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G-protein coupled receptors (GPCRs) play an essential role
in eukaryotic cells signaling. According to phylogenetic
analysis, most GPCRs belong to one of four classes, i.e. A,
B, C, and Frizzled (Lagerstrom and Schioth, 2008). The
class-C GPCR family contains metabotropic glutamate
receptors (mGIuR), y-aminobutyric acid B receptors (GABAg
receptor or GBR), several taste-sensing receptors (e.g.
TAS1), and a Ca®*-sensing receptor (CaS). One character-
istic feature of the class-C GPCRs is their dimerization,
either into homo- or hetero-dimers, which is obligatory for
function (Kniazeff et al., 2011). Each subunit in the dimer
usually consists of an amino (N)-terminal extracellular
domain (ECD) which binds orthosteric agonists, a linker
peptide, a 7-transmembrane (TM) domain, and a cytosolic
tail of varying lengths at the carboxyl (C)-terminus. It is well-
established that all domains spare the linker peptide partic-
ipating in the dimerization process (Rondard et al., 2008;
Huang et al.,, 2011; Rondard et al., 2006). Further, it is
believed that, after transmission of the ligand-binding signal
from the ECD region to the 7-TM domain, the activation of
the class-C GPCR dimer is associated with a conformational
change of the 7-TM domain on the cytosol side, enabling
binding and activation of downstream G-proteins. In contrast,
the precise details of the mechanisms for signal transduction
from the ligand binding site in the ECD region to the cytosolic
side of the 7-TM domain, where downstream G-proteins are
activated, remain to be elucidated.

Recently, the crystal structure of mGIuR1 (including the
linker peptide and the 7-TM domain), the first one from the
class-C GPCRs, has been reported at 2.8-A resolution (PDB
ID: 40R2) (Wu et al., 2014). Now, three-dimensional struc-
tures of all four classes are elucidated (Okada et al., 2000;
Cherezov et al., 2007; Rasmussen et al., 2011; Hollenstein
et al., 2013; Wang et al., 2013). The following observations
were made from the mGIuR1 crystal structure: (1) mGIuR1

exists as a symmetrical homodimer. The dimer interface is
formed by the TM helices 1 and 2 from both subunits, and
there is a cluster of six cholesterol molecules located in the
extracellular half of the interface. In order to maintain the
interaction with the cholesterol cluster, each mGIuR1 subunit
places its Trp588 in a particular rotamor that requires posi-
tion 650 of the same subunit to be a small side chain residue,
e.g. Ala. These two positions are highly conserved in most
class-C GPCRs, and they co-evolve to Leu and/or lle resi-
dues in GBR, suggesting that the dimerization interface
observed in the mGIuR1 crystal structure is conserved
among other class-C GPCRs as well. (2) One molecule of a
negative allosteric modulator (NAM), FITM, was found to
bind in a pocket on the extracellular side of the 7-TM domain,
which is in a similar location of binding sites of orthosteric
ligands in class-A GPCRs. Therefore, in the presence of a
negative allosteric modulator, both subunits assume an
inactive conformation. (3) In this inactive conformation,
multiple interactions were observed between the linker
peptide and extracellular loop 2 (ECL2) of the 7-TM domain.
(4) Between TMs 3 and 6 exists an ionic lock, similar to that
conserved in class-A GPCRs. These structural observations
strongly suggest that the 7-TM domain of mGIuR1 (and
happens of other class-C GPCRs) shares a number of
common activation mechanisms with the 7-TM domains of
class-A GPCRs. In particular, signal transduction through the
7-TM is likely to be initiated by a local conformational change
on the extracellular side, probably near the observed NAM-
binding pocket. According to structures of active class-A
GPCRs (Rasmussen et al., 2011), activation of the 7-TM
domain by binding of an agonist on the extracellular side is
through reorganization of the packing of the 7 TM helices
and results in a large conformational change on the cytosolic
side, enabling G-protein binding (Zhang et al., 2013). The
question on class-C GPCRs remains, however, as to how
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the ligand-binding signal is transferred from the dimerized
ECDs to the dimerized 7-TM.

