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Abstract

A relationship between exposure to heavy metals, including lead and cadmium, and renal

dysfunction has long been suggested. However, modeling of the potential additive, or synergistic,

impact of metals on renal dysfunction has proven to be challenging. In these studies, we used

structural equation modeling (SEM), to investigate the relationship between heavy metal burden

(serum and urine levels of lead, cadmium and mercury) and renal function using data from the

NHANES database. We were able to generate a model with goodness of fit indices consistent with

a well-fitting model. This model demonstrated that lead and cadmium had a negative relationship

with renal function, while mercury did not contribute to renal dysfunction. Interestingly, a linear

relationship between lead and loss of renal function was observed, while the maximal impact of

cadmium occurred at or above serum cadmium levels of 0.8 µg/L. The interaction of lead and

cadmium in loss of renal function was also observed in the model. These data highlight the use of

SEM to model interaction between environmental contaminants and pathophysiology, which has

important implications in mechanistic and regulatory toxicology.
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Introduction

Lead (Pb), cadmium (Cd) and mercury (Hg) are known to be nephrotoxic at high levels

(Gonick 2008; Sommar et al. 2013). Additive or synergistic interactions among heavy

metals such that toxic effects may result even at low levels following environmental

exposure (Fadrowski et al. 2010; Wallin et al. 2013; Weaver et al. 2011a). With few

exceptions (Navas-Acien et al. 2009; Sanchez et al. 2001; Shelley et al. 2012), most studies

have examined the effects of each metal in isolation. In this study, we have constructed a

structural equation model (SEM) to identify and quantify the effects of lead, cadmium and

mercury in a random subsample subjects participating in the National Health and Nutrition

Examination Survey.

In structural equation modeling (SEM), a hypothesized model of relationships between

variables is designed and then evaluated to determine if the experimental data supports that

model. SEM has two key features: the measurement model, which defines the relationships

between measurable variables and non-measurable latent factors, and the structural model,

which delineates the path links and coefficients between and among the latent variables

(Collin et al., 2009). As a modeling technique SEM has several advantages in that it allows

for the modeling of complex, multivariate processes beyond simple correlations among

single sets of variables; it is not limited by measurable variables, but it allows for the

inclusion of latent factors, i.e., factors that cannot be measured or observed on their own, but

that can be expressed by measurable variables (Kline, 1991). SEM is also able to accurately

measure unreliable events because it can quantify an error measurement that is indicative of

errors including as biological variance. Most data sets are imperfect and more common

modeling techniques, such as multiple regression and observed variable path analyses,

cannot account for these flaws; however SEM compensates for these issues (Kline, 1991).

Although SEM has been utilized in the fields of sociology and psychology for many years, it

is underutilized in the biological sciences. However, our group (Gardiner et al., 2012) and

others (Fisher et al., 2011) have used SEM to model chronic kidney disease (CKD), which

has complicated pathophysiology involving a number of factors. Given the complexity of

assessing the relationship between environmental exposures and CKD, SEM is a valuable

tool to begin to assess the relationship between heavy metals and renal dysfunction.

Methods

Study Population

Demographic, laboratory and examination variables were obtained from 5 consecutive 2-

year cycles of the National Health and Nutrition Examination Survey (continuous

NHANES), which are made available online for public use by the Centers for Disease

Control (Centers for Disease Control and Prevention 1999–2008). Because subjects are

identified by sequence number only, no special permissions are required to access the data.

Of the 51,653 subjects that were both interviewed and examined from 1999–2008, 30,257

had simultaneous entries for serum lead, serum cadmium and serum (total) mercury; 8,847

had entries for detectable levels of urine lead, urine cadmium and urine mercury. Blood

metal measures were available on all but 551 of the subjects with urine metal values.
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Individuals missing one or more measures of kidney function were excluded from this set,

which left n = 7,236 subjects for analysis. Demographic and other relevant characteristics of

the study population are listed in Table 1.

