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Abstract

Understanding how people interact and socialize is important in many contexts from disease control to urban planning.
Datasets that capture this specific aspect of human life have increased in size and availability over the last few years. We
have yet to understand, however, to what extent such electronic datasets may serve as a valid proxy for real life social
interactions. For an observational dataset, gathered using mobile phones, we analyze the problem of identifying transient
and non-important links, as well as how to highlight important social interactions. Applying the Bluetooth signal strength
parameter to distinguish between observations, we demonstrate that weak links, compared to strong links, have a lower
probability of being observed at later times, while such links—on average—also have lower link-weights and probability of
sharing an online friendship. Further, the role of link-strength is investigated in relation to social network properties.

Citation: Sekara V, Lehmann S (2014) The Strength of Friendship Ties in Proximity Sensor Data. PLoS ONE 9(7): e100915. doi:10.1371/journal.pone.0100915

Editor: Christopher M. Danforth, University of Vermont, United States of America

Received January 17, 2014; Accepted May 31, 2014; Published July 7, 2014

Copyright: � 2014 Sekara, Lehmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors were funded by a Young Investigator Grant from the Villum Fondation (High Resolution Networks, awarded to SL). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors confirm that one of the authors, Sune Lehmann, is a PLOS ONE Editorial Board member. This does not alter the authors’
adherence to PLOS ONE Editorial policies and criteria.

* Email: vese@dtu.dk

Introduction

Recognizing genuine social connections is a central issue within

multiple disciplines. When do connections happen? Where do they

take place? And with whom is an individual connected? These

questions are important when working to understand and design

urban areas [1,2], studying close-contact spreading of infectious

diseases [3–5], or organizing teams of knowledge workers [6–9]. In

spite of their importance, measuring social ties in the real world

can be difficult.

In classical social science the standard approach is to use self-

reported data. This method, however, is only practical for

relatively small groups and suffers from cognitive biases, errors

of perception, and ambiguities [10]. Further, it has been shown

that the ability to capture behavioral patterns via self-reported

data is limited in many contexts [11]. A different approach for

uncovering social behavior is to use digital records from emails and

cell phone communication [12–19]. Although such analyses have

improved our understanding of social ties, they have left many

important questions unanswered—are electronic traces a valid

proxy for real social connections? Eagle et al. [20] began to answer

this question by including a spatial component as part of their

data, using the short range (*10m) Bluetooth sensor embedded in

study participants’ smartphones to measure physical proximity.

Their results show that proximity data closely reflects social

interactions in many cases. But since it is easy to think of examples

where reciprocal Bluetooth detection does not correspond to social

interaction (e.g. transient co-location in dining hall) the question

remains, which observations correspond to actual social connec-

tions and which are just noise?

Multiple alternatives have been proposed to Bluetooth for

sensor-driven measurement of social interactions, each with

particular strengths and weaknesses [21–31]. For example, Radio

Frequency Identification (RFID) badges have short interaction

ranges (1{4m) and measure only face-to-face interactions, thus

solving many of the resolution problems posed by Bluetooth

[30,31]. This approach, however, confines interactions to occur

within specific areas covered by special radio receivers and

requires participants to wear custom radio tags on their chests at

all times—unlike Bluetooth which is ubiquitous across many types

of modern electronic devices.

Our investigation digs into the role of Bluetooth signal

strength, using a dataset obtained from applications running

on the cell phones of 134 students at a large academic

institution. Each phone records and sends data to researchers

about call and text logs, Bluetooth devices in nearby proximity,

WiFi hotspots in proximity, cell towers, GPS location, and

battery usage [32]. In addition, we combine the data collected

via the phones with online data, such as social graphs from

Facebook for a majority of the participants. The study

continuously gathers data, but in this paper we focus on

Bluetooth proximity data gathered for 119 days during the

academic year of 2012–2013. Specifically, we focus on the

received signal strength parameter and propose a methodology

that applies signal strength to distinguish between social and

non-social interactions. We concentrate on the signal param-

eter because it is present in a majority of digitally recorded

proximity datasets [30,32,33] and in addition, it also suggests a

rough estimate for the distance between two devices. Applying

the method on our data, we compare the findings to a null

model and demonstrate how removing links with low signal

strength influences network structure. Moreover, we use

estimated link-weights and an online dataset to validate the

friendship-quality of removed links.
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Materials and Methods

