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Abstract

This paper proposes a method for aligning image volumes acquired from different imaging

modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for

encoding invariant feature geometry and appearance is developed, based on the assumption of

locally linear intensity relationships, providing a solution to poor repeatability of feature detection

in different image modalities. The encoding method is incorporated into a probabilistic feature-

based model for multi-modal image alignment. The model parameters are estimated via a group-

wise alignment algorithm, that iteratively alternates between estimating a feature-based model

from feature data, then realigning feature data to the model, converging to a stable alignment

solution with few pre-processing or pre-alignment requirements. The resulting model can be used

to align multi-modal image data with the benefits of invariant feature correspondence: globally

optimal solutions, high efficiency and low memory usage. The method is tested on the difficult

RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant

inter-subject variability due to pathology.

1 Introduction

Multiple medical imaging modalities, e.g. MR and CT images of the brain, are useful in

highlighting complementary aspects of anatomy, however, they must first be aligned within

a common spatial reference frame or atlas. A straight forward approach is to align all images

to a single reference image or template via standard image registration methods, however,

alignment and subsequent image analysis may be biased by the choice of template [1].

Group-wise alignment aims to reduce bias by jointly aligning image data. While a

significant body of literature has addressed group-wise alignment of mono-modal image

data [2–5], the more difficult context of multi-modal data is rarely addressed [6, 7].

Pair-wise image alignment is challenging due to factors such as pathology, resection,

variable image cropping, multi-modal appearance changes and inter-subject variability. In

the general case, it may be difficult to justify assumptions of smooth, one-to-one

correspondence between images adopted by many registration techniques. Practical

algorithms must be robust to poor initial misalignment, for example due to DICOM error

[8]. Group-wise alignment poses several additional challenges. Typical iterative algorithms

compute multiple image-to-image or model-to-image alignment solutions for each image,
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and thus memory and computational requirements are generally linear and super-linear in

the number of images, respectively. In the context of multi-modal data, a mechanism is

required in order to address inter-modality intensity differences, e.g. simultaneously learning

models of tissue classes [6] or the joint intensity relationship between modalities [7].

We propose a new group-wise alignment method to address these challenges. Rather than

attempting to model a potentially complex global intensity relationship, we propose learning

a collection of locally linear intensity relationships throughout the image. To do this

effectively, we adopt a model based on local scale-invariant image features [9, 10], similar

to approaches used with mono-modal 2D images [11, 5] and in full 3D volumes [12]. Local

scale-invariant features can be repeatably extracted in the presence of global variations in

image geometry and intensity, and encoded for computing global correspondence between

images despite a high degree of occluded or missing image content. Recent efficient 3D

scale-invariant feature encodings [12] are particularly useful for group-wise alignment, since

once extracted, the memory and computational requirements of multiple, iterative alignment

phases are significantly reduced in comparison to intensity-based methods.

This paper extends the feature-based alignment technique [12], and makes two primary

technical contributions. A novel scale-invariant feature encoding is presented for computing

inter-modality image correspondences, based on locally inverted intensity profiles, that

significantly increases the number of correspondences possible between different image

modalities. Similar ideas have been presented in the context of 2D image data [13],

however, these do not generalize to volumetric data due to 3D orientation. A novel

probabilistic model is then developed, incorporating this encoding into a feature-based

model. A fully automatic algorithm iterates between model learning and model-to-image

alignment, converging efficiently to a group-wise alignment solution with no pre-processing

or pre-alignment. Previous approaches to multi-modal, group-wise alignment have assumed

minor deformations around pre-aligned images of healthy subjects [6] or an individual

subject [7].

Experiments demonstrate group-wise alignment on the challenging Retrospective Image

Registration Evaluation (RIRE) multi-modal brain image data [14], where all subjects

exhibit a high degree abnormal variability due to pathology. The inverted intensity encoding

is crucial in achieving fully automatic and efficient group-wise alignment solutions. The

model resulting from group-wise alignment can be used subsequently for globally optimal

alignment of new multimodal images of the same domain.

2 Invariant Feature Extraction

A scale-invariant feature in 3D is defined geometrically by a scaled local coordinate system

S within image I. Let S = {X, σ, Θ}, where X = {x, y, z} is a 3-parameter location specifying

the origin, σ is a 1-parameter scale and Θ = {θ̂1, θ̂2, θ̂3} is a set of three orthonormal unit

vectors θ1̂, θ̂2, θ̂3 specifying the orientations of the coordinate axes. Invariant feature

extraction begins by identifying a set of location/scale pairs {(Xi, σi)} in an image. This is

done by detecting spherical image regions centered on location Xi with radius proportional
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to scale σi that locally maximize a function f(X, σ) of image saliency. For example, SIFT

feature extraction identifies local extrema of the difference-of-Gaussian (DoG) function [9]:

(1)

where f(X, σ) is the convolution of the image I with a Gaussian kernel of variance σ2 and κ

is a multiplicative scale sampling rate. DoG detection generalizes trivially from 2D to higher

dimensions and can be efficiently implemented using Gaussian scale-space pyramids [15, 9].

