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ABSTRACT

Dietary assessment has long been known to be challenged by measurement error. A substantial amount of literature on methods for determining the

effects of error on causal inference has accumulated over the past decades. These methods have unrealized potential for improving the validity of data

collected for research studies and national nutritional surveillance, primarily through the NHANES. Recently, the validity of dietary data has been called

into question. Arguments against using dietary data to assess diet–health relations or to inform the nutrition policy debate are subject to flaws that fall

into 2 broad areas: 1) ignorance or misunderstanding of methodologic issues; and 2) faulty logic in drawing inferences. Nine specific issues are identified

in these arguments, indicating insufficient grasp of the methods used for assessing diet and designing nutritional epidemiologic studies. These include a

narrow operationalization of validity, failure to properly account for sources of error, and large, unsubstantiated jumps to policy implications. Recent

attacks on the inadequacy of 24-h recall–derived data from the NHANES are uninformative regarding effects on estimating risk of health outcomes and

on inferences to inform the diet-related health policy debate. Despite errors, for many purposes and in many contexts, these dietary data have proven to

be useful in addressing important research and policy questions. Similarly, structured instruments, such as the food frequency questionnaire, which is the

mainstay of epidemiologic literature, can provide useful data when errors are measured and considered in analyses. Adv. Nutr. 5: 447–455, 2014.

Introduction
Over the past 40 years, there has been a proliferation of re-
search aimed at understanding the role of diet in health,
with 93% of articles with a MeSH heading including the
word “diet” or diet as a text word, published from 1973 to
late May 2014. The bulk of this work in humans involved ep-
idemiologic studies assessing the influence of diet and nu-
trition on disease risks. The vast majority of these studies
are observational, with only limited experimental-trial rep-
resentation. In addition, there is a smaller literature based
on ongoing nutrition surveys designed to assess and moni-
tor the content and quality of diet in populations.

Reflecting the growing interest in diet and health and
building on national health surveys conducted primarily
in the 1960s, the U.S. government began long-term moni-
toring of the food and nutrient intake and nutritional status
of the U.S. population through the first NHANES per-
formed from 1971 to 1973 (1). Several other waves of the
NHANES were conducted, including one focused on His-
panics. In each of these, representative samples of the U.S.
population were surveyed (2). In 1999, the NHANES oper-
ations were converted into a continuous, ongoing survey ac-
tivity, now overseen by the Centers for Disease Control and
Prevention (3). The data derived, including estimates of
food and nutrient intake and measurements of nutritional
biomarkers among numerous other health indicators, formed
a basis for examining secular trends and to provide data to
help inform federal food and nutrition policy.

Although NHANES and other national survey data help
inform federal nutrition policy, it has long been recognized
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that self-reported dietary data are challenged by systematic
and random measurement error. This is true not only for
survey-derived measures but for all data derived from stan-
dard interview- or questionnaire-based dietary assessment
methods (4). These assessment methods include the 24-h
dietary recall interview (24HR)14, which forms the back-
bone of the NHANES dietary assessment but is used much
less frequently in nutritional epidemiology because of its
high costs. Reporting errors also exist in the food frequency
questionnaire (FFQ), a structured questionnaire that is a
mainstay of analytic epidemiologic studies (5,6).

A recent article by Archer et al. (7) underscored this
known limitation by stating that “across the 39-y history
of the NHANES, [energy intake] data on the majority of re-
spondents. was not physiologically plausible.” That article
and 2 published since (8,9) attempt to discredit a long his-
tory of nutritional research that has provided a robust liter-
ature consisting of >1 million articles published in the broad
area of diet and health since 1946 and that formed the basis
of numerous health recommendations and guided the nu-
trition-related public policy debate. Recommendations by
scientific advisory bodies charged with addressing the role
of diet in health parallel and reinforce some of the concerns
raised about errors in dietary self-report (10). Therefore, it is
important that the criticisms be clarified so that they may be
addressed. The purpose of this article is to identify specific
issues raised by these authors with respect to putative flaws
in dietary assessment and their role in both epidemiologic
studies and nutritional surveys.

Issues Drawn from Recent Literature
Nine issues were identified from the Advisory Committee on
the Dietary Guidelines for Americans, 2010, which recently
published criticisms of nutritional survey data that relate to
measuring diet, identifying and controlling for errors in self-
reports, designing studies, conducting surveys, and drawing
inferences to inform public policy (7–10). Comprehending
both the nature and consequences of measurement error
is necessary to allow for continuing improvement in dietary
assessment methodologies and to make informed inferences
from existing sources of information.