Dataset
We distributed phones among students from four study lines

(majors), where each major was chosen based on the fraction of

students interested in participating in the project. This selection

method yielded a coverage of w93% of students per study line,

enabling us to capture a dense sample of the social interactions

between subjects. Such high coverage of internal connections

within a social group, with respect to the density of social

interactions combined with the duration of observation, has not

been achieved in earlier studies [20,30].

The data collector application installed on each phone

follows a predefined scanning time table, which specifies the

activation and duration of each probe. Proximity data is

obtained by using the Bluetooth probe. Every 300 seconds

each phone performs a Bluetooth scan that lasts 30 seconds.

During the scan it registers all discoverable devices within its

vicinity (5{10m) along with the associated received signal

strength indicator (RSSI) [34]. Recorded proximity data is of

the form (i, j, t, s), denoting that person i has observed j at time

t with signal strength s. Only links between experiment

participants are considered, comprising a dataset of

2 183 434 time ordered edges between 134 nodes, see Table 1

for more information. Data collection, anonymization, and

storage was approved by the Danish Data Protection Agency,

and complies with both local and EU regulations. Written

informed consent was obtained via electronic means, where all

invited participants digitally signed the form with their

university credentials. Along with the mobile phone study we

also collected Facebook graphs of the participants. Not all

users donated their data since this was voluntary, however we

obtained a user participation of *88% (119 users and 1018

Facebook friendships). For the missing 12% of users, we

assume they do not share any online friendships with the bulk

of participants.

Identifying links
Independent of starting conditions, the scanning framework

on one phone will drift out of sync with the framework on

other phones after a certain amount of time, thus the phones

will inevitably scan in a desynchronized manner. This

desynchronization can mainly be attributed to: internal drift

in the time-protocol of each phone, depletion of the battery,

and users manually turning phones off. To account for

irregular scans, we divide time into windows (bins) of fixed

width and aggregate the Bluetooth observations within each

time-window into a weighted adjacency matrix. The complete

adjacency matrix is then given by:

W~ W (Dt1), W (Dt2), . . . , W (Dtn)
� �

, where each link is weighted

by its signal strength and where Dti indicates window number

i. These matrices generally assume a non-symmetric form, i.e.

person A might observe B with signal strength s while person B
observes A with strength s’, or not at all. The scanning

frequency of the application sets a natural lower limit of the

network resolution to 5 minutes. If we are interested in the

social dynamics at a different temporal resolution we can

aggregate the adjacency matrices and retain entries according

to some heuristic (e.g. with the strongest signal). Depending on

the level of description (monthly, weekly, daily, hourly, or

every 5 minutes) the researcher must think carefully about the

definition of a network connection. Frameworks for finding the

best temporal resolution, so called natural timescales have for

specific problems been investigated by Clauset and Eagle [35],

and Sulo et al. [36]. In this paper, however, we are interested

in the identification and removal of non-social proximity links,

so aggregating multiple time-windows is not a concern here.

Henceforth we solely work with 5 minutes time-bins.

The Bluetooth probe logs all discoverable devices within a

sphere with a radius of 5–10 meters—walls and floor divisions

reduce the radius, but the reduction in signal depends on the

construction materials [37]. Blindly taking proximity observa-

tions as a ground truth for social interactions will introduce

both false negative and false positive links in the social

network. False negative links are typically induced by

hardware errors beyond our control, thus we focus on

identifying false positive links. We therefore propose to identify

non-social or noisy proximity links via the signal strength

parameter. The parameter can be thought of as a proxy for the

relative distance between devices, since most people carry their

phones on them, it in principle also suggests the separation

distance between individuals.

