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Abstract

Community structure detection has proven to be important in revealing the underlying organisation of complex networks.
While most current analyses focus on static networks, the detection of communities in dynamic data is both challenging
and timely. An analysis and visualisation procedure for dynamic networks is presented here, which identifies communities
and sub-communities that persist across multiple network snapshots. An existing method for community detection in
dynamic networks is adapted, extended, and implemented. We demonstrate the applicability of this method to detect
communities in networks where individuals tend not to change their community affiliation very frequently. When stability of
communities cannot be assumed, we show that the sub-community model may be a better alternative. This is illustrated
through test cases of social and biological networks. A plugin for Gephi, an open-source software program used for graph
visualisation and manipulation, named ‘‘DyCoNet’’, was created to execute the algorithm and is freely available from https://
github.com/juliemkauffman/DyCoNet.
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Introduction

Community structure as a modular architecture is common in

complex systems, where communities are defined as groups of

nodes with dense intra-community edges and sparse inter-

community connections [1,2]. Generally, nodes in the same

community have been found to share common properties or play

similar roles in the organisation of the network [3], often

corresponding to a functional unit in the system [4]. The detection

of such communities, also known as modules, has proven important

in the investigation of the underlying principles governing complex

systems and has been a very active area of research over the past

decade. Community structure has been considered primarily in

the context of static networks, however in reality complex systems

are not static; entities and their interactions can be created or

equally, cease to exist, resulting in dynamic effects [5,6]. It follows

that a current challenge in community structure detection is the

incorporation of temporal information into network modelling

frameworks.

Community structure is a defining characteristic of networks

across various disciplines [2]. An area in which such methodology

has proven useful is the analysis of biological networks. In

biological systems, groups of interacting proteins are underlying

cellular processes [7], and therefore identifying these groups is

crucial to understanding cellular function. Community structure

detection methods have previously served to propose functionally

coherent modules in static protein protein interaction (PPI)

networks [8–10], however the introduction of dynamic effects in

terms of spatial, temporal and environmental conditions can result

in more accurate mechanistic models [11,12].

In biological networks, dynamics can represent time steps of

cellular processes within a specific organism or evolutionary time

points. For example, it has been shown that yeast PPI networks

have become more modular over evolutionary time [13].

Furthermore, modules in networks generated from time course

gene expression data were found to be more informative than

those detected from static PPI networks [14,15]. These examples

illustrate the potential for dynamic community detection methods

to provide more informative insights into biological networks and

emphasise the need for accurate and robust methodologies to

facilitate novel applications.

Here, we provide a software implementation of a methodology

for (i) identifying the stability of node-community membership and

communities over time, and (ii) deriving sub-communities of nodes

with highly variable community membership which follow the

same dynamic patterns. The proposed procedure builds upon an

existing framework [16,17] which is based on the dynamics of

social networks and the observation that communities generally

remain stable. Here, we adapt and extend this methodology to

account for dynamic datasets where the assumption of stability

cannot be made, rendering the methodology more pertinent to the

analysis of biological systems. We thus offer an additional solution

procedure for dynamic community structure analysis, enabling a

more in-depth insight into network organisation. Implementation

as a Gephi plugin, named DyCoNet, allows the use of additional

functionality through Gephi to analyse, visualise and enhance

results. We demonstrate the applicability of the proposed

methodology through relevant network examples below.
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Methods

Approach
A dynamic network is a series of network snapshots at two or

more time points, where time may represent seconds, hours, days

etc. or multiple states of a system. Furthermore, as defined in [16],

a group is a module in a partition of the network snapshot at time t,
i.e. a group exists only at time t, while a community is a dynamic

module that persists across multiple snapshots. A two-stage

approach for community structure detection in dynamic networks

is described below.

Stage one involves variations on elements of the methodology

proposed in [16]. First, each network snapshot is partitioned

independently into groups by the Louvain modularity optimisation

method [18] and then each group at each time point is associated

with a community. This was done previously by constructing a

group graph and finding the minimum path cover to match groups

across time points [16]. Here, for each group in the partition of the

network snapshot at time point t~1, a community identifier is

established. In other words, the groups that comprise the partition

of the snapshot at t~1 become initial reference communities.