First, it is well known that surveys based on dietary self-report
underestimate total energy intake (EI) compared with estimates
of metabolic need (11–14). Recognition of a 20–25% underesti-
mate in mean EI observed in large-scale population-based sur-
veys, such as the NHANES, spawned extensive research that
has deepened the understanding of self-report errors (5,6,15–
38) and led to improved measurement methods (6,37,39–44)
and analytic techniques (5,21,24,26,45–48) to mitigate their
effects (Table 1). This culminated in practical applications
for estimating the effect of diet on health outcomes of free-
living individuals (49,50). In contrast, definition of validity
using “disparity values,” e.g., testing if measured EI falls within

a 95% CI for predicted EI (7), is limited because it fails to pro-
vide a measure of the signal strength relative to the underlying
error structure of the data.

Second, the recent literature critiquing dietary data focuses
heavily on the use of the 24HR in surveillance, especially the
NHANES. This method was selected to characterize popula-
tion or group intake and not for use as a measure of individ-
ual intake. When this survey-design decision was made, it
was well known that self-reported EI based on a single
24HR is not necessarily indicative of usual or habitual in-
take, on either an individual or group basis. Any particular
day represents the potential for extremes which, were they
to represent a long-term average, might be biologically im-
plausible. Multiple days of 24HR, including weekend days,
are needed to account for day-to-day variation, and a min-
imum number of days is necessary to estimate EI with ade-
quate precision (51,52). Moreover, the number of days of
data needed varies by weight category (53). The use of a sin-
gle day of data to characterize an individual’s usual diet (see
reference 7) is now considered insufficient to generate reliable
estimates of intake. As a result, we have seen over time an
evolution in the methodology in which multiple days, in-
cluding weekends, are randomly sampled, and the multi-
pass interview protocol is used, which demonstrated better
agreement (54).

Third, examining extreme values in survey data requires
an understanding of statistical and related issues. Large-scale
survey data based on a single-day 24HR, such as those from
the NHANES, reflect both interperson and intraperson
sources of variability (55). Although this may have little or
no effect on the estimated group mean value, failing to
take into account the effect of adding this relatively large in-
traperson error component, which typically accounts for at
least half of the total variability for a variable such as EI,
overestimates the variance and inflates the proportion of
the population in the extreme portions of the distribution
(56–60). Indeed, when we reported NHANES data to com-
pare homogeneity of within-U.S. population nutrient intake
to international norms, we were careful to adjust for intra-
individual variability (55,61). Failing to do so would result
in inflating the number of individuals who provide either
lower-than-average or higher-than-average estimates of die-
tary intake, i.e., the very group on which some authors tend
to base their conclusions. Furthermore, using a reported EI/
basal metabolic rate (BMR) cut point of 1.35 (as in reference
7) would inflate the number of implausibly low values if ad-
justments are not made for intra-individual variability.
Bingham (45) cautioned that values <1.20 (especially if pre-
dicted rather than measured) should be excluded from anal-
yses with certainty as erroneous EI. Goldberg et al. (62), who
developed EI/BMR cut points for assessing underreporting
of EI, advised using a cut point of 1.35 only if BMR was ac-
tually measured; however, when an estimate of habitual di-
etary intake is attempted, for example, by use of a single
24HR, then a more liberal cut point of 0.92 is warranted.

Fourth, a core group of factors play a role in underesti-
mation, including the following: 1) portion-size estimation

14 Abbreviations used: BMR, basal metabolic rate; EI, energy intake; FFQ, food frequency

questionnaire; RCT, randomized controlled trial; WHI, Women’s Health Initiative; 24HR,

24-hour dietary recall interview.
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errors; 2) omissions of foods consumed; and 3) self-report
biases (e.g., social desirability or overweight/obesity status)
(38,63). The first 24HR in a sequence underestimates EI
to a greater extent than subsequent 24HR. This is likely
due in part to more food omissions (51,52,64) and portion
estimation errors (64,65) that diminish over time, possibly
as the result of increasing familiarity with the method that
comes from repeated interviews or changes in the demand
characteristics that could modify response bias. These are
systematic biases that lead to underestimation in intake esti-
mates but are not necessarily differential in nature and may
not interfere with the ability to differentiate or rank individ-
uals or groups in a population. Although the older NHANES
datasets are limited to a single day of 24HR, this limitation
does not apply to other survey data or to most of the re-
search studies that use 24HR (38,51,66,67). Using NHANES
methodology (i.e., the 5-step automated multiple-pass
method and 2 24HRs) and modifying it to include a third
24HR has shown greater agreement with estimates of energy
expenditure using doubly-labeled water and resulted in less
underreporting (54). In addition, under-eating as a conscious
effort to lose weight is highly prevalent among Americans,
particularly those who are overweight and obese, and this is
yet another reason why 1-d estimates of EI could be lower
than expected (68,69).