Previous work has applied Bluetooth signals to estimate the

position of individuals [38–41] but studies by Hay [42], and

Hossein et al. [43] have revealed signal strength as an unsuitable

candidate for accurately estimating location. However, the

complexity of the problem can greatly be reduced by focusing

on the relative distance between individuals rather than position.

In theory, the transmitted power between two antennae is

inversely proportional to the distance squared between them

[44]. Reality is more complicated, due to noise and reflection

caused by obstacles.

We use the ideal result as a reference while we perform

empirical measurements to determine how signal strength depends

on distance. Two devices are placed on the ground in a simulated

classroom setting, where we are able to control the relative

distance between them. The resulting measurements are plotted in

Fig. 1A. As is evident from the figure, there is a large variance in

the measured signal strength values for each fixed distance.

However, as both phones exhibit the same variance we can

exclude faulty hardware; further, environmental noise such as

interference from other devices, or solar radiation can also be

dismissed since there appear no daily patterns in the data. But we

observe multiple bands or so-called modes onto which measure-

ments collapse. Ladd et al. [33] noted a similar behavior for the

received signal strength of WiFi connections, both are phenomena

caused by non-Gaussian distributed noise. The empirical mea-

surements form a foundation for understanding signal variance as

Table 1. Data overview.

Total Average pr. time-bin

Nodes (Users) 134 17.32

Edges (Dyads) 2 183 434 62.50

Time-bins 34 272 -

Average clustering 0.85 0.26

Average degree 103.51 2.41

Statistics showing the number of total (aggregated) and average values of
network properties. Time-bins span five minutes and cover the entire 119 day
period, including weekends and holidays. For the average values we only take
active nodes into account, i.e. people that have observed another person or
been observed themselves in that specific time-bin. Network properties are
calculated for the full aggregated network and as averages over each temporal
network slice.
doi:10.1371/journal.pone.0100915.t001
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a function of distance, but they were performed in a controlled

environment. In reality, there are a multitude of ways to carry a

smartphone: some carry it around in a pocket, others in a bag. Liu

and Striegel [45] investigated how these various scenarios

influence the received signal strength—their results indicate only

minor variations, hence we conclude that the general behavior is

similar to the measurements shown in the figure. Further, social

interactions are not only limited to office environments, so we have

re-produced the experiment outdoors and in basement-like

settings; the results are similar.

Bi-directional observations yield at most two observations

per dyad per 5-minute time-bin, we can average over the

measurements (Fig 1B), or take the maximal value (Fig 1C).

Fig. 2 shows the distributions of signal strength for each

respective distance. For raw data, Fig. 2A, we observe a

localized zero-distance distribution while the 1, 2, and 3-m

distributions overlap considerably. Averaging over values per

time-bin smoothes out and compresses the distributions, but

the bulk of the distributions still overlap (Fig. 2B). Taking only

the maximal signal value into account separates the distribu-

tions more effectively (Fig. 2C). The reasoning behind

choosing the maximal signal value is that phones are physically

at different locations and we expect the distance to be

maximally reflected in the distributions.

