
REVIEW

The regulation of TGF-β/SMAD signaling
by protein deubiquitination

Juan Zhang1,2, Xiaofei Zhang2, Feng Xie1, Zhengkui Zhang1, Hans van Dam2, Long Zhang1,2&,
Fangfang Zhou2&

1 Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
2 Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden
University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands

& Correspondence: L_zhang@zju.edu.cn (L. Zhang), F.zhou@lumc.nl (F. Zhou)

Received February 20, 2014 Accepted March 28, 2014

ABSTRACT

Transforming growth factor-β (TGF-β) members are key
cytokines that control embryogenesis and tissue
homeostasis via transmembrane TGF-β type II (TβR II)
and type I (TβRI) and serine/threonine kinases recep-
tors. Aberrant activation of TGF-β signaling leads to
diseases, including cancer. In advanced cancer, the
TGF-β/SMAD pathway can act as an oncogenic factor
driving tumor cell invasion and metastasis, and thus is
considered to be a therapeutic target. The activity of
TGF-β/SMAD pathway is known to be regulated by
ubiquitination at multiple levels. As ubiquitination is
reversible, emerging studies have uncovered key roles
for ubiquitin-removals on TGF-β signaling components
by deubiquitinating enzymes (DUBs). In this paper, we
summarize the latest findings on the DUBs that control
the activity of the TGF-β signaling pathway. The regula-
tory roles of these DUBs as a driving force for cancer
progression as well as their underlying working mech-
anisms are also discussed.

KEYWORDS TGF-β, TβRI, SMAD, DUB, ubiquitin,
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INTRODUCTION

Protein ubiquitination is a reversible process. Deubiquitinat-
ing enzymes (DUBs) function to remove covalently conju-
gated ubiquitins from their target proteins to regulate
substrate activity and/or abundance (Nijman et al., 2005).
DUBs have amongst others been implicated in cellular sig-
naling pathways that control cell proliferation and differenti-
ation. TGF-β/SMAD signaling can play a tumor promoting

role in advanced cancer and certain essential components of
this pathway, TGF-β receptors and SMADs are known to be
downregulated via protein ubiquitination by E3 ligases
(Massague, 2008a). Multiple DUBs have been shown to
target ubiquitinated TGF-β/SMAD signaling components and
to be associated with high risk for cancer metastasis, both in
animal models and in clinical analysis (Eichhorn et al., 2012;
Inui et al., 2011; Zhang et al., 2012a, b). As the DUBs are
druggable proteins, these studies may provide possibilities
for novel and effective therapeutic treatments (Cohen and
Tcherpakov, 2010; Hoeller and Dikic, 2009). This paper
revisits the signal transduction mechanisms and biological
features of TGF-β/SMAD pathways, followed by an overview
of the ubiquitination regulation of the TGF-β/SMAD path-
ways by ubiquitination and a brief introduction of the human
DUB family. It finally highlights the newly identified DUB
members acting on TGF-β/SMAD signaling as well as their
emerging roles in the regulation of cancer invasion and
metastasis.

TGF-β SIGNALING

Signaling pathways induced by the transforming
growth factor-β superfamily

The TGF-β superfamily contains a number of structurally and
functionally related secreted cytokines. Since TGF-β was
discovered in 1983 (Frolik et al., 1983), more than 30
members of this family have been identified and verified.
Members of the TGF-β family are characterized by the highly
conserved cysteine residues, also known as the cystine knot
(CK) motif (Galat 2011). According to the sequences simi-
larities and their distinct downstream signaling pathways, the
TGF-β superfamily can be divided into several subfamilies,
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including TGF-βs, bone morphogenetic proteins (BMPs),
nodal, growth and differentiation factors (GDFs), Müllerian
inhibitory factor (MIF), activins and inhibins (Massaous and
Hata, 1997). Although different TGF-β members have dis-
tinct cellular functions, they all act on cells as dimers.