Fifth, literature accumulated over the past 20 y identifies
specific sources of bias associated with response sets, such as
social desirability and social approval (30,32–37,70). This
research required the rigorous design and implementation
of a variety of studies, including the use of criterion valida-
tors, to quantify potential biases that, in turn, required un-
derstanding cognitive issues in formulating self-reports.
Using these data in predictive models, biologic constructs,
such as serum lipid concentrations, can be predicted using
self-report data (49,71) with accuracy and precision similar
to results produced using data collected in metabolic wards
(72–74). Use of model systems that rely on biologic con-
structs, such as serum lipids, that respond predictably to
produce average changes in populations provides important
validation when criterion measures are unavailable, as usu-
ally is the case in free-living populations (75). Likewise,
changes in body mass can be predicted with similar adjust-
ments for error (50). With regard to error specification, er-
rors due to social desirability are in the range of what was
reported for the NHANES data (7) [e.g., 375 kcal/d across
the full range of measured social desirability scores for
24HR compared with total energy expenditure from doubly-
labeled water for women in the Energy Study (5)]. A differ-
ence of this magnitude from a single potential bias could
explain a substantial portion of the crude differences noted.
It also should be noted that these errors are not limited to
the self-report of diet. For example, we have observed biases
in reports of physical activity (76) that are similar to those
observed in dietary self-reports (5,30,32,33,36,37,77) and
are consistent with observations made by others (78,79).
These developments aimed at improving assessment methods
are consistent with the recommendation of Webb et al. (4) in

their 2013 article “Strategies to Optimize the Impact of Nu-
tritional Surveys and Epidemiological Studies.”

Sixth, conversion of foods to nutrients is not a major
source of systematic bias in group comparisons. These er-
rors are not differential, and they are specific to the under-
lying food composition database. There is no evidence in
the references provided by Archer et al. (7) that would indi-
cate that errors introduced in this stage of preparing data for
analyses would either exacerbate biases in self-report or in-
fluence the ability to estimate health outcomes. Indeed, nu-
merous enhancements in food/nutrient databases occurred
over the past couple of decades that improve nutrient intake
estimates based on reported food intake data (80–83). The
dynamic nature of the food supply and the rapid discovery
of new bioactive substances related to health outcomes are
other factors that influence changes in food composition da-
tabases. Understanding the evolution of these developments
in the conversion of foods to nutrient intake is important,
because changes may bias comparisons of intake over time
if they are not taken into account (84–86). However, such
changes should not bias single time-point estimation of
diet in relation to health outcomes, which is nearly always
the estimation of effect that is performed in nutritional
epidemiology.

Seventh, to appreciate the consequence of measurement
error, it is essential to understand the exact nature, and not
just the crude overall magnitude, of the errors. Ultimately,
the aim is to account for or control for identified errors to
use data collected under “real-world” conditions to adjust es-
timates of health effects. Estimating risk in epidemiologic
studies almost always requires comparison across categories
of exposure (e.g., to obtain RR estimates). Therefore, it is
essential to know how errors affect classification into these
categories to know whether there is any distortion in risk es-
timation. Random error may attenuate observable risk, but
it should not result in spurious risk estimates (87). Recent
publications citing this as an issue provide no evidence re-
garding how errors in these self-report measures are distrib-
uted or how they relate to potential confounders and effect
modifiers (7,8).

Epidemiologic studies typically control for potential con-
founders and consider effect modifiers in the analysis. As we
showed previously with social desirability, some of these er-
rors are associated with psychological predispositions (e.g.,
acquiescent personality type), sex, and education, factors
that are known to be related to many health outcomes. As
we demonstrated nearly 2 decades ago in our original article
on the subject of response set biases (37) and in correspon-
dence published in its aftermath (77,88), the modeling of effect
modification and confounding is a complicated business
about which relevant data must be collected to estimate their
effects on predicting health outcomes. Without such infor-
mation, there is no way of knowing whether misclassification
occurs because of these errors or how they are related, either
organically or statistically, to known or suspected effect mod-
ifiers or confounders. Therefore, the results presented in the
recent literature (7,8) are uninformative regarding their effect
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on risk estimation and, by logical extension, on inferences
that might lead to informing public policy.

