tier 1 (10.3 μg/m3), Tier 2a (5.4 μg/m3), Tier 2b (5.4 μg/m3), and Tier 3 (5.4

μg/m3).

Each 10.3 μg/m3 increase in the Tier 1 PM2.5 concentration was associated with a significant

increase in the odds of transmural MI (OR = 1.10, 95% CI = 1.01, 1.19). Each IQR increase

(5.4 μg/m3) in the Tier 2a, Tier 2b, and Tier 3 PM2.5 concentrations was associated with the

same size increase in the relative odds of a transmural MI with similar 95% confidence

intervals across exposure tiers (Tier 2a: OR = 1.10, 95% CI = 1.01, 1.20; Tier 2B: 1.10, 95%

CI = 1.01, 1.20; Tier 3: 1.11, 95% CI = 1.02, 1.20; Table 1). Similarly, model fits, as

measured by the AIC value, were not substantially different across exposure tiers (Table 1).

Further, using the z-score method, we found no additional significant relative increase in
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odds of transmural MI associated with the refined exposure estimates in addition to that

associated with Tier 1 PM2.5 concentrations (Table 2). For example, each IQR (1.22 μg/m3)

increase in the z-score for Tier 1 PM2.5 concentration was associated with a significant

increase in the relative odds of a transmural infarction (OR = 1.11, 95% CI = 1.00, 1.23), but

an IQR (0.21 μg/m3) increase in the Tier 2a z-score difference was associated with only a

small, non-significant increase in the relative odds (OR = 1.03, 95% CI = 0.90, 1.18).

Similarly, increases in the relative odds of MI associated with IQR increases in Tier 2b and

Tier 3 z-score differences (0.21 and 0.28 μg/m3, respectively) were small and not

statistically significant (Table 2) and, thus, added no explanatory power over the Tier 1

estimate.

AER Effect Modification Analyses—As an alternative analysis, we evaluated whether

modeled residential AERs in the 24 hour period immediately before emergency department

arrival modified our estimate of the relative odds of a transmural MI associated with each

10.3 μg/m3 (IQR) increase in the Tier 1 PM2.5 concentration. MIs were evenly distributed

between the warm (May to October) and cool (November to April) seasons. Summary

statistics of the AER distributions for the warm and cool seasons are shown in Supplemental

Information, Table 2.

We observed heterogeneity in the relative odds of transmural MI across AER tertiles, with

homes in higher AER tertiles having larger ORs than homes in the low AER tertile. In the

warm season, each 10.3 μg/m3 increase in the Tier 1 PM2.5 concentration was associated

with increased relative odds of a transmural MI in the middle AER tertile (OR = 1.16, 95%

CI = 0.96, 1.39) and high AER tertile (OR = 1.15, 95% CI = 0.98, 1.35), but not the low

AER tertile (OR = 0.96, 95% CI = 0.74, 1.25) (Figure 1). When we combined the middle

and high AER tertiles and re-ran the model, each 10.3 μg/m3 increase in Tier 1 PM2.5

concentration was associated with a significant increase in the relative odds of a transmural

MI for the middle and high AER tertiles, combined (OR = 1.15, 95% CI = 1.02, 1.31).

Similarly, in the cool season, we observed an increase in the relative odds of a transmural

MI associated with each 10.3 μg/m3 increase in Tier 1 concentrations for the middle and

high AER tertiles (both individually and combined), but not for the low AER tertile (Figure

1).

To further explore the apparent effect-modification by AER, we assessed whether AER was

actually a surrogate for another spatially-varying factor that might explain the observed

variability in relative odds of transmural MI across AER tertiles. First, we evaluated the

distribution of monitoring sites to which MI patients were assigned within each AER tertile

and conducted a case-crossover analysis stratified by monitoring-site community. In the low

AER tertile, the majority of study subjects were residents of the New Brunswick

monitoring-site community. In the high AER tertile, the majority of subjects were residents

of the Elizabeth monitoring-site community (Supplemental Information, Table 4). Each

monitor-specific IQR increase in ambient PM2.5 concentration was associated with a non-

statistically-significant increase in the relative odds of transmural MI in both New

Brunswick (OR = 1.15, 95% CI = 0.95, 1.39) and Elizabeth (OR = 1.11, 95% CI = 0.97,

1.27; Table 3). For the other 5 monitors, ORs ranged from 0.78 in Millville to 1.23 in

Rahway. However, given the sample sizes, ORs, and 95% confidence intervals within each
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monitoring location (Table 3), there is no clear difference in the relative odds of transmural

MI associated with each IQR increase in PM2.5 concentration across monitors.