Instead of using the minimum path cover of the group graph,

groups are now compared across time points using the Jaccard

index (where a value of 1 indicates that two groups are identical) in

order to assign a community identifier to each group. Next, each

group at t~2 is compared with each group at t~1 and assigned

the community identifier of its most similar group. Subsequently,

every group for tw2 is compared with every other group at all

previous time points, until a best match is found and the

appropriate community identifier is assigned (Fig. 1a). A stopping

criterion can limit how far back the algorithm will search for a

good match. If there is no suitable match for a group, a new

community is formed to which the group is associated. A user-

defined parameter determines the value of the Jaccard index that

constitutes an acceptable match, below which the formation of a

new community takes place.

It should be noted that while groups pertain to specific time

points and are independent of others, community structure is

closely related to the time evolution of the network topology. The

concept behind this is related to the dynamic nature of the

network, where the networks are sampled in some natural order;

the network partitions need to be aggregated meaningfully over

time, so that the community structure corresponds to the time-

series data. The communities are thus dependent on the order of

the network partitions, since matches between snapshots in a

different order would result in different community assignment.

Therefore, the proposed community structure pertains to the

specific time evolution of the data at hand and is not meaningful if

the data is not analysed in the natural order over which it was

sampled.

The first stage of the above procedure results in associating each

node to a group and each group to a community for each time

point. In the second stage, two different analytical procedures are

considered to assign nodes to communities: the first is applicable to

the scenario where communities are considered to be stable over

time and the second, where this fact cannot be assumed. In the

first instance, we adopt the cost model proposed previously by [16],

to determine the community membership of each node at each

time point. In this case, the model assumes that an individual tends

not to change its ‘home’ community often, as based on

observations from social networks, and a node can visit a

community at time point t without being assigned to it.

Communities are defined by matching across different time points

as described previously. As community membership in this model

is considered to be more or less stable, user-defined costs are

incurred when a node switches community membership, visits

another community of which it is not a member, or is absent from

its community when other members of the community are present.

Each node is assigned to a community at each time point by

minimising the cost function via a dynamic programming

algorithm [16]. This procedure identifies the loyalty of a node to

its ‘home’ community and thus the stability of the community over

time.

In the latter case, where the stability of communities cannot be

assumed, we propose the sub-community model. Here, we offer an

alternative solution procedure, which provides a deeper insight

into the dynamic nature of community structure. In this model, a

node is assigned the community to which its group is associated at

each time point, without considering any incurred cost for its

membership. In other words, we no longer consider the concept of

a node visiting a community and generally staying loyal to a home

community, but instead we accept that it is possible that a node

may change communities often and therefore do not penalise it for

doing so. This analysis leads to the identification of sets of nodes

within communities (sub-communities) which exhibit highly

variable community membership, but which all follow the same

community membership pattern. For example, consider the case

where nodes labelled 1, 2, 3, 4 and 5 in a dynamic network belong

to community 1 at t~1, community 2 at t~2, community 3 a

t~3 and finally community 1 again at t~4, we define these nodes

as displaying the same dynamic behaviour. Such groups of nodes

with the same community membership pattern across various

snapshots are considered to be part of a new sub-community

(Fig. 1a).

Implementation
The above approach is known as DyCoNet and has been

implemented in the Java programming language using Gephi, an

open-source software program used for graph visualisation and

manipulation [19]. The Louvain algorithm which determines the

groups at each time step is already available in Gephi. DyCoNet

takes advantage of several classes from the Gephi library,

particularly those found in the Attributes, Graph, Statistics, and

Dynamic APIs. A workflow of the plugin execution is shown in

Fig. 1a.

Gephi accepts network data from files in GEXF format. The

user is presented with a tool-tip by hovering the cursor over an

item to obtain a brief explanation of each feature. Before the

plugin is executed the user selects which model to apply (cost or

sub-community) and sets the parameter values. If the cost model is

selected, the user must then set the visiting, switching and absence

costs. In addition, the group matching behaviour can be modified

by adjusting the Jaccard index and the search parameter, which

control the similarity of the groups and how far back the algorithm

will check for matching groups respectively. When the algorithm is

executed, each node is assigned to its corresponding community.