The TGF-β family members bind to the type I and type II
serine/threonine kinase receptors on the cell surface. The
serine/threonine kinase receptor family contains twelve
members, that are seven type I receptors, also known as
activin receptor-like kinases (ALKs), and five type II recep-
tors (Huang et al., 2011; Massague, 2008b). Both type I and
type II receptors are expressed ubiquitously in mammalian
cells.

The canonical intracellular signaling induced by TGF-β
ligands is mediated by SMAD family proteins. Based on their
function differences, the SMAD family is divided into three
groups, that are receptor-associated SMADs (R-SMADs), co-
operating SMADs (Co-SMADs), and inhibitory SMADs (I-
SMADs) (Ross and Hill, 2008). Only R-SMADs are targeted
for activation via phosphorylation by the active type I receptor
kinase. In general, diverse TGF-β ligand binds to and acti-
vates a characteristic combination or combinations of differ-
ent type I and type II receptors on the plasma membrane, and
targets specific R-SMADs for activation. Upon TGF-β-
induced receptor complex formation, TβRII kinase phos-
phorylates TβRI, e.g. ALK5, on specific serine and threonine
residues in its juxtamembrane. Subsequently, the activated
ALK5 induces the phosphorylation of the R-SMADs SMAD2
and SMAD3, which can form heteromeric complexes with the
Co-SMAD SMAD4. SMAD2/3 can be activated by TGF-βs,
activins, and nodal upon complex formation between ALK4/5/7
and TGF-β type II receptor (TβRII) and activin receptor 2
(ACVR2). SMAD1/5/8, can be activated by BMP ligands
through complex formation between the type I receptor
ALK1/2/3/6 and BMP type II receptor (BMPRII) or ACVR2.
The Co-SMAD SMAD4 functions as a central transducer in
the TGF-β responses. The two I-SMADs, SMAD6 and
SMAD7, enable tight control of TGF-β signaling through
negative regulation: they can compete with Co-SMAD for the
interaction with the phosphorylated R-SMADs and they can
recruit SMURF E3 ubiquitin ligase to the type I receptors (Itoh
and ten Dijke, 2007; Kavsak et al., 2000).

The heteromeric SMAD complexes formed by the acti-
vated R-SMADs and SMAD4 accumulate in the nucleus,
where they regulate target gene expression (Fig. 1) (Heldin
et al., 1997). In addition to this canonical SMAD-dependent
TGF-β signaling pathway, there are other non-SMAD path-
ways that can be activated by the TGF-β receptors via either
phosphorylation or direct interaction. These non-SMAD
pathways include various branches, such as mitogen acti-
vated protein kinases (MAPKs) pathways, phophoinositde
3-kinase (PI3K)/Akt pathways, nuclear factor κB (NF-κB)
pathways, and Rho-like GTPase pathways (Fig. 1) (Derynck
and Zhang, 2003; Mu et al., 2012; Sanchez-Elsner et al.,
2001; Zhang, 2009).

Functions of TGF-β signaling

TGF-β/SMAD signaling is multifunctional in regulating cell
growth, differentiation, apoptosis, migration and invasion/
metastasis (Goumans and Mummery, 2000; Hogan, 1996;
Massague et al., 2000; Proetzel et al., 1995; Sanford et al.,
1997; Schier, 2003; Whitman, 1998). Disturbances of TGF-β/
SMAD signaling are widely shown to be involved in human
diseases, including hereditary hemorrhagic telangiectasia,
fibrosis diseases, atherosclerosis, hereditary synostosis,
hereditary chondrodysplasias, cleidocranial dysplasia and
familial primary pulmonary hypertension (Blobe et al., 2000;
Massague et al., 2000). In human cancer, TGF-β/SMAD
signaling can have a dual role. In the early phase of tumor
progression, TGF-β/SMAD plays a tumor suppressing role
(Massague et al., 2000). On the contrary, TGF-β/SMAD can
promote advanced tumor progression such as tumor cell
invasion, dissemination/metastasis, and immune evasion
(Massague, 2008a). Thus the functional outcome of the
TGF-β response is context-dependent and determined both
by cell, tissue, and cancer types.