Data Preparation

Because of changes in assay methods, serum creatinine values for the 1999–2000 and 2005–

2006 data sets had to be adjusted to ensure comparability with standard creatinine (Selvin et

al. 2007). Creatinine clearance was calculated from the corrected serum creatinine values

using the Cockcroft-Gault formula (Cockcroft and Gault 1976). Albuminuria was calculated

as the ratio of urine albumin to urine creatinine (ACR) expressed in units of mg/g. Limits of

detection for blood and urine metals varied slightly across the survey cycles. In those

subjects where the result was below the limit of detection, a concentration equal to the limit

of detection divided by the square root of two was used (Centers for Disease Control and

Prevention 2007–2008; Centers for Disease Control and Prevention 2009; Centers for

Disease Control and Prevention 2013). Metal concentration data that contain values below a

lower detection limit are referred to as left-censored or censored from below. Excluding

metal concentrations below the limit of detection (LOD) is not recommended, as it not only

reduces the sample size but also yields upwardly biased results (Hornung and Reed 1990). A

number of methods have been proposed for handling values falling below the LOD (Helsel,

2010). A fraction of the LOD (e.g. LOD/2 or LOD/√2) is often substituted for the problem

values in regression modeling. Metal concentrations falling below the LOD in NHANES

surveys are pre-transformed by substitution with LOD/√2 prior to publishing, and have been

used in this format by investigators working with NHANES data (Navas-Acien et al. 2009;

Shelley et al. 2012). The bias is small if the percentage of data below the LOD is small and

the data are not highly skewed (Baccarelli et al., 2005).

Given recent concerns over the use of data substitution, we investigated an alternate method

for handling the problem: multiple imputation. Model-based multiple imputation is an

alternative to substitution for left-censored data (Baccarelli et al. 2005; He et al., 2010). To

examine the effect of multiple imputation in this study, each metal concentration below the

LOD was first replaced by a missing value code. Then, for each missing value, 20 new

values were generated using Markov Chain Monte Carlo (MCMC) simulations, to create 20

complete data sets containing no missing values (Rubin, 1987; Shafer, 1997). These data

sets were then used as the basis for imputation by Bayesian estimation of the SEM model in

MPlus. Briefly, the SEM model was run for each of the 20 complete data sets, and combined

by the MPlus program into a single set of results that incorporated uncertainty due to the

missing data. An assumption of multiple imputation is that the data are missing at random.

To the extent that metal values falling below the LOD may not comply with this assumption,

some bias is expected. There was no substantial difference in structure, coefficients or fit

indices between the model derived from multiple imputation and that derived using LOD/√2

substitution (data not shown). This suggests that for this data set, the SEM model is robust to

changes in the method of handling metal concentrations falling below the limit of detection.

All continuous variables were tested for normality prior to analysis. The Jarque-Berra

statistic (Jarque and Bera 1980) provides a sensitive index of both skewness and kurtosis
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and was used to evaluate the need for transformation. Based on this metric, all 10 observed

variables used in the model were found to require log-transformation prior to analysis. We

tested for possible multicollinearity among the transformed measures by computing variance

inflation factors (VIF): these were found to be negligible (VIF range: 1.06 – 2.23, mean =

1.77). When two or more predictor variables in a statistical model are highly correlated, it

becomes difficult to statistically determine which variable has the most impact on the

predicted result. The variables are collinear, and the results show what is termed

multicollinearity. Multicollinearity increases the variance (standard errors) of the model

coefficients and can cause what should be significant predictors to be considered non-

significant. Variance inflation factors measure how much the variance of the estimated

coefficients are increased over what they would be in the absence of correlations among the

preditor variables. There is no formal cutoff for the upper limit of acceptable VIF values;

however values above 5 are a usually a cause of concern and values of 10 are a definite

indicator of extreme multicollinearity (Kutner et al., 2004)

NHANES guidelines recommend using weights corresponding to the smallest subpopulation

containing any of the variables of interest. Metals in urine were generally measured in a

random 1/3rd subsample of the participants; therefore these subsample weights were used for

constructing combined 10-year sample weights across survey cycles.

Data Analysis

Development and testing of the structural equation model was performed with MPlus

software (version 6.11, Muthén and Muthén; www.StatModel.com). Data were imported

from an ASCII file in free format, with each row representing a subject and each column a

variable. In addition to the 10 observed variables, the data contained stratification, cluster

(PSU), and sample weight variables as required for analysis of complex survey designs.