DISCUSSION

In this case-crossover study of transmural myocardial infarction, use of refined surrogates of

personal exposure to PM2.5 of outdoor origin that account for the exposure-modifying

effects of human activity patterns and/or the indoor transport of ambient PM2.5, did not

result in larger estimates of the relative odds of a transmural infarction associated with each

IQR increase in PM2.5 concentration in the previous 24 hours, smaller confidence intervals,

nor better model fits compared to analyses that used PM2.5 concentrations measured at

central-site monitors. However, we did find effect modification of this relative odds estimate

by estimated residential AER. This may be attributable to a greater degree of exposure error

and resulting bias towards the null in the low AER tertile (less penetration of ambient PM

indoors, and therefore more error in estimating one’s personal exposure to PM2.5 of outdoor

origin) compared to the higher AER tertiles (more penetration of ambient PM indoors and

therefore less exposure error), or residual confounding by some unmeasured factor.

Spatial variability, time activity, and losses with outdoor-to-indoor transport are all sources

of exposure error in epidemiologic analyses that use central site monitor concentrations as

surrogates for exposure to ambient (outdoor-generated) PM2.5. Several recent studies have

reported larger effect estimates and/or smaller confidence intervals when exposures were

estimated using models that account for spatial variability in outdoor air pollutant

concentrations on local scales (e.g. interpolation methods, land use regression) in place of

concentrations measured at a single monitor or averaged over all monitors in a region.e.g. 3–6

However, none have directly compared central-site PM2.5 with models accounting for

human activity patterns and the indoor transport of ambient PM2.5 in a large epidemiologic

study. Ebelt et al.37 estimated individual-level ambient PM2.5 exposure in a panel study of

16 subjects using individual-level time-activity diaries (to estimate time spent indoors) and

indoor PM2.5 concentrations estimated using a mass balance model. Associations between

cardiopulmonary outcomes (e.g., heart rate variability, forced expiration volume) and

ambient PM2.5 exposure were calculated with this exposure metric, as well as ambient

PM2.5 concentrations measured at central-site monitors. Contrary to our findings, the Ebelt

et al.37 analyses that used individual-level information to model ambient PM2.5 exposures

resulted in larger health effect estimates and smaller confidence intervals compared to the

analyses that used central-site ambient PM2.5 concentrations.

Multiple factors could have contributed to the differences between our findings and those of

Ebelt et al.37 One possibility is that many of the factors that are accounted for in the refined

exposure estimates would not be expected to contribute to exposure error (or bias) in the

case-crossover design. Because cases serve as their own controls in this design, factors that

differ across subjects, but are largely constant within subjects (e.g., proximity to local PM2.5

sources, and differences in AERs or particle losses that stem from differences in housing

stock, air conditioning prevalence or human activity patterns) would be expected to have a

minimal impact on effect estimates. Similarly, with the case-control period confined to one

calendar month, any factors that vary on time-scales longer than a month (e.g., seasonal
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variability in AER driven by indoor-outdoor temperature differences, natural ventilation, or

air conditioning use) would be expected to have little or no effect on the relative odds

estimates. Control periods are also matched to case periods by weekday, calendar month,

and hour of the day, likely reducing the influence of much of the within-subject variability

in human activity patterns occurring on these time-scales. Although not directly evaluated in

this study, time-series analyses, which are also temporal contrasts of daily pollutant

concentrations and daily counts of health outcomes, may also be only minimally impacted

by these factors.

In addition, the refined exposure estimates used in Ebelt et al.37 were based on subject- level

time-activity diaries and home-specific penetration and persistence of ambient PM2.5, while

here, human activities and the indoor transport of ambient PM2.5 were modeled using

census-tract level data and were then averaged over the area within a 10 km radius of each

central-site monitor. For example, human activity patterns simulated with SHEDS for Tier

2a exposure estimates were estimated based on census-tract level demographic data.

Similarly, modeled AER distributions for each census tract were used in the calculation of

Tier 2b APP and Tier 3 exposure surrogates, rather than individual-level AERs. Further,

species mass fractions were not available in every monitoring area and were estimated as the

mass fractions measured at the New Brunswick monitor, which was most highly correlated

with the other monitors across the state. These were used with local mass concentrations.

The spatial resolution of data used to calculate the refined exposure estimates is a limitation

of this study. Uncertainty resulting from these limitations could have contributed to

exposure error in the refined exposure surrogates and, thus, the potential benefits of the

refined exposure surrogates may not have been fully realized.38 However, when we

estimated exposure at the zip-code level, rather than averaging over 10 km (Supplemental

Information, Table 5), we observed no increase in ORs, reduction in 95% CIs, nor improved

model fits. The potential for uncertainty due to averaging and the associated exposure error

and bias was likely reduced in the “AER Effect Modification” analyses because we focused

on a single parameter, requiring fewer assumptions and, thus, reduced possibility of

compounding of exposure prediction errors. It is possible that simpler methods to account

for variability in exposure to PM2.5 of outdoor origin resulting mostly from variability in the

indoor transport of ambient PM2.5 (e.g., including AER as an interaction term in the

conditional logistic regression model) may more accurately capture variability in effect than

these more complicated exposure models, which could be subject to greater uncertainty.