TGF-β signaling inhibits cell proliferation in a multitude of
cell types, including normal endothelial, epithelial, hemato-
poietic, and neural cells, certain types of mesenchymal cells,
and especially many primary cancer cells (Massague et al.,
2000). TGF-β can downregulate the c-Myc oncogene levels
thereby counteracting Myc-induced cell proliferation via
upregulation of cyclins and downregulation of p21 (also
known as WAF1) (Dang, 1999; Warner et al., 1999). TGF-β
can also induce growth arrest by its inhibitory role on cyclin-
dependent kinases (CDK) via upregulation of p15 (also
termed as INK4B) and p21 expressions and downregulation
of CDC25A expression (Claassen and Hann, 2000; Iavarone
and Massague, 1997). The tumor suppressing role of TGF-β/
SMAD pathway seems particularly critical in the gastro-
intestinal tract, since large subsets of pancreatic, gastric, and
colon cancers carry mutations or deletions in TGF-β recep-
tors or SMADs (Grady et al., 1999; Markowitz et al., 1995;
Myeroff et al., 1995; Parsons et al., 1995; Schutte et al., 1996;
Hahn et al., 1996; Schutte et al., 1996; Yakicier et al., 1999).

Advanced cancers such as gliomas, breast and prostate
cancers usually do not acquire mutations in the core com-
ponents of TGF-β/SMAD signaling, but can bypass the TGF-
β/SMAD tumor-suppressive arms through other, more
downstream (epi)genetic changes, allowing the tumor pro-
moting arm of TGF-β/SMAD signaling to actively drive tumor
cell progression (Jennings and Pietenpol, 1998; Jones et al.,
2009; Takenoshita et al., 1998; Vincent et al., 1996; Xu et al.,
2009). Tumors with such signatures are resistant to TGF-β/
SMAD mediated growth arrest but can undergo epithelial-to-
mesenchymal transition (EMT) and invasion/metastasis.
EMT is a process required for embryonic development and
wound healing, but is employed by tumor cells to invade
normal tissue and/or spread to distant organs. During EMT,
carcinoma cells lose cell polarity and cell-cell contacts, and
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acquire fibroblastic-like properties as evidenced by mor-
phological observations at the invasive fronts of human
tumors (Kalluri and Weinberg, 2009; Katsuno et al. 2012).
The TGF-β/SMAD pathway is a critical regulator of EMT in
development in vivo (Kaartinen et al., 1995). In tumor cells,
SMAD3/SMAD4 mediates transcription of SNAIL and SLUG,
two master regulators of the EMT process (Miyazono, 2009;
Naber et al. 2013). TGF-β/SMAD signaling also strongly
drives the appearance of various molecular hallmarks of
cells undergoing EMT, such as the decreased expression of
epithelial cell-cell junction proteins including E-cadherin and
zona occludens 1 (ZO-1), and at the same time it can induce
the expression of mesenchymal markers, such as N-cad-
herin, vimentin, α-smooth muscle actin (α-SMA), and fibro-
nectin (Heldin et al., 2009; Huber et al., 2005; Moustakas
and Heldin, 2007; Xu et al., 2009).