Thus, by thresholding observations on signal strength, we

can filter out proximity links that are likely to be further away

than a certain distance. By doing so we are able to emphasize

links that are more probable of being genuine social

interactions, while minimizing noise and filtering away non-

social proximity links. From the behavioral data we count the

number of appearances per dyad and assign the values as

weights for each link. Link weights follow a heavy-tailed

distribution, with a majority of pairs only observed a few times

(low weights), a social behavior that has previously been

observed by Onnela et al. [15]. Based on their weight we

divide links into two categories: weak and strong. A link is

defined as ‘weak’ if it has been observed (on average) less than

once per day during the data collection period, remaining links

are characterized as ‘strong’. An effective threshold should

maximize the number of removed weak links, while minimiz-

ing the loss of strong links. Fig. 3 depicts the number of weak

and strong links as a function of threshold value. We observe

that, as we increase the threshold, the number of weak links

decreases linearly, while the number of strong links remains

roughly constant and then drops off suddenly. Taking into

account both the maximum-value distance distributions

(Fig. 2C) and link weights (Fig. 3), we choose the value

({80 dBm) that optimizes the ratio between strong and weak

links. In a large majority of cases, this corresponds to

Figure 1. Bluetooth signal strength (RSSI) as a function of distance. A: Scans between two phones. Measurements are per distance
performed every five minutes over the course of 7 days. Mean value and standard deviation per distance are respectively m0~{45:13+1:56 dBm,
m1~{77:48+4:15 dBm, m2~{82:03+4:57 dBm, and m3~{85:49+2:75 dBm. B: Average of the values in respective time-bins. Summary statistics
are: m

avg
0 ~{45:13+1:20 dBm, m

avg
1 ~{77:46+2:90 dBm, m

avg
2 ~{81:99+3:17 dBm, and m

avg
3 ~{85:45+1:88 dBm. C: Maximal value per time-bin.

The mean value and standard deviation per distance are: mmax
0 ~{44:41+1:11 dBm, mmax

1 ~{75:09+3:24 dBm, mmax
2 ~{79:25+3:47 dBm, and

mmax
3 ~{83:88+2:00 dBm: The measurements cover hypothetical situations where individuals are far from each other and on either side of a wall.

doi:10.1371/journal.pone.0100915.g001
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interactions that occur within a radius of 0{2 meters—a

distance which Hall [46] notes as a typical social distance for

interactions among close acquaintances.

Removing links
This section outlines various strategies for removing non-

social links from the network. Fig. 4A shows an illustration of

the raw proximity data for a single time-bin, a link is drawn if

either i?j or j?i. Thickness of a link represents the strength of

the received signal. For the thresholded network (Fig. 4B) we

remove links according to the strength of the signal (where we

assume the weaker the signal the greater the relative distance

between two persons). To estimate the effect of the threshold

we compare it to a null model, where we remove the same

number of links, but where the links are chosen at random,

illustrated in Fig. 4C. To minimize any noise the random

removal might cause, we repeat the procedure n~100 times,

each time choosing a new set of random links, with statistics

averaged over the 100 repetitions. As a reference, to check

whether thresholding actually emphasizes social proximity

links, we additionally compare it to a control network, where

we remove the same amount of links, but where the links have

signal strengths above or equal to the threshold, Fig. 4D. This

procedure is also repeated n times. In a situation where there

are more links below the threshold than above, we will remove

fewer links for the latter compared to the other networks.

Results

Network properties
Now that we have determined a threshold for filtering out non-

social proximity links, let us study the effects on the network

properties. Thresholding weak links does not significantly influ-

ence the number of nodes present (N ) in the network (Fig. 5A),

while the number of links (M ) is substantially reduced (Fig. 5B).

On average we remove 2:38 nodes and 32:18 links per time-bin.

Social networks differ topologically from other kinds of networks

by having a larger than expected number of triangles [47], thus

clustering is a key component in determining the effects of

thresholding. Fig. 6 suggests that we are, in fact, keeping real social

interactions: random removal disentangles the network and

dramatically decreases the clustering coefficient, while threshold-

ing conserves most of the average clustering. Calculating the

average ratio (SScTT=ScNTT) between clustering in the thre-

sholded (ScTT) and the null networks (ScNT) reveals that cT on

average is 2:38 larger. These findings emphasize that a selection

process based on signal strength greatly differs from a random one.