Sample correlation and covariance matrices for the data are provided in Table 2. The default

estimation method in MPlus for survey data is a maximum likelihood estimator (MLR) that

results in parameter estimates and standard errors that are robust to non-normality and non-

independence of observations when used with complex data types. Stata for Windows

(version 13, StataCorp LP; www.stata.com) was used for constructing the diagram of the

model solution. Statistical analysis of path effects and predicted latent factor scores were

computed with Stata’s nlcom and predict, latent postestimation commands, respectively.

Results

The Model

The structural equation model is shown diagrammatically in Figure 1. By convention, latent

or unobserved factors are depicted as circles or ovals while the observed or measured

variables are shown as rectangles. There are two latent or unobserved factors Renal

Function and Serum Metals. Renal Function represents the overall status of kidney function

and is measured by four observed variables: creatinine clearance, blood urea nitrogen

(BUN), serum creatinine and the ratio of urine albumin to urine creatinine (ACR). Serum

Metals is measured by blood levels of Pb, Cd and (total) Hg and, as such, can be considered

to represent the combined influence of these metals. The interaction between serum metals
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and kidney function is depicted by the curved double-headed arrow linking the Serum

Metals and Renal Function latent factors. Because the level of kidney function can influence

urinary metal excretion, urine levels of Pb, Cd and Hg were allowed to load on (i.e. correlate

with) the Renal Function latent factor. This is represented in the model diagram as arrows

extending from Renal Function to each urine metal variable. Because the urine

concentration of each metal is also dependent upon individual serum concentrations, we

added paths between each pair of observed (serum and urine) variables to model the

regression of urine concentration upon serum concentration. The overall model therefore

contains elements of confirmatory factor analysis (latent factors measured by observed

variables) and path analysis (relations among observed variables).

All parameter values depicted in Figure 1 correspond to the standardized solution (sem,

standardized in Stata; StdYX standardization in MPlus). Standardized path coefficients are

similar to beta weights in regression, and are useful for comparing the relative influence or

importance among variables, particularly when the scale of measurements varies greatly. For

example, an increase of 1 standard deviation (SD) in kidney function would be associated

with an increase of 0.76 SD in CrCl, but with decreases in SCr, BUN and ACR of 0.74 SD,

0.52 SD and 0.16 SD, respectively. This suggests that for these data, SCr is a more sensitive

indicator of declining renal function than either BUN or ACR.

Small circles labeled ε1through ε10 represent the residual variance or error associated with

the measurement of each observed variable. Values in the lower right corner of each

rectangle correspond to intercepts. The general relationship among these parameters may be

more clearly understood by inspection of Table 3. Estimation of each observed variable (xi)

in the model follows the general form

xi = αi + Xβi + e.xi

xi = αi + Xβi + e.xi

where αi is the intercept, X represents the independent or predictor variable, either latent or

observed, βi is the path coefficient or loading, and e.xi is the residual (error) variance

associated with the ith variable. Except for the urine metals, which are seen to depend on

both an observed and latent factor, other observed variables depend only upon a latent

factor. The covariances/correlations represented by curved double-headed arrows in the

diagram of Figure 1, as well as the other standardized model values and their estimated

standard errors are shown in Table 4.

Available goodness of fit indices (Table 5) are all consistent with a well-fitting model. The

CFI or comparative fit index, considered one of the best indices of fit, exceeded the

minimum value (0.95) considered acceptable. The SRMR represents the average value

across all standardized residuals and can range from 0 to 1; values less than 0.08

characterize well-fitting models. The coefficient of determination, or R2, indicates that 99%

of the variability in the data is explained by the model. RMSEA values are generally one of

the more preferred criteria, and are sensitive to both discrepancy and over-fitting. RMSEA

values above 0.10 indicate poor fit, those between 0.08 and 0.10 mediocre fit. Values less

than 0.06 are considered to indicate a good fit between the hypothesized model and the
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observed data (Hu and Bentler, 1999). Other aspects of the RMSEA also point to a highly

acceptable fit. The 90% CI is narrow and represents a high degree of precision with an upper

bound (0.055) less than 0.06. Finally, Pclose, a p value for a one-sided test of the null

hypothesis that the RMSEA = 0.05, is non-significant, confirming that this is a well-fitting

model.