In all probability, there are two general ways in which the
ECD can activate the 7-TM domain upon agonist binding: (1)
by providing mechanical energy to induce the conformational
change in the 7-TM domain, and/or (2) by generating a neo-
ligand that triggers the conformational change. Although the
ECD is not present in the crystal structure of mGIuR1 dimer
(40R2) (Wu et al., 2014), conformational changes of the
dimerized, isolated ECDs upon agonist binding have been
observed in previously reported crystal structures (Kunishi-
ma et al., 2000). Such a conformational change of the di-
merized ECD is likely to induce a conformational change in
the linker regions. Since the dimer interface observed in the
crystal structure of mGIuR1 (40R2) is formed between the
two TM1 helices to which the linker peptides are attached,
the putative ligand-induced conformational changes of the
linker peptides are unlikely to directly affect the remaining
TM helices. Therefore, an energy coupling between ligand
binding to the ECD region and reorganization of the 7 helices
in the transmembrane domain is difficult to be envisioned.
We argue that the first mechanism is simply not to apply to
class-C GPCRs. Thus, if the second mechanism is more
likely to be the case, what exactly constitutes the neo-
ligand?

The crystal structure of mGIuR1 (40R2) indicates that the
ECL2 of each 7-TM domains forms a B-hairpin that protrudes
into the solvent and is located right above the NAM binding
pocket. Interactions between the linker peptide and the
B-hairpin include hydrophobic interactions, a salt-bridged
bond between the linker Arg584 and the ECL2 Glu741, as
well as a few main-chain hydrogen bonds forming a small
B-sheet that expands from the B-hairpin of ECL2. Although
B-hairpin structures have been reported in the ECL2 struc-
tures of some class-A GPCRs [e.g. CXCR4 and 6-opioid
receptor (Wu et al., 2010; Fenalti et al., 2014)], the type of
interaction between an N-terminal peptide and an ECL2
B-hairpin that is observed in mGIuR1 crystal structure has
not been found in structures of other GPCRs. In contrast,
among class-C GPCRs both the linker peptides and the
ECL2 regions are conserved in lengths, respectively.
Therefore, the linker-ECL2 interaction that is observed in
mGIuR1 structure may be conserved in other class-C
GPCRs. One may speculate that the ligand-binding signal
would disrupt the linker-ECL2 interactions, thus freeing the
B-hairpin to interact with a one or more new partners. Upon
release, the B-hairpin may serve as a self-tethered ligand
that has the ability to trigger the activation of the 7-TM
domain (Fig. 1). A similar activation mechanism was exper-
imentally verified in the class-A GPCR, PAR1 (protease
activated receptor-1), where the new N-terminal end of the
peptide, generated by thrombin cleavage, serves as an
agonist to activate the PAR1 7-TM domain (Trejo et al.,
1996). An alternative possibility is that the linker peptide
released from the B-hairpin serves as a trigger for the

activation of the 7-TM domain. A conceptually similar
mechanism was proposed for class-C GPCRs as the “pep-
tide-linker model” of activation (Margeta-Mitrovic et al.,
2001), prior to the availability of structural information for
dimerization. However, based on the mGIuR1 crystal struc-
ture and considering the restriction from the dimerized
ECDs, it seems easier for the ECL2 B-hairpin rather than the
linker peptide to serve as the trigger fitting into the ligand-
binding pocket.