The TGF-β induced pathways also can enable advanced
invasive tumor cells to disseminate to other organs and form
metastatic lesions (Bos et al., 2010; Nguyen et al., 2009).
TGF-β stimulated metastatic dissemination is typically
studied in bone and lung metastases of breast and prostate
tumors. For instance, the SMAD3/SMAD4 complex was
found to mediate the induction of connective tissue growth
factor (CTGF) and interleukin (IL-11), which are critical fac-
tors for bone metastasis (Deckers et al., 2006; Kang et al.,
2005; Kang et al., 2003; Petersen et al., 2010). By inducing
angiopoietin-like 4 (ANGPTL4), TGF-β primes dissemination
towards the lung (Padua et al., 2008). An increasing amount
of studies provide evidences that the TGF-β/SMAD pathway
is widely involved in multiple processes of cancer metasta-
sis, including early invasion, intravasation, and later extrav-
asation and colony formation (Drabsch and ten Dijke, 2012).
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Figure 1. A schematic representation of the TGF-β signaling pathway. Upon ligand binding, the TGF-β type II receptor (TβRII)

recruits and phosphorylates the type I receptor (TβRI) in the cell membrane, and then the activated type II-I heteromeric receptor

complex can induce phosphorylation of R-SMADs. Activated R-SMADs can recruit Co-SMAD (SMAD4) for binding. The R-SMAD/Co-

SMAD complexes translocate and accumulate in the nucleus and then initiate the expression of the target transcription factors with

the help of other co-factors. TGF-β can in addition promote other intracellular (non-SMAD) signaling pathways, such as mitogen

activated protein kinases (MAPKs) pathways, the phosphoinositide 3-kinase (PI3K)/AKT pathway, the nuclear factor κB (NF-κB)

pathway, and the Rho-like GTPase pathway.
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UBIQUITINATION AND ITS ROLE IN TGF-β
SIGNALING

Ubiquitin and ubiquitination

Ubiquitin is a small regulatory protein (76 amino acids) that
exists in almost all kinds of eukaryotic cells. Ubiquitin has
originally been characterized as a covalently attached signal
for ATP-dependent proteasomal degradation of substrate
proteins (Hershko and Ciechanover, 1998), although it also
plays a role in both the lysosomal and autophagic degra-
dation pathways (Clague and Urbe, 2010). In addition to the
protein degradation pathways, ubiquitin attachment is also
implicated in dynamic cellular events, such as the trans-
duction of cellular signals, gene transcription as well as DNA
damage and repair (Hunter, 2007; Jackson and Durocher,
2013). Ubiquitin contains seven lysine residues in its
sequence and each of them allows polyubiquitin chain con-
jugation via a covalently linking to the carboxyl end of
another ubiquitin (Pickart and Eddins, 2004).

Ubiquitination is an enzymatic and post-translational
modification process involving covalently linking of one
ubiquitin (monoubiquitination) or more ubiquitins (polyubiq-
uitination) to the substrate protein. The conjugation process
of ubiquitin to the substrate normally requires three steps: a)
the initial step is to activate the C-terminus of the ubiquitin
protein by a ubiquitin-activating enzyme (E1), b) the inter-
mediate step is to transfer and conjugate ubiquitin from the
E1 enzyme and conjugate to an ubiquitin-conjugating
enzyme (E2), c) the last step is to covalently conjugate the
ubiquitin protein to the substrate protein which is normally
facilitated by a substrate-specific ubiquitin ligase (E3) (Fig. 2)
(Dikic, 2009; Pickart and Eddins, 2004; Schwartz and Cie-
chanover, 2009; Weissman, 2001). Two types of E3 ligases
can facilitate this last step: one group of E3 ligases carries an
E6-AP carboxyl terminus (HECT) domain, via which the E2
ligase can transfer the ubiquitin to the final substrate protein,
the other group is characterized by a so-called really inter-
esting new gene (RING) domain that may help to transfer E2-
ubiquitin to the protein substrate (Dikic, 2009; Pickart and
Eddins, 2004; Schwartz and Ciechanover, 2009; Weissman,
2001). Ubiquitination can alter the activity or localization of
the substrate protein (mainly in case of monoubiquitination),
target substrate proteins for degradation, or allow proteins to
function as a scaffold (mainly via polyubiquitination) (Pickart
and Eddins, 2004). In the case of polyubiquitination, there are
at least 8 different types of poly ubiquitins linkages (Lysine-6,
Lysine-11, Lysine-27, Lysine-29, Lysine-33, Lysine-48 and
Lysine-63 polyubiquitination, and linear ubiquitination) can
exist in the cells (Dikic, 2009; Weissman, 2001). Importantly
different types of polyubiquitination linkages dictate distinct
functions. For example, poly ubiquitins linked with Lysine-48
provide the main targeting signals for proteasomal degrada-
tion, whereas polyubiquitins linked with Lysine-63 enable the
substrate protein to function as scaffolds to recruit other