Metal effects

The percentile distributions of serum and urine metals, along with the four measures of renal

function used in the model are listed in Table 6. As shown, 90% of the 7236 subjects had

lead, cadmium and mercury serum levels below 3.2 µg/dL, 1.0 µg/L and 2.8 µg/L; urine

concentrations of lead, cadmium and mercury were below 1.8, 0.79, and 2.2 ng/mL in 90%

of the subjects. Interactions between variables in the model can be characterized as direct or

indirect. Direct effects are quantified by the coefficients associated with the single-headed

arrows in the path diagram, such as 0.98 between Serum Metals and SPb, or −0.52 between

Renal Function and BUN. Indirect effects represent the influence of a variable mediated by

one or more intervening variables. For example, the interaction between SPb and Renal

Function is indirect because it is mediated through the Serum Metals factor. The correlation

between any two variables in the model diagram can be expressed as the sum of the values

(direct plus indirect) of the compound paths linking the two variables. Provided the

compound path follows Wright’s rules (Loehlin 2004), the value of the path is the product of

the coefficients corresponding to each of the arrows along the path. These correlative effects

were computed and are tabulated separately for serum, and urine concentrations, as well as

for the net total influence of each metal in Table 7. Lead and cadmium displayed a

significant negative relationship with kidney function across the table. Serum mercury had a

minor negative influence on Renal Function that was only 1/10th that of lead and cadmium,

while urine mercury exhibited a small positive correlation with kidney function that

essentially cancelled any net influence. Comparisons among the average effects in Table 7

indicate that: a) serum lead levels may be 4–5 times more sensitive as indicator of renal

toxicity than urine lead levels; b) both serum and urine cadmium appear associated with

nephrotoxicity; and c) mercury exhibited no significant adverse effects on the kidney

function at the levels of exposure reflected by these serum and urine concentrations.

The concentration dependence of these effects is illustrated in Figure 2. For these plots,

predicted scores for the Renal Function latent factor were averaged over all subjects at

various concentrations of selected observed variables. Latent factors, being unmeasured,

have no intrinsic metric scale. Measurement scales may be set during model fitting by fixing

the unstandardized loading of one of the observed variables at 1: for the Renal Function

latent factor that observed variable was creatinine clearance (CrCl). Values of the latent

factor ranged from negative to positive with a mean of 0.

Effects of lead and cadmium are depicted in the two lower panels; effects of creatinine

clearance and serum creatinine are plotted in the upper panels for comparison. A steady

linear decrease in the Renal Function score was observed with increasing log-concentrations

of lead, similar to the relationship between Renal Function and log [serum creatinine] seen

in the upper right panel. The effect of cadmium, by contrast, appeared sigmoidal in shape,
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with an apparent maximal decline in Renal Function score occurring at serum cadmium

levels above 0.8 µg/L. However, it is difficult to discern the full extent or rate of decline in

kidney function, as effects of each metal are averaged across all concentrations of the other.

An important property of multivariate statistical models and of structural equation models,

in particular, is the ability to quantify the influence of any particular predictor variable

independently of the other predictors in the model. This statistical property is often referred

to as ceteris paribus, or 'all other things held constant'. In this case, the structural equation

model predicts the influence of Pb on renal function at any given concentration of Cd, or the

influence of Cd at any concentration of Pb, independently of the effects of each metal, and

independently of other influential variables such as CrCl, BUN, ACR etc. We took

advantage of the independence of the estimated effects of Pb and Cd to construct the

interaction plot shown in Figure 3. The results of the SEM model were used to predict the

effect of Pb and Cd on Renal Function over a range of 10 logarithmically-spaced

concentrations of each metal, for a total of 100 different combinations of metal serum

concentrations (10 Pb × 10 Cd). To avoid extrapolation beyond the observed data, the

concentration ranges were chosen to lie entirely within, and span the 10th to 90th percentiles

of observed Pb and Cd serum levels. In Figure 3, cadmium concentrations are increasing

from left to right while lead concentrations increase from the back toward the front of the

page. Values of the Renal Function latent variable increase along the vertical axis and are

also indicated by color in the legend box. Comparing the left and right edges of the surface,

one may see that the rate and extent of lead effect on Renal Function are greater at high than

at low cadmium concentrations; the same is true of cadmium's effect which is greater at high

(front) than at low (rear) lead concentrations. Not surprisingly, the lowest values of kidney

function are found near the lower right corner of the plot, where both lead and cadmium

concentrations are highest. Taken together, the data demonstrate the potential of SEM in

assessing the relationship between toxicants and renal function, which is assessed by a

battery of variables, rather than a single measure.

