Skip to main content
. Author manuscript; available in PMC: 2014 Jul 7.
Published in final edited form as: Curr Top Med Chem. 2012;12(17):1869–1882. doi: 10.2174/156802612804547335

Table 2.

Performance comparison summary for the main model types on the targets described in this article.

NR Compound discrimination problem Pocket model
performance**
APF model
actives decoys chem. difficulty* # seeds*** performance**
THRα 35 2280 1.62 91.96 4 100.00
THRβ 96 3618 0.38 95.74 9 99.62
RARα 27 1756 0.44 89.10 4 99.99
RARβ 47 1827 0.10 82.01 2 99.99
RARγ 42 1810 0.64 79.83 8 99.98
PPARα 85 3803 2.28 91.82 13 98.49
PPARδ 142 1261 9.46 82.80 18 98.56
PPARγ 207 3865 0.12 96.28 68 99.68
LXRβ 98 3968 3.98 87.06 7 99.70
LXRα 82 4072 12.26 90.64 7 97.76
FXR 23 1622 0.00 97.01 24 55.18
VDR 22 960 0.00 92.57 9 100.00
PXR 9 270 5.38 65.39 7 64.20
RXRα 80 1567 0.62 98.53 22 99.96
RXRβ 26 1096 21.42 99.91 2 99.89
ERα 384 4192 16.64 93.65 54 87.89
ERβ 349 4138 2.36 95.09 28 99.04
ERRα 17 1087 42.42 45.41 2 0.97
ERRγ 4 1198 0.00 100.00 8 100.00
GR 501 4597 19.20 54.23 7 70.52
MR 22 4669 27.90 76.20 6 86.68
PR 199 4713 36.88 58.08 14 91.82
AR 218 5858 5.14 84.41 23 95.61
STF1 6 409 62.56 84.44 4 99.92
LRH1 8 19 0.00 87.50 4 97.37
GPCR Compound discrimination problem Pocket model
performance**
APF model
actives decoys chem. difficulty* # seeds*** performance**
CXCR4 51 896 100.00 60.92 2 78.24
OPRD 38 7761 37.53 58.69 1 89.59
OPRK 44 8997 35.94 38.22 1 73.02
OPRM 99 7192 60.85 51.93 1 83.43
OPRX 106 5857 100.00 45.40 1 72.78
AA2AR 561 14293 16.48 82.77 6 91.89
ACM2 288 2548 47.86 47.75 1 79.26
ACM3 300 3541 34.75 56.10 1 89.95
β1AR 50 1122 16.17 96.19 8 94.73
β2AR 86 1597 13.01 91.74 7 88.01
DRD3 902 12795 88.69 59.22 1 65.49
HRH1 201 2469 86.27 78.28 1 78.36
S1PR1 85 1285 45.86 83.95 1 97.92
*

Chemical difficulty of the compound discrimination problem is evaluated as a normalized complement of ROC AUC for discrimination of actives against decoys by 2D chemical similarity to crystallographic seed ligands (see text for details).

**

Model performance evaluated as the area under ROC curve for recognition of actives among property-matched decoys.

***

Number of seeds reflects the amount of chemical information used in the model generation.