Link evaluation
Sorting links by signal strength and disregarding weak ones

greatly reduces the number of links, but do we remove the correct

links, i.e. do we get rid of noisy, non-social links? The fact that

clustering remains high in spite of removing a large fraction of

Figure 2. Distributions of signal strength for the respective distances. A: Raw data. Measurements from both phones are statistically
indistinguishable and are collapsed into single distributions, i.e. there is no difference between whether A observes B or vise versa. B: Average of
signal strength per time-bin. C: Maximal value of signal strength per. time-bin.
doi:10.1371/journal.pone.0100915.g002
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links is a good sign, but we want to investigate this question more

directly. To do so, we divide the problem into two timescales; a

short one where we consider the probability that a removed link

might reappear a few time-steps later, and a long where we

evaluate the quality of a removed link according to certain

network properties. Let’s first consider the short time-scale. We

assume that human interactions take place on a time-scale that is

mostly longer than the 5-minute time-bins we analyze here. Thus,

if a noisy link is removed, the probability that it will re-appear in

one of the immediately following time-steps should be low, since

no interaction is assumed to take place. Howbeit, we expect the

probability to be significantly greater than zero, since even weak

(non-social) links imply physical proximity. Similarly, if we

(accidentally) remove a social link, the probability that it will

appear again should be high, since the social activity is expected to

continue to take place.

Let us formalize this notion. Consider a link e that is removed at

time t, the probability that the link will appear in the next time-

step is p(tz1De,t). Generalizing this we can write the probability

that any removed link will appear in all the following n time-steps

as:

p(tz1, . . . ,tznDt)~

no: links removed at t present at tz1\ . . .\tzn

no: links removed at t

ð1Þ

Fig. 7A illustrates that thresholded links in subsequent time-steps

are observed less frequently then both null and control links. To

compare with the worst possible condition, we compare data from

each thresholded time-bin with the raw data from the next bin

(where the raw data contains many weak links). In spite of this, we

observe a clear advantage of distinguishing between links with

weak and strong signal strengths. If we look at values for tz1, the

first subsequent time-step, the probability of re-occurrence in the

thresholded network is about 12% lower than for the null model,

and as we look to later time-steps, the gap widens.

A different set of social dynamics unfolds on longer timescales

where the class schedule imposes certain links to appear

periodically, e.g every week. Here we determine impact of

removing links in two ways. First, we use total link weights and

second, we use online friendship status. Friends meet frequently;

we capture this behavior by using the total number of observations

of a certain dyad to estimate the weight of a friendship (again,

counted in the raw network). Thus, we evaluate the quality of a

removed links by considering its total weight compared to the

weight of other links present in the same time-bin. However, since

multiple links are removed per time-bin we are more interested in

the average,

qt~
Avg: weight of removed links at t

Avg: weight of all links present at t
ð2Þ

This estimates, per time-bin, whether removed links on average

have weights below, close to, or above the mean. Note that the

measure is intended to estimate the quality of removed links and is

therefore not defined for bins where zero links are removed.

Fig. 7B indicates difference in link selection processes. Choosing

links at random (null network) removes both strong and weak links

with equal probability, thus on average this corresponds to the

mean weight of links present. Compared to null, the thresholded

network removes links with weights below average, indicating that

removed links are less frequently observed and therefore also less

likely to be real friendships. The control case displays an

diametrical behavior, on average, it removes links with higher

weights.

Figure 3. Number of links per type as a function of threshold
value. Links are classified as weak if they are observed less than 120
times in the data, i.e. links that on average are observed less than once
per day—otherwise they are classified as strong. Grouping students
into study lines, reveals that links within each study line have an almost
uniform distribution of weights while links across study lines are
distributed according to a heavy-tailed distribution. A threshold of {80
dBm (gray area) removes 1159 weak and 387 strong links and classifies
97:6% of inter-study line links as weak and 86:7% of intra-study line
links as strong.
doi:10.1371/journal.pone.0100915.g003