The colours of the nodes in the visual display of the network are

then set to reflect the community membership of each node at

each time step (Fig. 1b). The plugin outputs an HTML file

containing a table with the community structure of the network at

every time step (as shown in Fig. 2 and Fig. 3, discussed later), as

well as a CSV file with the same information.

The analysis can be extended using other Gephi plugins. Using

the built-in Timeline feature of Gephi, an animation of the

evolution of the network structure can be viewed, illustrating how

nodes change community over time. In addition, DyCoNet

calculates the node promiscuity, which is the frequency with which

a node changes its community affiliation. This can be represented

DyCoNet: Gephi Plugin for Dynamic Complex Networks
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visually using Gephi’s ranking feature, where parameters such as

the node size can be set to reflect the results generated by

DyCoNet.

Results and Discussion

The applicability of DyCoNet is demonstrated through two

network examples. A relatively small social network that has been

used previously and can serve as a motivating example to illustrate

the features of the computational procedure is first described.

Next, the application of DyCoNet to a dynamic protein

interaction network is considered in more detail, in order to

delineate the sub-community model in biological data where

communities cannot be assumed to be stable.

Small illustrative example
This example serves to illustrate how to use DyCoNet as well as

how to interpret the output generated by the plugin. The Southern

Women dataset was collected over a nine-month period by Davis

et al. and followed the attendance of eighteen women at fourteen

social events [16,20]. The data set has been extensively studied

and used as a benchmark for community identification methods

[21]. The data used here was obtained from [16], where it is

described as having stable communities thus making the dataset

suitable for the cost model. We therefore apply DyCoNet to the

Southern Women dataset, selecting the cost model analysis in

stage 2 of the procedure and Fig. 2 shows the HTML report

produced by this plugin.

The table in Fig. 2 depicts each community by a unique colour

and corresponding number. The position (i,j) in the table

indicates the community (or communities) associated with person

j at time step i: If two boxes with different colours are present at

position (i,j), person j is visiting a community of which it is not a

member. The box to the left of the cell indicates the person’s

‘home’ community, and the box to the right indicates the

community which they are visiting at that particular time step. If

the right hand box contains a dash, then that person is absent. If

the right-hand box contains a dash but has a colour, then both the

community and the person are absent. In this case, an absence cost

is not incurred since it is impossible for the person to be present

when the community is also absent. If the box contains a dash but

has no colour, then the person is absent but the community is

present, thus incurring an absence cost. If the left-hand box of a

Figure 1. DyCoNet architecture and example analysis. a) Diagram depicting the analysis work-flow and plugin execution. b) Sub-community
model applied on the TC-PIN from [14]. Top-left: An overview of the network, consisting of 3901 nodes and 16891 edges. Top-right to bottom-right:
Snapshots of the network at time points 1–5. For clarity only the k-core of the network with k~10 is shown. Node colours correspond to the
community membership of each node. Layout of the network is done using the ForceAtlas2 algorithm. Parts of the network that change between
time-points are indicated in circles to aid visualisation.
doi:10.1371/journal.pone.0101357.g001
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cell is a different colour to the left-hand box directly above, then

the person has switched communities.

Having discussed this simple example, we now move to a more

complex biological network example to show how the method is

adapted to deal with the less stable nature of the dataset.

Networks with unstable community structure through a
biological network example

DyCoNet was applied to a time-course protein interaction

network (TC-PIN) constructed by mapping time series gene

expression data onto static PPI networks [14] and the resulting

dynamic network comprises a total of 3901 proteins over 6 time

points. As mentioned previously, no assumptions of stability are

applied here due the highly dynamic nature of molecular

interactions. Therefore the sub-community model is deemed as

the most appropriate option, however we first consider the

application of the cost model to the TC-PIN to illustrate the

difference in performance with the more stable social network

dataset above.