partners and thereby to participate in multiple cell processes,
such as kinase activation, DNA repair, and protein synthesis
(Schwartz and Ciechanover, 2009).

Ubiquitination regulation in TGF-β signaling

Ubiquitination modifies a series of TGF-β pathway compo-
nents, including receptors, R-SMADs, Co-SMAD, I-SMADs,
and their regulators, via different E3 ubiquitin ligases (Inoue
and Imamura, 2008). TβRI can be polyubiquitinated by
SMAD-ubiquitination-related factor (SMURF) 1/2, WW
domain-containing protein 1 (WWP1) and neural precursor
cells-expressed developmentally down-regulated 4
(NEDD4)-2 with the help of the inhibitory SMAD7 (Ebisawa
et al., 2001; Kavsak et al., 2000; Komuro et al., 2004; Kur-
atomi et al., 2005). This alters receptor stability on the
membrane as well as the receptor internalization/endocy-
tosis status and thus tightly restricts sensitivity of cells
towards TGF-β stimulation. SMAD protein stability is also
controlled by polyubiquitination. SMAD1 can be polyubiqui-
tinated by SMURF1/2 and carboxyl terminus of Hsc70-
interacting protein (CHIP) (Li et al., 2004; Zhang et al., 2001;
Zhu et al., 1999). SMAD2 is reported to be polyubiquitinated
by SMURF2, NEDD4L, or WWP1 (Kuratomi et al., 2005; Lin
et al., 2000; Seo et al., 2004). SMAD3 is polyubiquitinated by
CHIP (Xin et al., 2005). Phosphorylated SMAD2/3 can be
polyubiquitinated by ARKADIA after the target gene tran-
scription is initiated (Mavrakis et al., 2007). SMAD7 is shown
to be targeted for polyubiquitination by ARKADIA and
RNF12 (Koinuma et al., 2003; Liu et al., 2006; Zhang et al.,
2012a; Zhang et al., 2012b). Similar to R-SMADs, SMAD4
could also be polyubiquitinated by the HECT domain ubiq-
uitin E3 ligases SMURFs, WWP1, or NEDD-2 (Moren et al.,
2005). Besides TGF-β receptors and SMADs, other key
regulators of TGF-β signaling pathway can also be poly-
ubiquitinated for degradation. As negative regulator of the
TGF-β pathway, SNON is polyubiquitinated and targeted for
degradation by SMURF2 or anaphase-promoting complex
(APC) (Bonni et al., 2001; Stroschein et al., 2001).

In addition to activation of (canonical) signaling via the
SMADs, the TGF-β receptor complex can also recruit TNF
receptor-associated factor (TRAF) 4 and TRAF6, which then
by K63-polyubiquitination activates the effector kinase TGF-
β-activated kinase 1 (TAK1); TAK1 subsequently phosphor-
ylates MAPK kinases, leading to activation of p38 or JNK
(Sorrentino et al., 2008; Yamashita et al., 2008; Zhang et al.,
2013a). Moreover, recent studies reveal a critical function for
monoubiquitination on SMADs. The transcriptional activity of
SMAD4 was shown to be antagonized upon monoubiquiti-
nation by Ectodermin/TRIM33/TIF1γ (Dupont et al., 2009).
Similarly, monoubiquitination of R-SMADs triggered by
SMURF has been shown to exert an inhibitory role (Inui
et al., 2011; Tang et al., 2011). In addition, conjugation of a
single ubiquitin molecule conjugation to SMAD6 by the E2
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enzyme UBE2O appears already sufficient to attenuate the
inhibitory function of SMAD6 on BMP signaling (Zhang et al.,
2013b).

