
Rapamycin, But Not Cyclosporine or FK506, Alters Natural Killer
Cell Function

Lu-En Wai, Masato Fujiki, Saori Takeda, Olivia M. Martinez, and Sheri M. Krams
Department of Surgery, Division of Transplantation, Stanford University School of Medicine,
Stanford, CA

Abstract

Infiltration of natural killer (NK) cells into solid organ allografts is observed in clinical and

experimental transplantation. Studies suggest a role for NK cells in acute and chronic rejection of

solid organ allografts; however, the effects of immunosuppressive agents on NK cells are not

clearly established. Rat NK cell lines were analyzed for proliferation and cytotoxicity in the

presence of cyclosporine, FK506, or rapamycin. Lewis recipients of DA liver allografts received

immunosuppressive agents after transplantation. NK cells demonstrated robust function both in

the absence and presence of cyclosporine and FK506. In contrast, rapamycin significantly

inhibited proliferation and cytotoxicity of NK cells. NK cell numbers remained stable in graft

recipients treated with cyclosporine and FK506, whereas there was a significant decrease in NK

cells in rapamycin-treated recipients. These data indicate that immunosuppressive drugs have

differential effects on NK cell function that may impact the immune response of transplant

recipients.
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The relationship between the innate immune response and the subsequent alloimmune

response in solid organ transplantation has not been fully established. Natural killer (NK)

cells are effectors of the innate immune system that, unlike T cells, do not require prior

sensitization to kill target cells (1). The role of NK cells in immune surveillance against

virally infected cells or tumor cells is well established. According to the “missing self”

hypothesis, NK cells can directly lyse target cells with deficient or aberrant self-major

histocompatibility complex (MHC) class I molecules (2). Recognition of self-MHC

molecules by inhibitory receptors on NK cells prevents lysis of autologous cells. Recently,

receptors that activate NK cells independent of class I engagement have been described (3).

This has lead to the conclusion that a balance of signals from both inhibitory and activating

receptors regulates NK cell activation.
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NK cells have been demonstrated to be potent effectors that mediate the rejection of both

allogeneic bone marrow and xenogeneic solid organ grafts (4–8). Moreover, the infiltration

of NK cells into solid organ allografts has been observed both in clinical transplantation and

experimental animal models (9–15). In the first 24 hr posttransplant, more than 70% of the

lymphocytes in rat liver allografts are NKR-P1+ NK cells (13). The importance of NK cells

has been demonstrated in CD28−/− mice (11,15). In these studies, CD28−/− mice vigorously

reject both skin and cardiac allografts. However, the depletion of NK cells and NKT cells

with anti-NK 1.1 antibodies leads to markedly prolonged graft survival in CD28−/−

recipients of allogeneic hearts. It should be noted that cardiac allograft survival was not

similarly prolonged in CD28+/+ recipients depleted of NK and NKT cells (15). Thus, when

costimulation is blocked, NK cells appear to play a role in mediating rejection. Little is

known about the direct effects of immunosuppressive agents on NK cells and thus the

purpose of this study was to determine the effects of cyclosporine (CsA), FK506 (FK), and

rapamycin (Rapa) on NK cells.

To determine if immunosuppressive agents alter the proliferation of NK cells, both RNK-16

cells, an established rat NK cell line, and primary rat NK cell lines were cultured with

increasing doses of CsA (1–100 ng/ml), FK (0.1–100 ng/ml), or Rapa (0.1–10 ng/ml) for 24

or 72 hr (n=3). RNK-16 cells, which are cultured in the absence of interleukin (IL)-2,

maintained robust proliferation in the presence of both CsA and FK (Fig. 1A). Similarly

primary NK cells lines, which do require exogenous IL-2 to proliferate, were also resistant

to the immunosuppressive drugs (Fig. 1B). In experiments conducted in parallel, we

confirmed that the drugs inhibited proliferation in a mixed lymphocyte reaction (data not

shown).