Following detection, each region is assigned an orientation Θ, and an image patch centered

on Xi and proportional in size to σi is cropped from the image, reoriented and rescaled after

which image intensity is encoded. We adopt the 3D orientation assignment and intensity

encoding methods described in [12]. Briefly, orientation is assigned based on dominant

image gradient orientations ∇I computed within regions {(Xi, σi)}. Let H(∇I) be a spherical

3D histogram generated from image gradient samples ∇I within region (X, σ). Orthonormal

unit vectors Θ = {θ̂1, θ̂2, θ̂3} are determined as follows:

(2)

With geometry Si identified, region (X, σ) is cropped from the image, scaled and reoriented

according to σ and Θ to a canonical image patch of fixed size, after which intensity is

encoded. An efficient 3D version of the gradient orientation histogram (HoG) descriptor [9]

is adopted as in [12], where spatial location and gradient orientation are quantized uniformly

into eight spatial locations and eight 3D orientations, resulting in a compact 8 × 8 = 64-

element vector.

A challenge in invariant feature matching is to reliably identify and characterize instances of

the same anatomical structure in images acquired from different modalities, e.g. CT and

MR. Regions identified in Equation (1) are essentially image blobs approximating center-

surround patterns reminiscent of mammalian visual receptive fields [16]. Given that

relationship between intensities arising from the same tissues in different modalities is

generally non-linear and multimodal in nature [17], patterns in different image modalities

arising from the same underlying anatomical structure will generally vary to the extent they

cannot be extracted.

It has been noted, however, that multi-modal image registration can be achieved by

assuming a locally linear intensity relationship, with either positive or negative correlation

[18]. Generalizing this observation, we propose that the same holds true for distinctive

image patterns localized in scale and space. Our reasoning is as follows: distinctive patterns

present in different images arise from the interface between different tissue classes in the

image. Although multiple tissue classes may be present within a local window, in many

instances the image content may be dominated by a small number of intensity classes, e.g.

white and grey matter, in which case the intensity relationship may be approximated as

locally linear.
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In can be shown that the set of image regions {(Xi, σi)} identified via Equation (1) remains

constant across linear intensity variations, either positive or negative. Negative linear

variations, or intensity inversions, however, cause an inversion of the image gradient, which

has a major affect on feature orientation Θ and intensity encoding. Thus in order to correctly

normalize and compare features across intensity inversion, primary and secondary

coordinate axes must be inverted in order to correctly align spatial locations, which is

equivalent to a rotation of π about axis θ̂3, see Figure 1b). The same inversion must be

performed on the spatial locations and orientation bins of the associated orientation GoH

encoding, see Figure 1c). Note that the tertiary coordinate axis remains unchanged as the

cross product does not change with the negation of vectors θ̂3.

Note that different image modalities may generally exhibit local intensity mappings other

than linear relationships. In such cases, features cannot be extracted and matched, and

alternative methods are necessary. Considering both positive and negative correlations

significantly increases the number of possible correspondences. To illustrate the usefulness

of inverted features, for the T2-MP-RAGE pair in Figure 1, only 2 correct correspondences

are identified via nearest neighbor descriptor matching of conventional features (a),

however, 22 additional correspondences are identified throughout the brain when inverted

feature correspondences are considered (b).

3 Feature-based Group-wise Alignment

The feature-based alignment (FBA) method [12] is limited to a single image modality and

requires pre-aligned training images. This section extends the FBA model to multiple image

modalities, and presents a novel group-wise alignment algorithm that can achieve alignment

without assuming pre-alignment.

Let Sij represent the geometry of the jth feature extracted in the ith image, and let Iij represent

its associated intensity encoding. Let  represent a vector of feature

appearance/geometry pairs extracted in N images. Let T̄ = {Ti} be a set of unknown

coordinate transforms, where Ti maps locations image i to a common reference or atlas

space. In the context of this paper, Ti is a global 7-parameter similarity transform, about

which further deformations are described independently in the neighborhood of local

features. T̄ is modeled here as a random variable characterized by the posterior .