DEUBIQUTINATION AND HUMAN DUB FAMILY
MEMBERS

Deubiquitination

Ubiquitination is a reversible modification process and is
counteracted by a process termed deubiquitination. De-
ubiquitination involves the removal of ubiquitin from its
conjugates by deubiquitinating enzymes/deubiquitinases
(DUBs) (Amerik and Hochstrasser, 2004; Nijman et al.,
2005). DUBs are a large group of proteases that cleave
ubiquitins from proteins (Nijman et al., 2005). DUBs also
assist to generate free molecules from the newly trans-
lated polyubiquitins and recycle ubiquitins after the poly-
ubiquitinated protein substrates are degraded (Fig. 2)
(Komander et al., 2009). Therefore, DUBs play key roles
in the regulation of signal transduction by controlling
ubiquitin homeostasis thereby affecting the stability, activity
and/of subcellular localization of proteins (Komander et al.,
2009).

The human DUB family

The human genome encodes almost 90 DUBs of which 79
are predicted to be active. According to the sequence simi-
larity and the possible functions, the DUBs family can be
divided into 5 subfamilies, including ubiquitin-specific prote-
ases (USPs), ubiquitin C-terminal hydrolases (UCHs),
ovarian tumor proteases (OTUs), Machado-Joseph disease
proteases (MJDs), and JAB1/MPN/Mov34 proteases (JAM-
Ms) (Fig. 3) (Komander et al., 2009; Nijman et al., 2005;
Reyes-Turcu et al., 2009).

Functions of DUBs

Since polyubiquitination can serve as a tag for protein
destruction thus allows DUB mediated deubiquitination of
such polyubiquitinated proteins will promote protein stability.
USP1 for instance stabilizes inhibitors of DNA binding pro-
teins (IDs) through deubiquitination (Williams et al., 2011).
HAUSP (also termed as USP7) deubiquitinates p53, and is
therefore considered to be an important positive regulator of
p53 stabilization (Li et al., 2002). USP28 is overexpressed in
colon and breast tumors, and by counteracting the ubiquiti-
nation activity of SCF-Fbxw7 ligase it causes the stabiliza-
tion of cyclin E1 and c-Myc (Popov et al., 2007a; Popov
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Figure 2. An overview of ubiquitination and deubiquitination processes. The conjugation process of ubiquitin to the substrate

proteins normally requires three steps: a) the initial step is to activate the C-terminus of the ubiquitin protein by an E1 and this process

requires ATP, b) the intermediate step is to transfer ubiquitin from the E1 and conjugate to an E2, c) the final step is to covalently

conjugate the ubiquitin to the substrate protein which normally facilitated by an E3 enzyme. DUBs can catalyse the removal of

ubiquitin from the conjugated substrates and also generate free ubiquitins from the newly translated polyubiquitins or recycle

ubiquitins after the polyubiquitinated protein substrates are degraded (For further details see text).
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et al., 2007b). Similarly, USP33 promotes centrosome bio-
genesis via specific and potent stabilization of the centriolar
coiled coil protein CP110 (Li et al., 2013), and USP22 has
been found to strengthen the NAD-dependent histone
deacetylase Sirt1 to antagonize p53 activation (Lin et al.,
2012).

Conceptually, removal of monoubiquitination by DUBs
should also reverse for instance substrate localization or
substrate-induced transcription activation in case mono-
ubiqutination of the substrate has theses effects (see previ-
ous chapter). Indeed, such effects were reported for
HAUSP-mediated ubiquitin removal of PTEN (phosphatase
and tensin homologue deleted in chromosome 10) and
FOXO (Forkhead box O) 4 (Song et al., 2008; van der Horst
et al., 2006).