Eighth, there is a large, unsubstantiated jump from de-
tecting potential problems with measurement error to policy
implications. Virtually never do dietary data alone—or data
on any exposure, for that matter—result directly in policy
recommendations. It is impossible to make meaningful
inferential assertions about the effect of errors without
knowing whether they influence the prediction of health
outcomes. Making policy recommendations requires access
to results based on relevant health outcomes. For example,
large-scale global investment to prevent malnutrition in
young children did not begin garnering its current high
global priority until after demonstration that approximately
half of young-child deaths are caused by the synergistic ef-
fect of malnutrition with infection (89). Attempts to limit
tobacco exposure did not occur without first understanding
the effects of tobacco on health outcomes (90,91). Further-
more, when recommendations were promulgated and laws
implemented, they were not based on market or use surveys
but rather on estimates of health effects derived primarily
from epidemiologic studies (90,92,93).

On their own, the data from the NHANES will rarely pro-
vide sufficient evidence to inform inferences regarding diet–
disease relations. Recognizing impediments imposed by studies
conducted within populations having limited variability
in dietary exposures, several of us wrote on problems with
nutritional homogeneity (55,94,95) and proposed a variety of
solutions, including international studies (61) and intra-country
studies with large contrasts (59,95). For example, the Multiethnic
Cohort Study (96,97) and the EPIC (European Prospective
Investigation into Cancer and Nutrition) study (98,99) were
designed with this purpose inmind. These “natural” contrasts
may be much more desirable from a methodologic perspective
than trying to create them within the context of randomized
controlled trials (RCTs). Once the diet or nutrient–disease
relation has been firmly established from relevant research
studies, then data from the NHANES can help to estimate
the potential attributable risk in the population and recom-
mend potential avenues most amenable to intervention.

The complaint made about measurement validity under-
mining the support of health effects due to diet (7) are rem-
iniscent of protests by the tobacco industry and its allies that
occurred over the many decades during which they chal-
lenged the nature and quality of the epidemiologic evidence
linking tobacco to health (100,101). This industry challenged
the validity of epidemiologic evidence and made demands,
unreasonable on both ethical and pragmatic grounds, to ac-
cept evidence only from RCTs. Based on Bradford Hill’s Cri-
teria for Judging Causality (102,103), which remain hallmarks
for assessing whether or not putative risk factors constitute
“cause,” the expert panel convened by the Surgeon General
of the United States in 1964 concluded that RCTs were not
needed to assert that tobacco “caused” a variety of health out-
comes, including lung cancer (90).

Similar arguments have beenmade for nutritional research,
citing errors in diet assessment as a reason for dismissing

observational studies of diet and health and calling for RCTs
as the only answer (8). This argument would leave us with lit-
tle additional evidence on diet and health for many years and
with uncertain promise of evidence on relevant questions on
diet and health in the future. Advocates of this argument often
cite examples of successful trials of diet, such as the recently
published trial showing benefits of the Mediterranean diet
in heart disease prevention (104). However, this is the excep-
tion, and there are other examples of expensive and lengthy
trials that failed to provide definitive answers to the questions
that provided their rationale. Formany dietary issues, trials are
neither feasible nor ethical and may be limited in the general-
izability of their findings (105–107).

Trials are not immune to the challenges of diet measure-
ment. They are susceptible to errors in measurement of diet
in relation to implementing the intervention and monitor-
ing compliance (108). For example, we showed that individ-
uals in the Women’s Health Initiative (WHI) who were
eligible for the diet modification arm overestimated their
self-report dietary intake by ~ 169 kcal/d relative to women
who were ineligible (32). Even for relatively simple interven-
tions, it will be necessary to measure diet, and this example
underlines that biased estimates of intake need to be under-
stood and, as has been done for observational studies, esti-
mated and controlled. Despite the enormous expense and
time it required, the diet modification arm of the WHI pro-
vided only ambiguous, uncertain results for the benefits of
diet, and the primary question tested (total dietary fat reduc-
tion) was considered outdated (supplanted by alterations in
type of fat) by the time the results went to press (109,110).
This problem is certainly not unique to the WHI and will
likely apply to other large-scale, long-term trials of dietary
effects on chronic disease risks.