The switching, visiting, and absence costs were set to the default

to the default value of 1 (chosen according to [16]) and Fig. 3a

shows part of the table generated by DyCoNet. Under the chosen

cost parameters, the highest cost that can be incurred by a single

node over 6 time steps is 5 and would correspond to a node that is

a member of a different community at each time step. Half of the

nodes shown in Fig. 3a incur a cost of 4 or 5, i.e. community

membership is highly variable. To assess the stability of the

communities we calculated the average cost for each node per time

step, equal to c
n:t , where c is the total cost, n the number of nodes

and t the number of time steps. In the previous example, assuming

a total cost of 37 found by DyCoNet (Fig. 2a), the average cost is

0.147. For the TC-PIN example, the corresponding cost is 0.5.

Thus the change in community per node per time step is

considerably higher for the TC-PIN network, reflecting the greater

frequency by which nodes in the biological network example

change their community membership, therefore rendering the cost

model less suitable.

This effect can be further illustrated by the protein YMR195W

(first column of Figure 3a). YMR195W participates in a different

community at each time step but is assigned community 64 as its

home community for all time steps by the cost model. On

inspection, it does not seem reasonable to consider protein

YMR195W to be a permanent member of community 64, when it

only participates in that community at one time step. Similarly, the

protein YOR154W (column 3) is assigned to community 83 at

each time step, although only actively participating in the

community at one time step. Therefore, this variable community

membership is taken into consideration and the sub-community

model is now applied to the dataset.

As described in the Approach section, each protein now belongs

to the community to which its group is associated at each time

point (Fig. 3b). The sub-community model searches for sets of

nodes which follow the same community membership pattern and

creates new sub-communities with the same dynamic behaviour.

For example, in Fig. 3b, proteins YPL195W, YDR100W and

YFL038C change communities several times, but at each time step

all three proteins belong to the same community, therefore these

proteins would form a new sub-community.

The output generated by our method is illustrated in Fig. 3c,

where a portion of the entire output table generated by the sub-

community model is shown. The first column indicates the sub-

community membership of each protein, while the second column

shows the community it was originally assigned with the Jaccard

index matching. For nodes where one column is present, either: (i)

the protein stays in the same community throughout and thus its

sub-community is identical to its original community, or (ii) the

pattern of community membership for this node is unique and so it

is not assigned to any sub-community, indicated by a dash in the

last row of that column. The number at the bottom of each

column indicates the number of nodes that belong to the

corresponding community or sub-community.

Figure 2. Communities found in the Southern Women dataset with Jaccard index group matching. For a detailed explanation of the
output, please see text.
doi:10.1371/journal.pone.0101357.g002
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More specifically, in Fig. 3c the first column indicates that

protein YNL275W is a member of community 36 at each time

step and there are 248 such proteins, including protein YDR497C

in the last column of the table. The second column indicates that

protein YPR088C participates in community 39 at time step 1, in

community 51 at time step 2, and in community 70 for the

remaining 4 time steps. 63 other proteins follow this dynamic

pattern and the sub-community comprising these proteins is

labelled 453. As can be seen in the penultimate column, protein

YDR247W changes communities at each time step and does not

follow the same pattern as any other protein in the network,

therefore no sub-community label is assigned. Overall, 16

communities are found in the first stage by mapping groups

based on the Jaccard index and 480 sub-communities are found in

stage 2 of the procedure.

Figure 4 shows the changing community membership of nodes

from a sample sub-community. These nodes (cyan coloured)

change communities across time but follow the same community

membership pattern at each time point, and therefore become a

sub-community. The remaining nodes of the corresponding

community at each time point are also shown. Thus, the sub-

community nodes remain the same colour for all time steps, while

the colour of the surrounding nodes changes. It is obvious that a

significant number of nodes behaves similarly, changing commu-

Figure 3. Community structure in the first 6 time steps on TC-PIN network from [14]. a) Identified communities using the social cost
model, b) Assignment of proteins to the communities to which their groups are associated at each time point (i.e. no cost model), c) Identifying sub-
communities of nodes with the same dynamic pattern. Colour and number of the first column indicate the sub-community that the protein has been
assigned to, the second column the original community membership is shown. The number at the bottom of each column shows the number of
members of the corresponding sub-community, or ‘‘-’’ if no sub-community has been assigned.
doi:10.1371/journal.pone.0101357.g003
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nities across time points with the same pattern, which justifies the

application of the sub-community model in cases where the

stability of communities cannot be assumed. Overall, out of 3901

proteins in our dataset, the vast majority (2400) were assigned to

480 sub-communities detected by DyCoNet.