Discussion

Using data from NHANES 1999–2006, Navas-Acien and colleagues recently demonstrated

that low-levels of blood lead and cadmium were independent risk factors for albuminuria

and decreased eGFR (Navas-Acien et al. 2009). Through use of structural equation

modeling, we were able to both support and extend those findings. Our model overcomes

potential limitations imposed by the use of single measures of renal function by employing a

latent composite measure of renal function that is derived from measured values of

creatinine clearance, BUN, serum creatinine and albuminuria. The structural model was able

to not only incorporate the both blood and urine metals, but was able to account for the

dependence of urine metal concentrations on both serum metal levels and the degree of renal

function. The model was not limited to comparisons between quartiles, but could examine

the effect of the metals on renal function across the entire range of measured concentrations.

Finally, through use of predicted renal function scores, we were able to illustrate the extent

to which combinations of low concentrations of lead and cadmium may interact and

augment each other’s nephrotoxic effects.
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One of the questions raised in similar studies is whether or not the effects of metals on

kidney function are actually reverse causation: that is, changes in kidney function affect

serum or urine metal concentrations rather than the opposite. In SEM, as with all statistical

measures of association, correlation cannot prove causation. For example, switching the

curved double-headed (covariance) arrow between the Serum Metals and Renal Function

latent factors to a straight (causal) arrow extending either from Serum Metals to Renal

Function or from Renal Function to Serum Metals does not affect the fit indices or the

direction or magnitude of any of the path coefficients. Thus, the model itself cannot be used

to statistically distinguish cause and effect.

Nevertheless, we do not consider reverse causation a likely explanation. Examination of the

direct path coefficients linking Renal Function and urine metal concentrations reveals

significant differences in both magnitude and sign that are not explainable by reverse

causation. Furthermore, the negative coefficient for the direct path between urine cadmium

and Renal Function clearly indicates that increases in kidney function are associated with

decreases in urine cadmium concentrations, exactly the opposite of what would occur with

reverse causation.

Our finding of a negative association between urine cadmium and kidney function agrees

with previous data indicating both blood and urine cadmium were associated with lower

creatinine clearance and eGFR in women (Akesson et al. 2005). However a subsequent

report found higher urine cadmium levels paradoxically associated with higher creatinine

clearance and eGFR values and with lower serum creatinine concentrations (Weaver et al.

2011a). In that study, the ratio of urine cadmium to urine creatinine was used to adjust for

urine dilution. Additional investigations using cystatin C based eGFR measures strongly

suggested that the positive association of urine cadmium with kidney function may be a

statistical effect related to the use of urine creatinine adjustments and serum creatinine based

measures of kidney function (Weaver et al. 2011b).

Interestingly, the effect of cadmium on renal function reached a maximal effect at

concentrations at or above 0.8 ug/L. Conversely, there was a linear association between lead

concentration and decreased renal function. This is consistent with recent studies which have

yet to identify a threshold for lead (Bellinger, 2011). The lack of a relationship between

mercury and decreased renal function was not surprising, given that this metal is associated

with acute, rather than chronic, renal injury (Berlin et al., 2007). An important caveat to this

conclusion is that the NHANES study does not differentiate the levels of inorganic mercury,

which represents the most nephrotoxic form of the metal (Ratcliffe et al., 1996), but rather

measures total mercury. However, other studies have reached similar conclusions (Sommar

et al., 2013).

We tested the effect of adjusting urine metal concentrations with urine creatinine in our

model and found no change in the direction of correlation between the urine metals and the

Renal Function variable. It may be that the composite latent variable is more robust to the

effects of the adjustment. Unfortunately these replacements resulted in a negative residual

variance between SPb and the Serum Metals factor and a non-positive definite psi matrix,

which precluded further model development and testing using these measures. Variations in
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the urinary excretion of lead, cadmium and other metals in metal workers have been found

previously to be statistically similar to the variations in urinary creatinine excretion (Araki

and Aono 1989). It may be these similarities in variance that cause problems when modeling

the variance-covariance structure of the observed variables.