The reality is that conventional agent-oriented RCTs may
focus only on 1 or 2 exposures at a time, potentially limiting
the relevance of their findings for the effects of diet in pop-
ulation health. For example, assuming that distilling com-
plex dietary patterns into a single agent (e.g., a vitamin
supplement) that is characteristic of dietary pattern contrasts
can be misleading. Single-agent dietary trials also may turn
out to be of limited value because they inadvertently studied
the wrong population or the wrong type of exposure at the
wrong time in the disease process. For example, the ATBC
(Alpha-Tocopherol, Beta-Carotene Cancer Prevention) study
and the CARET (b-Carotene and Retinol Efficacy Trial)
(111,112) unexpectedly found evidence for a detrimental ef-
fect of b-carotene supplements on risk of lung cancer in
older smoking men, thus contributing ambiguous and in-
consistent evidence on the role of these agents in reducing
cancer risks for the larger population. The results contra-
dicted a belief based on hundreds of studies showing salu-
brious effects of whole food diets rich in antioxidant and
anti-inflammatory micronutrients on cancers of various sites
(113–116). The reasons for these paradoxical results are only
partly understood but include design decisions made for ef-
ficiency and cost, such as studying only high-risk popula-
tions (e.g., older smokers) and exposures relatively late in
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terms of cancer latency. These problems were not foreseen at
the time these trials were initiated.

RCTs that study diet, and therefore choices of free-living
study participants, face a host of problems in attempting to
create large contrasts in free-living populations, as seen in
the WHI and other trials (117,118). Changing behaviors is
challenging, and these trials may require extreme commit-
ment to make and sustain large changes. Furthermore, it
is unlikely that either someone who is willing to accept ran-
domization would have the motivation to persevere if ran-
domly assigned to an intensive intervention or would not
seek out other means for achieving change if randomly as-
signed to a “no-treatment” control. For example, the PPT
(Polyp Prevention Trial) found no effect of a low-fat,
high-fiber, high-fruit and vegetable intervention on ade-
noma recurrence (117,118). However, analyses of carote-
noid biomarker data and FFQ data in the PPT revealed
that participants consuming diets rich in dry beans, vegeta-
bles, and fruits (as sources of carotenoids and flavonoids)
were at reduced risk of adenoma or advanced adenoma re-
currence, regardless of intervention arm assignment. Per-
haps this result is partially explained by the larger contrast
in exposure able to be obtained in the observational com-
pared with the experimental (intervention vs. control) anal-
yses (119–121).

For the foreseeable future, trials may answer only a few
limited questions, and observational studies will remain
the primary means for evaluating relations between diet
and health outcomes. Such studies constitute a major por-
tion of the evidence that underlies food and nutrition guide-
lines such as those of the Dietary Guidelines for Americans
(10) or the diet and physical activity guidelines for cancer
prevention of the World Cancer Research Fund and the
American Institute for Cancer Research (122). Future obser-
vational studies should attempt to improve on methods in
design, analysis, and presentation (123,124), with better
consideration of errors in measurement and potential biases,
and by establishing cohorts under favorable circumstances
with greater exposure variability, reduced bias, and/or better
diet information.

Ninth, although there are some studies linking diet to
health outcomes using data from national and other surveys
such as the NHANES, these studies represent only a tiny
fraction of the literature linking diet to health. It is also
well recognized that diet and health studies using NHANES
data are among the least informative of such analytic epide-
miologic studies, based in part on the use of a single 24HR to
represent individuals’ food or nutrient intake, for the rea-
sons outlined above. Despite this recognized limitation,
the results from these NHANES studies are broadly consis-
tent with those obtained from many other studies using
more robust measures of individual dietary exposures.

Conclusions
Nothing is measured without error. Virtually everything we
measure represents a combination of truth and error—usually
both from random sources, such as from use of a single day

to represent “usual” intake, and systematic biases, such as
may result from social desirability. What is important, and
what validity implies, is whether a method is suitable for
providing useful analytical measurement for a given purpose
and context (125,126). For many purposes and in many con-
texts, 24HR data from surveys such as the NHANES proved
to be useful in helping to address important research and pol-
icy questions, despite their known errors. Likewise, despite
their well-acknowledged flaws, FFQ data produced results
across a wide variety of studies and in many different popu-
lations and cultural contexts that are broadly consistent with
one another and form the mainstay of what we know about
diet and health.
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