In marked contrast, Rapa significantly inhibited the proliferation of both RNK-16 cells and

primary NK cell lines in a dose-dependent manner (Fig. 1A and B). In a representative

experiment (n=3), the proliferation of primary NK cells is inhibited by 66% at 24 hr in the

presence of Rapa at 1.0 ng/ml (Fig. 1B). To determine whether this decrease in proliferation

was due to apoptosis or growth arrest, cell cycle analysis was performed on RNK-16 cells

cultured in the absence or presence of increasing concentration of Rapa. The proportion of

cells with sub-G1 DNA content was analyzed to assess the levels of apoptosis. The

percentage of apoptotic cells was similar at all concentrations examined (Fig. 1C, left panel).

In contrast, treatment with Rapa results in an increase in the proportion of cells in G1 phase

compared with the proportion in S and G2/M indicating an arrest in the G1 to S transition

(Fig. 1C, right panel). This effect was dose-dependent as it was seen at the lowest

concentration of Rapa examined (0.01 ng/ml) and was more dramatic at the higher

concentrations of Rapa.

To examine the effects of immunosuppressant agents on NK cell function, we examined

primary NK cell lines for interferon (IFN)-γ secretion and cytotoxicity in the absence and

presence of CsA (1–100 ng/ml), FK (0.1–10 ng/ml), or Rapa (0.1–10 ng/ml). We have

previously demonstrated that NK cells produce IFNγ and are a major source of IFNγ in

allografts (13). Primary NK cells spontaneously secrete IFNγ in both the absence and

presence of increasing concentrations of immunosuppressant drugs (Fig. 2A). Thus even

though proliferation is diminished by Rapa, and there are less NK cells present, the levels of

Wai et al. Page 2

Transplantation. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



IFNγ in the supernatant remain comparable to levels in the control cultures. These findings

are consistent with a report indicating that Rapa actually increases IFNγ production (16).

To further examine whether immunosuppressive agents alter NK cell function, we cultured

primary NK cells in the absence and presence of CsA (100 ng/ml), FK (10 ng/ml), or Rapa

(10 ng/ml), washed the NK cells, and used them as effectors in a killing assay against NK

cell-sensitive labeled YAC-1 tumor targets (104 targets cells/well). CsA and FK did not

affect NK cell-mediated killing against YAC-1 targets while cytotoxicity was modestly, but

reproducibly and significantly (P<0.05), inhibited in the presence of Rapa (Fig. 2B).

To determine the in vivo effects of these immunosuppressive agents on NK cells

posttransplantation, groups of Lewis recipients (n=3), received livers from DA donors.

Immunosuppressive agents (1.0 mg/kg/day) were initiated after transplantation and

continued for 6 days. Blood was obtained on days 1, 3, 5, 7, 10, and 14 for flow cytometric

analysis of NK cells, NKT cells were excluded from the analysis. Peripheral NK cell levels

in graft recipients treated with FK remained relatively stable whereas there was a slight

decrease in the levels of NK cells in recipients treated with CsA (Fig. 3A). In contrast, there

was a significant decrease in NK cells, starting on day 5 posttransplant in graft recipients

that received Rapa (Fig. 3A). In the DA→Lewis transplant model used in this study the

survival time is 10–12 days with only a fraction of the graft recipients surviving for 14 days.

Indeed only two rats, in each group, were available for analysis on days 10 and 14. In the

two rats that survived for 14 days the numbers of peripheral NK cells (26.4±8.1) was more

than three times the number observed in rats treated with Rapa (6.8±2.8; Fig. 3B).

Our data clearly indicate that NK cells proliferate and retain cytotoxic capabilities in the

presence of CsA and FK. Earlier studies demonstrated that rats that received FK retained

normal NK cell function however this study did not address NK cell numbers and function

posttransplant (12). Similarly, most studies indicate that CsA has little effect on NK cell

proliferation and cytotoxicity (17–20). However, it has been recently reported that a

subpopulation of human NK cells demonstrates reduced proliferation in the presence of CsA

(21) but retained cytotoxicity against tumor targets. Indeed, we did see a trend towards

decreased proliferation of NK cells exposed to CsA suggesting that a subpopulation may

indeed be sensitive to this immunosuppressant. Further studies are necessary to clarify if

certain subsets of NK cells are more sensitive to CsA and FK.