SEM analysis of the 1999–2008 NHANES data confirms that low-level serum and urine

concentrations of lead and cadmium individually are associated with decreases in a

composite measure of renal function, and in combination appear to accentuate those

functional decreases. In contrast, serum (total mercury) and urine mercury were not

associated with significant deficits in kidney function at these levels of exposure.
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List of Abbreviations Used

ACR urine albumin – urine creatinine ratio

BUN blood urea nitrogen

CD coefficient of determination

Cd cadmium

CFI comparative fit index

CrCl creatinine clearance

eGFR estimated glomerular filtration rate

Hg mercury

H0 null hypothesis

NHANES national health and nutrition examination survey

Pb lead

Pclose p-value for null hypothesis that RMSEA is ≤ 0.05

PSU primary sampling unit

SCr serum creatinine concentration

SD standard deviation

SE standard error

SEM structural equation model

SHg (total) serum mercury concentration

SPb serum lead concentration

UCr urine creatinine concentration
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UHg urine mercury concentration

UPb urine lead concentration

VIF variance inflation factor
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SEM is a novel method to model multi-variable, biological issues

The impact of cadmium on renal function was sigmoidal

The impact of lead on renal function was linear
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Figure 1.
Structural equation model of the interaction of serum and urine metals on human renal

function. Ovals represent unobserved or latent factors. Rectangles represent observed or

measured variables. Single arrows represent the direct influence of one variable upon

another, while dual-head arrows represent covariance. Standardized path coefficients are

indicated by the numbers next to the arrows and represent the correlation or strength of the

relationship between factors. Negative coefficients indicate inverse relationships between

the variables, while positive coefficients indicate direct positive relationships. Small circles

labeled ε1 – ε10 represent unexplained or residual variance in each observed variable the

value of which is listed to their right of each in the diagram. Equation intercepts are listed in

the lower right of each rectangle. Correlations between measurement errors of SCr and

ACR, as well as among UPb, UCd, and UHg were added during model refinement.

Correlations among the measurement errors of all of the urine metal concentrations may

indicate that some other common factor, besides serum concentrations or Renal Function,

accounts for a portion of their variance. This could occur if another aspect or factor affects
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their renal elimination but is not adequately measured by the four indices of kidney function

included in this model.
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Figure 2.
Concentration-effect relationships for creatinine clearance, serum creatinine, serum lead and

serum cadmium on kidney function as predicted from the structural equation model in

Figure 1. Each point corresponds the the mean of 678–760 subjects. Vertical and horizontal

linearized SE bars are plotted but are masked by the symbols.
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Figure 3.
Interaction plot of the effects of lead and cadmium on predicted renal function. Both the rate

and extent of decline in estimated renal function score for each metal increase with

increasing levels of the other metal. Folds in the surface may be caused by the smoothing

algorithm compensating for variations in frequency and sampling of data points across

combinations of the metal concentrations.
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Table 1

Demographics and related characteristics of the subjects

Age

  Mean (yrs) 40.99 ± 0.40a

  Distribution

0–5 yrs 0%

6–11 yrs 0%

12–19 yrs 12.3%

20–39 yrs 37.0%

40–59 yrs 34.0%

60+ 16.6%

Race/Ethnicity

Mexican American 8.6%

Other Hispanic 4.9%

NonHispanic White 70.3%

NonHispanic Black 11.5%

Other Races 4.7%

Sex

Male 41.0%

Female 59.0%

Kidney Status

GFR ≥ 60 ml/min/1.73 m2 94.6%

GFR < 59 ml/min/1.73 m2 5.4%

Macroalbuminuria

Absent (ACR ˂ 300 mg/g) 99.0%

Present (ACR ≥ 300 mg/g) 1.0%

Body Measures

BMI (kg/m2) 27.71 ± 0.14 a

Waist Circumference (cm) 94.60 ± 0.39 a

Weight (kg) 78.36 ± 0.46 a

a
=mean±linearized SEM
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Table 3

Structural Equations and standardized coefficients corresponding to the path diagram in Figure 1.