An important aspect of our method is the capability to visualise

the dynamic behaviour of the community structure for any given

input network. Fig. 5 shows the final community/sub-community

membership found by the sub-community model across 6 time

steps of the TC-PIN network described above. A node either

belongs to a sub-community or a community, if it was not assigned

a sub-community in part 2 (e.g. YNL275W and YDR497C in

Fig. 3c). The stability of node-community membership is visualised

by setting node size proportional to node promiscuity. As seen in

the figure, there are far fewer proteins that frequently change

communities (large nodes) compared to the ones that don’t (small

nodes), indicating a stable community structure (i.e. many nodes

with the same dynamic community pattern), when considering the

sub-community model. Therefore, in cases such as this where

nodes frequently change communities, the sub-community model

may produce a more realistic community structure representation

by identifying the most stable sets of nodes.

We have also investigated the effect of changing the value of the

Jaccard index (default value equal to 0.4) that constitutes an

acceptable match between groups to form communities (Table

S1). As this threshold value increases, the average size of the

communities identified decreases dramatically. This is because as

the matching criterion becomes more strict, it is increasingly

difficult to match the groups between the time-points and form

communities. The average size of the sub-communities identified,

however, increases slowly, with no noticeable trend in the number

of sub-communities. With roughly 500 sub-communities identified

for various Jaccard index cut-off values, it seems that the number

of sub-communities is not significantly affected and thus the

Figure 4. Sample sub-community for all 6 time steps. a-f) Cyan coloured nodes correspond to the sub-community discovered from the set of
nodes with the same community change pattern. Rest of coloured nodes are the ones belonging in the original communities, with the original colour
shown. g) A sample protein belonging to the depicted community (left column) and its corresponding community pattern change (right column).
doi:10.1371/journal.pone.0101357.g004
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community structure is relatively stable. As the Jaccard index

threshold increases, so does the average node promiscuity, with

unstable nodes changing communities more frequently as groups

are matched with more stringent criteria.

Conclusions

We have implemented and extended a community structure

detection method derived from the analysis of social networks.

Our extension renders the method more suitable to networks

where no assumptions on stability can be made, making it

particularly suitable for biological data, which can be highly

variable or even noisy. The proposed procedure is implemented as

a Gephi plugin, known as DyCoNet, that is available for

download.

The software implementation is flexible and easy to use.

DyCoNet offers two solution procedures, whose suitability is

dependent on the nature of the dataset being studied. Further-

more, two user-defined parameters, i.e. the Jaccard search and

cutoff parameters allow the analysis to be tailored to different

experimental needs. The use of additional Gephi functionality

allows for enhanced analysis and visualisation of results. Network

representations of results can emphasize node characteristics such

as rate of change of community membership (i.e. node promis-

cuity) through the ranking parameter facility (Fig. 5). Furthermore,

an animation of the community structure across different time

points can be visualised using the built-in time-line feature.

DyCoNet also produces results in table and CSV format to

facilitate further processing.

We have demonstrated the applicability of DyCoNet on two

network examples with widely different dynamic behaviour and

showed that the method is well-adapted to both cases. Therefore,

DyCoNet can be applied to networks with a variety of topological

characteristics across different disciplines. This software can pave

the way for novel applications in dynamic networks, so as to

facilitate a deeper insight into the underlying dynamic organisa-

tion of the target system.

Supporting Information

Table S1 Effect of the value of Jaccard index used in
group matching on community size, number and node
promiscuity.

(PDF)
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Figure 5. TC-PIN for all 6 time steps from [14]. Node colours correspond to sub-communities identified by DyCoNet, node size corresponds to
node promiscuity i.e. frequency with which nodes change communities. This visualisation is produced in Gephi by setting the ranking feature of each
node such that ‘Node Promiscuity’ corresponds to node size.
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