Another important function of DUBs is exemplified by their
capability to reverse the non-degradative polyubiquitin chain
conjugation on central signaling molecules. For instance,
AMSH and AMSH-LP promote receptor trafficking by spe-
cifically cleaving Lysine-63 linked polyubiquitin chains from
internalized receptors (McCullough et al., 2004; Sato et al.,
2008) and the deubiquitinases CYLD, A20 and USP4
antagonize Lysine-63 polyubiquitin chain conjugation on
TRAF6, thereby disrupting the docking sites for downstream
innate immune signaling activation (Boone et al., 2004;
Brummelkamp et al., 2003; Deng et al., 2000; Kovalenko

et al., 2003; Trompouki et al., 2003; Turer et al., 2008; Xiao
et al., 2012; Zhang et al., 2012a; Zhang et al., 2012b).
Similarly, linear polyubiquitin chain formation on NF-κB
essential modulator (NEMO) by the E3 ligase linear ubiquitin
chain assembly complex (LUBAC) is cleaved by CYLD and
more specifically by OTULIN (also termed as FAM105B)
(Gerlach et al., 2011; Ikeda et al., 2011; Keusekotten et al.,
2013; Niu et al., 2011; Rivkin et al.2013; Tokunaga et al.,
2009). In the Wnt signal transduction pathway, CYLD inhibits
β-catenin signaling by removing Lysine-63 linked ubiquiti-
nation from Dishevelled (Tauriello et al., 2010). Moreover,
nuclear functions of DUBs in transcription and RNA pro-
cessing have been uncovered (Clague et al., 2012). In this
article, we will further focus on recent advances that help to
understand the role of DUBs in TGF-β/SMAD signaling.

FUNCTIONAL DUBS IN TGF-β SIGNALING

Unlike the regulation of TGF-β signaling by ubiquitination,
which has been intensely studied for the last decades, the
role of DUB-mediated deubiquitination in the TGF-β signal-
ing pathway is only recently emerging. It is until recently that
a few reports just unveil this mystery in which several func-
tional DUBs have now been identified and found to be potent
TGF-β/SMAD modulators (Table 1) (Al-Salihi et al., 2012;
Dikic, 2009; Eichhorn et al., 2012; Schwartz and

Human DUB family
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A20
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Figure 3. A schematic summary of human DUB family. The DUB family can be divided into five subfamilies, including ubiquitin-

specific proteases (USPs, 57 members), ubiquitin C-terminal hydrolases (UCHs, 4 members), ovarian tumor proteases (OTUs, 14

members), Machado-Joseph disease proteases (MJDs, 4 members), and JAB1/MPN/Mov34 proteases (JAMMs, 11 members).
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Ciechanover, 2009; Wicks et al., 2005; Zhang et al., 2012a;
Zhang et al., 2012b; Zhao et al., 2011).

UCH37 as the first identified DUB in TGF-β/SMAD
pathway

UCH37, a member of the UCH enzymes subfamily, and also
known as UCHL5 in mouse, has been identified as a
SMAD3-binding partner (Wicks et al., 2005). Previously, it
was shown to function as a component of the 26S protea-
some and thus might play a role in the editing of polyubiq-
uitinated protein substrates (Weissman, 2001). UCH37 also
interacts with SMAD7 through the SMAD7 N-terminal
domain (1–260 aa), and not via the PY motif, a region that
mediates SMAD7’s binding to SMURF (Wicks et al., 2005).
Via SMAD7, UCH37 can further be recruited to TβRI, where
it removes polyubiquitin chains synthesized by SMURF
(Wicks et al., 2005).