Figure 4. Networks. A: Raw network; shows all observed links for a specific time-bin. Thickness of a link symbolizes the maximum of the received
signal strengths. B: Thresholded network, we remove links with received signal strengths below a certain threshold, where dotted lines indicate the
removed links. C: Null model; with respect to the previous network we remove the same amount of links, but where the links are chosen at random.
D: Control network, a similar amount of links with signal strength above or equal to the threshold are removed.
doi:10.1371/journal.pone.0100915.g004
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The second method to evaluate the link-selection processes

compares the set of removed links with the structure of an online

social network, i.e. if a removed proximity link has an equivalent

online counterpart. We estimate the quality by measuring the

fraction of removed links with respect to those present at time t.

qFB
t ~

no: of FB links removed at t

no: of FB links present at t
ð3Þ

The quality measure is essentially a ratio, i.e. it can assume values

Figure 5. Network statistics. Properties are highly dynamic but on average we observe 17:32 nodes and 62:50 links per time-bin. A: Number of
nodes N as a function of time. Only active nodes are counted, i.e. people that have observed another person or been observed themselves. Dynamics
are shown for two weeks during the 2013 spring semester, clearly depicting both daily and weekly patterns. Data markers are omitted to avoid visual
clutter. On average thresholding removes 3:06 nodes during weekends and holidays, and 2:38 during regular weekdays. B: Number of links M as a
function of time. 10:60 links are on average removed during weekends/holidays, and 32:21 are removed during weekdays.
doi:10.1371/journal.pone.0100915.g005

Figure 6. Average clustering. Only active nodes, i.e. nodes that are part of at least one dyad contribute to the average, the rest are disregarded.
Average clustering is calculated according to the definition in [48]. Since social activity in groups larger than two individuals results in network
triangles, the fact that clustering is not significantly reduced by thresholding (compared to the null model) provides evidence that we are preserving
social structure in spite of link removal.
doi:10.1371/journal.pone.0100915.g006
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0ƒqFB
t ƒ1 depending on the fraction of links that are removed.

Bins with zero Facebook friendships are disregarded since they

contain no information regarding the online social network.

Fig. 7C shows that random removal (null network), on average,

removes *43% of online friendships, while the thresholded

network removes *33%, a 10 percent point difference. For

comparison, the control network removes *44% of the online

links. Further, redoing the analysis for a dataset comprised only of

users for which we have both proximity and online data for, does

not significantly alter the results.

Facebook links are not necessary good indicators for strong

friendships, but are more likely to correspond to real social

interactions. In spite of this, both Fig. 7B and C support that

distinguishing between strong and weak proximity links tends to

emphasize real social interactions: on average thresholded links

have lower edge weights and remove fewer Facebook friendships

compared to both the null-model and the control.

Discussion

The availability of electronic datasets is increasing, so the

question of how well can we use these electronic clicks to infer

actual social interactions is important for effectively understanding

processes such as relational dynamics, and contagion. Sorting links

based on their signal strength allows us to distinguish between

strong and weak ties, and we have argued that thresholding the

network emphasizes social proximity links while eliminating some

noise.

Simply thresholding links based on signal strength is not a

perfect solution. In certain settings we remove real social

connections while noisy links are retained. Our results indicate

that the proposed framework is better at identifying strong links

than removing them. A trend which the link-reappearance

probability, link-weights, and online friendship analysis support.

Compared to the baseline we achieve better results than just

assuming all proximity observations as real social interactions. But

determining whether a close proximity link corresponds to an

actual friendship interaction is much more difficult. Multiple

scenarios exist where people are in close contact but are not

friends, one obvious example is queuing. Each human interaction

has a specific social context, so an understanding of the underlying

social fabric is required to fully discern when a close proximity link

is an actual social meeting. This brings us back to the question of

how to determine a real friendship from digital observations (cf.

[10]). Close proximity may not be the best indicator of friendship;

call logs, text logs, and geographical positions are all factors which

coupled with information from the Bluetooth probe could give us a

better insight into social dynamics and interactions.
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doi:10.1371/journal.pone.0100915.g007
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