The differences in the results of our “Modeled Tiered Exposure” and “AER Effect

Modification” analyses may also be explained, in part, by differences in study design. In the

tiered exposure analysis, we essentially compared the relative odds of transmural MI within

different time periods during each subject’s person-time. Therefore, non-time varying

confounders such as subject characteristics (age, health history, etc.), residential location

(and any potential differences in the pollutant mixture due to different pollution sources,

source proximity), and housing characteristics (leakage) were controlled by design. In the

effect modification analysis, each relative odds estimate within each AER tertile also has

this feature. However, when we then contrast these AER-tertile-specific relative odds

estimates, we are comparing different subjects with their inherent differences in these

characteristics. Thus, these characteristics may now act as confounders in this analysis. As a

Hodas et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



result, differences in these AER-tertile-specific relative odds estimates could be due, in part,

to differences in AER, as well as differences in subject characteristics (e.g. age, co-

morbidity, proximity to sources, housing stock, access to healthcare, smoking status, etc.) if

those characteristics are covariant with AER. For example, low socio-economic status (SES)

has been identified as a predictor of susceptibility to negative health outcomes associated

with PM exposure.39 Further, low income residents tend to live in homes with higher AERs

and, therefore, are exposed to a larger fraction of ambient PM2.5 (and smaller fraction of

indoor emissions) than residents with higher SES (see also Sarnat JA et al.40 and Sarnat SE

et al.41 in this issue of the Journal). In fact, because SES is a predictor of AER, poverty

status is included in the residential AER model (see Supplemental Information).31 Thus, it is

conceivable that our results showing effect modification of the PM2.5- MI association by

AER could actually reflect effect modification by SES or a combination of AER and SES. It

is also possible that higher AERs, in addition to access to health care and other factors, help

to explain the associations between low SES and adverse health outcomes observed in

previous studies. Notably, we did not observe differences in age, gender, race/ethnicity, and

co-morbidities by AER tertile (Supplemental Information, Tables 6 and 7). Further, if

location- specific factors other than AER were contributing to our findings, we would expect

an increased relative odds of transmural MI in the monitoring-site community in which the

majority of subjects were assigned to the high-AER tertile (i.e., Elizabeth) and a smaller

effect estimate in communities in which the majority subjects were assigned to the low-AER

tertile (i.e. New Brunswick). Instead, we observed larger relative odds of transmural MI in

New Brunswick compared to Elizabeth (Table 3), which suggests that the observed effect

modification is related to variability in AER.

The modification of MI risk by community-average AER is consistent with the results of

previous studies that found that percent increases in short-term mortality associated with

given increases in outdoor ozone and PM10 concentrations were larger for cities with higher

annual average AERs compared to those with smaller AERs.42,43 Previous studies have also

shown that home-ventilation conditions (e.g., infiltration through cracks in the building

shell, air flow through open windows) and activities that affect particle losses indoors (e.g.,

AC use) impact ambient PM2.5 exposures.e.g.9,44 Sarnat et al.44 concluded that ambient

monitors were good surrogates for exposure in well-ventilated homes, but were poor

exposure surrogates in homes with windows and doors closed. Our results are also

consistent with studies that have demonstrated a reduced risk of morbidity and mortality

with increased prevalence of central AC.12–16 As noted above, F tends to be lower for

homes with central AC in use due to increased particle losses in AC filters.17–19 Further,

AERs tend to be lower for homes with AC in use compared to those with open windows,45

which also contributes to lower F values.

CONCLUSIONS

Use of refined exposure surrogates that account for human activity patterns and/or the

indoor transport of ambient PM2.5 in this case-crossover study did not result in larger health

effect estimates, narrower confidence intervals, or better model fits compared to the analyses

that used central-site PM2.5 concentrations to estimate PM2.5 exposure. For the level of

exposure- estimate-refinement considered here, our findings add support to the use of
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central-site PM2.5 concentrations for epidemiological studies that employ similar case-

crossover study designs and other similar temporal analytic methods. These findings also

illustrate that variability in factors that influence the fraction of ambient PM2.5 in indoor air

(e.g., AER) can bias health effects estimates in study designs for which a spatio-temporal

comparison of exposure effects across subjects is conducted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relative odds of transmural infarction associated with each interquartile range increase in

Tier 1 (central-site) PM2.5 concentration, stratified by air exchange rate tertile for (a) low,

middle, and high AER tertiles and (b) for low and middle/high AER tertiles combined
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