Why then does class-C GPCRs require dimerization in
signaling? The subunits of the dimer provide a point of
physical reference relative to each other. First, ECD rear-
rangement upon binding of orthosteric agonists is translated
into a relative movement between the two linker peptides.
Secondly, because of the dimerization, the movement of the
linker peptides can be translated into a relative movement
between the linker peptide and the B-hairpin in each subunit,
thus releasing of the B-hairpin from the linker peptide. In
contrast, without formation of dimers, the information of the
conformational change of ECD would not result in the release
of the B-hairpin. Data from previous reports on class-C GPCR
activation are consistent with such an interpretation. For
example, GBR is a heterodimer, and its two subunits GB1
and GB2 bear functions complementary to each other in
signal transmission. In particular, the GB1 subunit binds to
orthosteric agonists at its ECD but contains a 7-TM domain
unable to activate downstream G-proteins. In contrast, the
GB2 subunit can activate downstream G-proteins at its
cytosolic side of the 7-TM domain but contains an ECD
unable to bind orthosteric ligands. However, it has been
shown that switching the ECDs of GB1 and GB2 subunits has
no effects on either levels or duration of activation of the GBR
heterodimer (Margeta-Mitrovic et al., 2001; Galvez et al.,
2001; Havlickova et al., 2002). To interpret this result, one
should note that most of the linker regions from these two
subunits are conserved in terms of amino acid types
(TLVIKTFRFLS-QKFL in GB1 vs. TILEQLRKIS-LPLY in
GB2, with breaking points indicated by hyphens). Thus, the
interactions between the linker peptide and B-hairpin in each
subunit of the chimeric dimer may remain the same as the
native dimer, especially if the interactions mainly consist of
main-chain hydrogen-bonds. In addition, replacing the ECD
of GB2 with that of GB1 creates a chimeric subunit termed

Linker Ligand
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Inactive Active

Figure 1. Schematic diagram of a hypothetical mech-
anism for the activation of a class-C GPCR dimer.
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GB1/2, and a homodimer formed by GB1/2 displayed wild
type-like activity. Importantly, replacing the GB2 linker peptide
with a highly flexible poly-Gly peptide abolished the signaling,
while the same mutation in GB1 showed no effect. In fact, as
long as the linker peptide of GB2 is preserved, the activity of
the dimer is maintained in a variety of chimeric combinations
(Margeta-Mitrovic et al., 2001). These observations suggest
that the linker peptide in GB2, which contains a functional
7-TM domain, is more important than that in GB1, whose
7-TM domain is non-functional in terms of activating down-
stream G-proteins. Moreover, point mutations in the linker
region of the CaS homodimer, in which both subunits contain
a functional 7-TM domain, may result in the loss of signal
transduction (Ray et al., 2007). All these data suggest that the
relative movement, i.e. the change in distance between the
two linker regions, is essential for triggering the activation of
the 7-TM domain, and support the importance of the linker-
ECL2 interaction. It is worthy to mention that such a mech-
anism of dimerization-dependent activation found in class-C
GPCRs is likely to be fundamentally different from potential
mechanisms involving oligomerization seen in other GPCRs
that do not have the linker peptide.

In homodimers of class-C GPCRs, only one subunit can
be activated stochastically, which is similar to what has been
observed for the heterodimer of GBR. For instance, it has
been shown for mGIuRs that activation of one subunit
inhibits the other in a process that appears to be random
(Goudet et al., 2005; Hlavackova et al., 2005). This phe-
nomenon is likely to be caused by the close contact between
the two subunits, enforced by interactions between their
respective extracellular, 7-TM, and cytosolic regions (Knia-
zeff et al., 2011). Let's assume that the activation progress of
the 7-TM domain of a subunit in a class-C GPCR dimer is
similar to that of the class-A GPCRs (Rasmussen et al.,
2011). The activation of one subunit in the dimer, i.e. being
enabled to interact with the downstream G-protein, would
result in a large conformational change, particularly
expanding the cytosolic side of the 7-TM domain. It appears
that one such a large conformational change can be
accommodated in the closely packed class-C GPCR dimer,
but the simultaneous change of the two of such activated
7-TM domains might be prohibited (Fig. 1).

Future studies on the full-length structures of class-C
GPCRs, as well as more detailed mutation analysis on the
linker-ECL2 interaction will be necessary to verify the current
hypothesis on the mechanisms for the activation of class-C
GPCRs and in particular the mechanisms for signal trans-
duction from the ECD dimer to the 7-TM dimer.
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