Group-wise alignment aims to identify the transform set T̄MAP maximizing the posterior

probability, which can be expressed using Bayes’ theorem as follows:

(3)

In Equation (3),  is the probability of image feature set  conditional on transform

set T̄, p(T̄) is the prior probability of transform set T̄. The prior probability can be expressed

as p(T̄) = Πi p(Ti), under the assumption that transforms for different images Ti and Tj, i ≠ j

are independent. Factor  can be expressed as:

Toews et al. Page 4

Inf Process Med Imaging. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(4)

where the two equalities in Equation (4) follow from two modeling assumptions. The first is

the assumption of conditionally independent features (Iij, Sij) given transform set T̄.

Intuitively, this states that the appearance and geometry (Iij, Sij) of one image feature

provide no information regarding the appearance and geometry of another feature, provided

image-wise mappings T̄ are known. The second equality results from the assumption of

conditional independence of features Iij, Sij and all transforms Tj, i ≠ j given transform Ti.

Alignment is driven by distinctive local image features, for instance scale-invariant features

arising from tissue patterns in the brain. In a single image modality, such features can be

characterized by their geometry, e.g. location, scale and orientation, and by their appearance,

e.g. intensity encoding. In the case of multiple modalities, structures are also characterized

by distinct modes of appearance, for example conventional and inverted intensities as in the

previous section. Features may be incorporated as a latent random variable and marginalized

out in determining T̄MAP. As in [12], we consider a discrete random variable of feature

identity F = {fk,l}, where fk,l indicates a specific anatomical structure k ∈ {1, …, K} and

binary local appearance mode l ∈ {0, 1} (e.g. conventional or inverted). Marginalization is

expressed as a sum over discrete model feature instances fk,l:

(5)

The right-hand side of Equation (5) results from Bayes’ theorem and the assumption of

independence between F and Ti, i.e. p(fk,l|Ti) = p(fk,l). Intuitively, this independence

assumption indicates that transform Ti provides no additional information regarding the

probability of model feature fk,l. Factor p(fk,l) is the discrete probability of model feature fk,l

and p(Sij, Iij|fk,l, Ti) represents the probability of feature geometry and appearance (Sij, Iij)

conditional on latent model feature fk,l and transform Ti. This factor can be further expressed

as:

(6)

assuming conditional independence of feature intensity encoding Iij and feature geometry

and transform (Sij, Ti) given specific model feature fk,l. Factor p(Iij|fk,l) is a conditional

density over feature intensity encoding Iij given model feature fk,l, taken to be a Gaussian

density over conditionally independent descriptor elements. Factor p(Sij|fk,l, Ti) is a

conditional density over feature geometry given model feature fk,l and transform Ti, which

can be factored into conditional distributions over feature location, scale and orientation:

(7)

In Equation (7), factor p(Xij|σij, fk,l, Ti) is a density over extracted feature location Xij,

conditioned on model feature fk,l and transform Ti, here taken to be an isotropic Gaussian
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density with variance proportional to σij. p(σij|fk,l, Ti) is a density over extracted feature

scale, conditioned on (fk,l, Ti), here taken to be a Gaussian density in log σ. p(Θj|fk,l, T) is a

von Mises density [19] over independent angular deviations of coordinate axes, here

approximated as an isotropic Gaussian density over Θ for simplicity under a small angle

assumption. The final expression for the posterior probability of T̄ becomes 

(8)

3.1 Group-wise Alignment

The goal of group-wise alignment is to estimate transform vector T ̄ from feature data 

extracted in a set of images. If the model feature set F and the parameters of its associated

probability factors are known, then the posterior in Equation (8) can be maximized directly

by independently maximizing transforms Ti associated with individual images. They are

unknown, however, and determining T̄ and F is thus a circular problem. We propose an

iterative solution which alternates between estimating T̄ and F, in an attempt to converge to

reasonable estimates of both. The algorithm consists of 1) initialization, 2) model estimation

3) image alignment and 4) feature updating, where steps 2–4 repeated iteratively until

estimates of T̄ converge. Note that alignment is based solely on scale-invariant features

extracted once in each image.

1. Initialization involves setting individual transforms Ti to approximately correct

alignment solutions according to location, orientation and scale. The primary

requirement is that a subset of initializations to be approximately correct, the

group-wise alignment is robust to a significant degree of error and a high number

of completely incorrect transforms. This is performed here by choosing one image

as an initial reference frame, then aligning all images to this model via a 3D Hough

transform [20]. Due to inter-subject and inter-modality differences, many images

may not initially align correctly, however, only a small subset is required to

bootstrap model estimation.

2. Model Estimation aims to identify a set of model feature set F = {fk,l} and

associated factors in Equation (8) from features extracted in training images.