Latent Variable Symbol Equation

  Kidney Function Renal Function --

  Serum Metals Serum Metals --

Observed Variable

  Blood Urea Nitrogen BUN BUN = 6.6 − Renal Function × 0.52 + 0.73

  Creatinine Clearance CrCl CrCl = 12 + Renal Function × 0.76 + 0.42

  Serum Creatinine SCr SCr = −0.95 − Renal Function × 0.74 + 0.46

  Serum Cadmium SCd SCd = −1.3 + Serum Metals × 0.36 + 0.87

  Serum Lead SPb SPb = 0.4 + Serum Metals × 0.98 + 0.036

  Serum Mercury SHg SHg = −0.98 + Serum Metals × 0.14 + 0.98

  Urine Albumin / Urine Creatinine ACR ACR = 2.1 − Renal Function × 0.16 + 0.97

  Urine Cadmium UCd UCd = −1.0 + SCd × 0.43 − Renal Function × 0.15 + 0.78

  Urine Lead UPb UPb = −0.92 + SPb × 0.55 + Renal Function × 0.14 + 0.74

  Urine Mercury UHg UHg = −0.58 + SHg × 0.46 + Renal Function × 0.084 + 0.78
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Table 4

Parameters and standard errors for the structural equation model of Figure 1

Std. Estimate SE t P > |t|

Loadings/Effects

SPb ← Serum Metals 0.982 0.047 20.97 < 0.001

SCd ← Serum Metals 0.358 0.019 19.32 < 0.001

SHg ← Serum Metals 0.144 0.017 8.50 < 0.001

CrCl ← Renal Function 0.765 0.012 66.49 < 0.001

BUN ← Renal Function −0.522 0.017 −30.55 < 0.001

SCr ← Renal Function −0.737 0.015 −48.29 < 0.001

ACR ← Renal Function −0.160 0.020 −8.14 < 0.001

UPb ← Renal Function 0.136 0.015 9.10 < 0.001

UCd ← Renal Function 0.146 0.016 −9.10 < 0.001

UHg ← Renal Function 0.084 0.013 6.30 < 0.001

  UPb ← SPb 0.551 0.012 44.63 < 0.001

  UCd ← SCd 0.426 0.013 32.49 < 0.001

  UHg ← SHg 0.462 0.011 43.46 < 0.001

Residual Variances

e.SPb 0.036 0.092

e.SCd 0.872 0.013

e.SHg 0.979 0.005

e.CrCl 0.415 0.018

e.BUN 0.727 0.018

e.SCr 0.458 0.022

e.ACR 0.974 0.006

e.UPb 0.739 0.011

e.UCd 0.779 0.011

e.UHg 0.784 0.010

e.Serum.Metals 1 .

e.Renal.Function 1 .

Covariances

Serum Metals ↔ Renal Function −0.416 0.025 −16.50 < 0.001

SCr ↔ ACR −0.203 0.021 −9.90 < 0.001

UPb ↔ UCd 0.579 0.012 48.49 < 0.001

UPb ↔ UHg 0.502 0.011 43.99 < 0.001

UCd ↔ UHg 0.487 0.013 38.24 < 0.001
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Table 5

Model fit indices.

Index Abbreviation Value Criteria for acceptable fit

Comparative Fit Index CFI 0.951 ≥ 0.95

Standardized Root Mean Square Residual SRMR 0.036 ≤ 0.08

Root Mean Square Error of Approximation RMSEA 0.051 ≤ 0.06

90% Confidence Interval around RMSEA 90% CI 0.047–0.055 Upper bound 0.08

P value for H0: RMSEA <= 0.05 PCLOSE 0.328 > 0.05

Coefficient of Determination CD (R2) 0.990 No set value
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Table 7

Standardized effects (± SE) of heavy metals on kidney function for the combined direct plus indirect effect of

each metal source. Values and statistical significance were obtained using nonlinear combination of the

coefficients along the corresponding path.

Metal Source

Lead Serum Urine Total

Std. Effect −0.408 ± 0.013 −0.089 ± 0.015 −0.498 ± 0.023

t −30.32 (P < 0.001) −6.03 (P < 0.001) −21.22 (P < 0.001)

Cadmium

Std. Effect −0.150 ± 0.015 −0.210 ± 0.016 −0.359 ± 0.024

t −10.23 (P < 0.001) −13.06 (P < 0.001) −14.70 (P < 0.001)

Mercury

Std. Effect −0.0597 ± 0.0088 0.056 ± 0.013 −0.004 ± 0.017

t −30.32 (P < 0.001) 4.18 (P < 0.001) −0.21 (P = 0.836)
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