Table 2.
NR | Compound discrimination problem |
Pocket model performance** |
APF model | |||
actives | decoys | chem. difficulty* | # seeds*** | performance** | ||
THRα | 35 | 2280 | 1.62 | 91.96 | 4 | 100.00 |
THRβ | 96 | 3618 | 0.38 | 95.74 | 9 | 99.62 |
RARα | 27 | 1756 | 0.44 | 89.10 | 4 | 99.99 |
RARβ | 47 | 1827 | 0.10 | 82.01 | 2 | 99.99 |
RARγ | 42 | 1810 | 0.64 | 79.83 | 8 | 99.98 |
PPARα | 85 | 3803 | 2.28 | 91.82 | 13 | 98.49 |
PPARδ | 142 | 1261 | 9.46 | 82.80 | 18 | 98.56 |
PPARγ | 207 | 3865 | 0.12 | 96.28 | 68 | 99.68 |
LXRβ | 98 | 3968 | 3.98 | 87.06 | 7 | 99.70 |
LXRα | 82 | 4072 | 12.26 | 90.64 | 7 | 97.76 |
FXR | 23 | 1622 | 0.00 | 97.01 | 24 | 55.18 |
VDR | 22 | 960 | 0.00 | 92.57 | 9 | 100.00 |
PXR | 9 | 270 | 5.38 | 65.39 | 7 | 64.20 |
RXRα | 80 | 1567 | 0.62 | 98.53 | 22 | 99.96 |
RXRβ | 26 | 1096 | 21.42 | 99.91 | 2 | 99.89 |
ERα | 384 | 4192 | 16.64 | 93.65 | 54 | 87.89 |
ERβ | 349 | 4138 | 2.36 | 95.09 | 28 | 99.04 |
ERRα | 17 | 1087 | 42.42 | 45.41 | 2 | 0.97 |
ERRγ | 4 | 1198 | 0.00 | 100.00 | 8 | 100.00 |
GR | 501 | 4597 | 19.20 | 54.23 | 7 | 70.52 |
MR | 22 | 4669 | 27.90 | 76.20 | 6 | 86.68 |
PR | 199 | 4713 | 36.88 | 58.08 | 14 | 91.82 |
AR | 218 | 5858 | 5.14 | 84.41 | 23 | 95.61 |
STF1 | 6 | 409 | 62.56 | 84.44 | 4 | 99.92 |
LRH1 | 8 | 19 | 0.00 | 87.50 | 4 | 97.37 |
GPCR | Compound discrimination problem |
Pocket model performance** |
APF model | |||
actives | decoys | chem. difficulty* | # seeds*** | performance** | ||
CXCR4 | 51 | 896 | 100.00 | 60.92 | 2 | 78.24 |
OPRD | 38 | 7761 | 37.53 | 58.69 | 1 | 89.59 |
OPRK | 44 | 8997 | 35.94 | 38.22 | 1 | 73.02 |
OPRM | 99 | 7192 | 60.85 | 51.93 | 1 | 83.43 |
OPRX | 106 | 5857 | 100.00 | 45.40 | 1 | 72.78 |
AA2AR | 561 | 14293 | 16.48 | 82.77 | 6 | 91.89 |
ACM2 | 288 | 2548 | 47.86 | 47.75 | 1 | 79.26 |
ACM3 | 300 | 3541 | 34.75 | 56.10 | 1 | 89.95 |
β1AR | 50 | 1122 | 16.17 | 96.19 | 8 | 94.73 |
β2AR | 86 | 1597 | 13.01 | 91.74 | 7 | 88.01 |
DRD3 | 902 | 12795 | 88.69 | 59.22 | 1 | 65.49 |
HRH1 | 201 | 2469 | 86.27 | 78.28 | 1 | 78.36 |
S1PR1 | 85 | 1285 | 45.86 | 83.95 | 1 | 97.92 |
Chemical difficulty of the compound discrimination problem is evaluated as a normalized complement of ROC AUC for discrimination of actives against decoys by 2D chemical similarity to crystallographic seed ligands (see text for details).
Model performance evaluated as the area under ROC curve for recognition of actives among property-matched decoys.
Number of seeds reflects the amount of chemical information used in the model generation.