Equation (8) takes the form of a mixture model with K components, defined by

conditional densities over model feature appearance and geometry p(Iij|fk,l)p(Sij|fk,l,

Ti) and mixing proportions p(fk,l). The model parameters could thus potentially be

estimated via methods such as expectation maximization [21] or Dirichlet process

modeling [22], however, there are several challenges that make this difficult. First,

the number of mixture components K is unknown and potentially large. Moreover,

the current set of transforms Tt̄ may be noisy and contain a high number of

incorrect, outlier transforms Ti. A robust clustering process similar to the mean

shift algorithm [23] is used to identify clusters of features that are similar in terms

of their geometry and appearance as in [12]. Each cluster represents a single model

feature fk,l, and feature instances in a cluster are used to estimate parameters for

associated probability factors, i.e. Gaussian means, variances and mixing
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proportions. Note that for the purpose of estimation, all model features are assumed

to bear conventional appearance l = 0. Intensity-inversion l = 1 is incorporated later

in alignment.

3. Alignment proceeds by maximizing  via marginalization, as in Equation

(8). With known model feature set F, this proceeds by maximizing each individual

transform Ti independently:

(9)

Maximization proceeds by determining candidate model-to-image correspondences

between features in image i and learned intensity distributions p(Ii,j|fk,l). A

candidate correspondence exists between model feature fk,l and image feature

descriptor Ii,j if Ik,l and Ii,j are nearest neighbors (NN) according to the Euclidean

metric, where Ik,l represents the mean of density p(Ii,j|fk,l). Candidate

correspondences are used to identify model-to-image similarity transform

candidates Ti for evaluation under p(Ti|I) in manner similar to the Hough transform

[20]. Note that TiMAP is globally optimal in the space of similarity transforms. This

procedure can be carried out efficiently via approximate nearest neighbor

techniques [24], and by considering only a subset of the most frequently occurring

model features, as identified by p(fk,l) in learning. Although a single image feature

can potentially be attributed to multiple model features, appearance descriptors

representing distinctive image patterns lie in sparse, high dimensional space, where

it can be assumed that there is at most one significantly probable model

correspondence.

Two types of alignment are considered here, conventional and multi-modal.

Conventional alignment considers only appearance mode l = 0, whereas

multimodal alignment marginalizes over both conventional and inverted features l

= 0, 1 under the assumption that p(fk,l=0) = p(fk,l=1). Multi-modal alignment has the

capacity to identify correspondences despite local intensity inversions, however, it

runs a higher probability of identifying incorrect correspondences and requires a

higher search time. Experiments contrast conventional vs. multimodal alignment.

4. Feature Update with T̄t estimated, the geometry of each image feature Si,j is

updated according to  for subsequent iterations. Feature intensity encodings

are invariant under similarity transforms and need not be updated.

4 Experiments

Experiments use the high-resolution RIRE data set [14], consisting of brain images of nine

subjects and five modalities: CT, T1, T2, PD and MP-RAGE, for a total of 39 images (not

all modalities are available for all subjects). Group-wise alignment of this data set is

challenging for several reasons: all subjects exhibit significant anatomical abnormalities due

to large brain tumors, there are no healthy or normal subjects. Images are acquired with a

high degree of anisotropy which varies between modalities and subjects, with (X, Y, Z)
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voxels sizes of approximately (0.86,0.86,3.00) for T1, T2, PD, (0.98,1.37,0.98) for MP-

RAGE and (0.45,0.45,3.00) for CT.

While several authors report multi-modal group-wise registration for recovering small

deformations about known ground truth for a single subject [7, 25] or healthy subjects [6],

we are not aware of literature addressing the more challenging context of inter-subject,

multi-modal alignment involving significant abnormality and no pre-alignment. The only

image preprocessing applied here is to resample images as isotropic, with voxels sizes

0.86mm for T1, T2, PD, 0.98mm for MP-RAGE and 0.45mm for CT. Knowledge of the

image modality, the voxel size, image orientation or translation is not required or used.

Feature extraction requires approximately 25 seconds per volume of size 256× 256 × 200.

Features arising from degenerate structures that cannot be reliably localized in 3D such as

surfaces are identified and discarded via an analysis of the local structure tensor as in [26].

Model learning makes use of approximately 83K features, requiring 8.3MB of memory, note

original image data in isotropic floating point format require 1700MB. Individual learning

and fitting phases require approximately 25 and 10 seconds each on a 2.4GHz processor.

The total running time here is ≈ 22 minutes note that mono-modal group-wise registration

algorithms require ≈ 19 hours for comparable amounts of data [3, 4].