Interestingly, NK cells exposed to Rapa, in vitro or in vivo, demonstrate decreased

proliferation. Similar to what has been reported for T and B cells, our data indicate that Rapa

blocks NK cell progression from the G1 to S phase of the cell cycle. Moreover, NK cell

killing against tumor targets is significantly diminished in the presence of 10 ng/ml Rapa in

agreement with earlier studies suggesting that Rapa inhibits cytotoxicity and antibody-

dependent cell-mediated cytotoxicity (22). Additionally, Rapa can inhibit growth of

malignant B cells such as chronic lymphocytic B-cell leukemia and post-transplant

lymphoproliferative disease–related B-cell lymphomas (23–25).

We demonstrate that CsA and FK spare NK cells, suggesting that NK cells would still

function to eliminate virally infected or transformed cells in transplant patients. In contrast,
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NK cell proliferation and function are diminished by Rapa. Although NK cells were long

thought to be innocent bystanders in the rejection of organ allografts, recent studies indicate

that, under some conditions, NK cells can actively contribute to both acute and chronic

allograft rejection (9–15). Understanding the differential effects of immunosuppressive

drugs on NK cell effector function is important in clinical transplantation. Further research

is necessary to specifically determine how NK cells contribute to the rejection response and

to develop immunosuppressive agents that can target the deleterious effects of NK cells in

graft rejection while preserving the beneficial functions of NK cells against viruses and

tumors.
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FIGURE 1.
Effects of immunosuppressive agents on NK cell proliferation. RNK-16 cells (A) or primary

rat NK cells (B) were incubated with CsA (0–100 ng/ml), FK506 (0–100 ng/ml), or

rapamycin (0–10 ng/ml) for 24 hr (black bars) or 72 hr (gray bars). 3H-Tdr incorporation

during an additional 18-hr incubation was measured. Values are the means±SEM of 3H-TdR

incorporation (cpm)×103. The data shown is representative of three separate experiments.

(C) RNK-16 cells were incubated with Rapa (0–10 ng/ml) for 24 hr. Cell cycle analysis was

carried out by incubating cells for 30 min with propidium iodide solution before flow

cytometric analysis. The percentage of apoptotic cells was determined as the percentage of

cells in sub-G1 phase (left panel). Growth arrest was determined as the ratio of cells in G1

phase vs. the S and G2/M phases (right panel). The data shown is representative of two

separate experiments.
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FIGURE 2.
Effects of immunosuppressive agents on NK cell function. (A) Primary NK cells were

incubated with CsA, FK506, or rapamycin for 24 hr (diamonds) or 72 hr (squares) and

supernatants analyzed for IFNγ levels. The data shown is representative of three separate

experiments. (B) Primary NK cells were incubated alone (filled diamonds) or with CsA

(open squares), FK506 (filled triangles) or Rapamycin (open circles) for 24 hr and then used

as effectors in a killing assay against YAC-1 targets at E:T ratios of 8:1 to 1:1. P≤0.05 (NK

cells alone vs. NK cells incubated with rapamycin). The data shown are representative of

three separate experiments.
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FIGURE 3.
Rapamycin treatment decreases NK cell numbers posttransplantation. Lewis recipients of

DA livers were treated with vehicle or CsA, FK506 and rapamycin for 7 days. (A) The

proportion of NK cell levels in the peripheral blood on day 5 posttransplant. Data shown are

the means ± SEM of three rats for each treatment. *P≤0.05 (vehicle treated graft recipients

vs. graft recipients treated with Rapamycin as determined by Mann-Whitney U test). (B)

The proportion of NK cell levels in the peripheral blood in control (diamonds) and

rapamycin (circle) graft recipients. Data shown are the means ± SEM of three rats at each

timepoint. *P<0.05 (vehicle treated graft recipients vs. graft recipients treated with

Rapamycin as determined by Mann-Whitney U test).
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