Group-wise alignment converges in 7 iterations for both conventional and multi-modal

alignment as shown in the upper left graph of Figure 2, when set T̄ no longer changes with

further iterations. The lower left graph of Figure 2 shows the relative numbers of

conventional and inverted model-to-subject correspondences as a function of t for multi-

modal alignment. In early iterations, a relatively large percentage of correspondences (e.g.

15% at t = 1) result from inverted matches, as relatively few model features exist due to

initial misalignment. Inverted matches make up increasingly smaller portions of

correspondences (e.g. 3%, t = 7), as improved alignment results in a larger set of model

features. After convergence, a model with a stable latent feature set F has been learned,

reflecting features present in the alignment/training image. This model can be used with

either conventional alignment in order to efficiently align additional images of modalities

present in training, or with multi-modal alignment to align images of new modalities unseen

in training.

Recall that each mapping Ti represents a coarse global transform between images, about

which individual image-to-model feature correspondences reflect refined, localized

deformations. While Ti do not represent highly accurate transforms, images resampled

according to Ti can be used to visually assess general success/failure of alignment. Multi-

modal alignment successfully aligns all subjects, whereas conventional alignment produces

three failure cases with clearly incorrect alignment solutions, see Figure 3. All failures arise

from CT images, which have low image contrast in the brain and produce fewer features

than other modalities. Precise quantification of alignment error could be performed on a

feature-by-feature basis by contrasting the discrepancy of image-to-model correspondence

with human labelers as in [11], we leave this for future work. The vast majority of

correspondences in successful alignment solutions appear qualitatively correct, typical

examples are shown in Figure 1.
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5 Discussion

This paper investigates a new method for addressing group-wise alignment of difficult,

multi-modal image data. Inverted scale-invariant feature correspondences are proposed,

which address multi-modality in the form of locally inverted joint intensity relationships.

For several combinations of brain modalities, e.g. MP-RAGE and T2, this results in a

significant increase in the number of image correspondences identified in comparison to

conventional correspondence which assumes a positive linear joint intensity relationship.

Inverted correspondences form the basis for a novel feature-based model and group-wise

alignment algorithm, which is shown to be effective in the case of a difficult, multi-modal

brain image data set. Experiments demonstrate that considering multi-modality in the form

of locally inverted intensity mappings leads to successful group-wise alignment, where

conventional feature-based alignment fails. Although allowing for a wider range of intensity

mappings potentially permits a higher number of incorrect correspondences and alignment

solutions, these are unlikely to occur in practice due to smoothness of natural images.

Once a feature-based model of multi-modal intensity patterns has been learned for a set of

modalities, it serves as prior knowledge for efficient and robust alignment of images of the

same modalities considering strictly positive intensity correlations. This is analogous to

theoretical findings in dense image registration, where the use of multi-modal vs. mono-

modal similarity measures can be explained in terms of the informativness of the Bayesian

prior [27].

A significant practical contribution of this paper is a system that is able to achieve group-

wise alignment of difficult, multi-modal image data. The code used in this paper for feature

extraction and inversion is available to the research community 3, which will facilitate the

use of scale-invariant feature technology in medical image analysis. We have evaluated our

group-wise alignment method several difficult contexts, including infant brain MR

exhibiting intensity contrast changes and multi-subject truncated body CT scans, and results

are promising.
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Fig. 1.
(a) and (b) illustrate scale-invariant feature correspondences automatically computed

between MP-RAGE and T2 modalities. White circles illustrate feature locations and scales,

graphs above the images illustrate the local joint intensity relationship associated with

features. Intensities associated with tissues within the brain (b) generally exhibit an intensity

inversion between these modalities, this is not the case for structures external to the brain

such as bone and air-filled sinuses (a). (c) illustrates reorientation of the GoH intensity

encoding in the case of intensity inversion. From left to right, a rotation of π about θ̂3 is

applied both to the 8 spatial location bins (boxes) and to the 8 orientation bins which they

each contain (arrows).
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Fig. 2.
The upper left graph illustrates transform set T̄ change vs. iteration t, where change is

measured by the maximum Frobenius norm affine transform matrix difference

. Learning converges after 7 iterations, after which T̄ does not change. The

lower left graph shows the relative numbers of conventional and inverted correspondences

over iteration t, where the percentages reflect the proportion of inverted correspondences.

Image sets to the right show images before alignment t = 0 and resampled after convergence

according to Ti at t = 7. Note the slightly elevated orientation in aligned images; since

alignment here is fully automatic, the final geometry of group-wise alignment is determined

by the data.
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Fig. 3.
a) and b) show typical instances of correct multi-modal alignment solutions, c) shows one of

three clearly incorrect conventional alignment solutions.
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