USP4 is a DUB for TGF-β type I receptor

USP4, a member of USP subfamily, is the first deubiquiting
enzymes that have been identified in mammalian cells.
USP4 is a very stable protein as it can deubiquitinate itself
(Wada and Kamitani, 2006). In the past year, gathered
observations by several groups have revealed that USP4 is
widely involved in multiple signaling pathways including the
Wnt/β-catenin pathway, the innate immune response path-
way, p53 signaling pathway and in particularly the TGF-β/
SMAD signaling pathway (Liu et al., 2002; Xiao et al., 2012;
Zhang et al., 2012a; Zhang et al., 2012b; Zhao et al., 2009).
In a genome wide gain-of-function screen that covered
nearly 27,000 genes, USP4, as well as USP11/USP15 were
found to play a strong activating role in TGF-β/SMAD sig-
naling. It is not so surprising USP4/11/15 share the ability to
potentiate TGF-β/SMAD signaling because they share highly
conserved domains and similarity in their protein sequences
(Fig. 4). As to underlying mechanism USP4 was demon-
strated to deubiquitinate and stabilize TβRI in the plasma
membrane through direct association (Zhang et al., 2012a;

Zhang et al., 2012b) (Fig. 5). A series of in vitro and in vivo
experiments showed that USP4 is a critical and selective
regulator of TGF-β/SMAD signaling in mammalian cells and
zebrafish embryos. The fact that USP4 is highly expressed
in various cancers indicated a critical role for USP4 in the
tumor-promoting arm of the TGF-β/SMAD pathway. Indeed,
analysis in malignant breast cancer cells revealed that USP4
could regulate TGF-β-induced EMT, migration in vitro and
stimulate TGF-β/SMAD signaling-dependent breast cancer
invasion and metastasis in vivo (Zhang et al., 2012a; Zhang
et al., 2012b). Importantly, USP4 could bind to itself and also
interact with USP11 and USP15, and thus may be part of a
DUB complex when exerting its function (Zhang et al.,
2012a; Zhang et al., 2012b). Interestingly, USP4 was found
also to associate with AKTand to be phosphorylated by AKT
on it conserved Ser445 motif. This phosphorylation pro-
motes USP4 localization in membrane and cytoplasm,
where USP4 deubiquitylates TβRI. This study suggests that
Akt activation in breast cancer cells induces USP4 to relo-
cate and stabilize TβRI in the plasma membrane, and
thereby enforces TGF-β-induced pro-tumorigenic responses
(Zhang et al., 2012a; Zhang et al., 2012b). Moreover, aber-
rant over-activation of PI3K/AKT pathway is frequently
observed in human cancers and this could blunt tumor
suppressing pathways. PI3K/AKT activation may thus redi-
rect TGF-β intracellular signaling and thereby contribute to
its switch from tumor suppressor to tumor promoter.

USP11 is another DUB for TGF-β type I receptor

Like USP4, USP11 is involved in multiple signaling path-
ways. For instance, USP11 has been shown to associate
with and stabilize RanGTP-associated protein RanBPM,
BRCA2, HPV-16E7, nucleoprotein (Jennings and Pietenpol,
1998), and IκBα, depending on its DUB activity (Ideguchi
et al., 2002; Liao et al., 2010; Lin et al., 2008; Schoenfeld
et al., 2004; Sun et al. 2009). In a DUB activity independent
manner, USP11 is involved in the IκB kinase α (IKKα)-p53
signaling pathway and also function in the regulation of DNA
double-strand repair (Wiltshire et al., 2010; Yamaguchi et al.,
2007). In addition to the USP4 study described above
(Zhang et al., 2012a; Zhang et al., 2012b), an independent
study identified USP11 as positive regulator of TGF-β sig-
naling (Al-Salihi et al., 2012). In this study USP11 was
identified by a proteomic approach in search for novel
binding partners of TGF-β signaling components. USP11
was found to interact with SMAD7 and be recruited via
SMAD7 to deubiquitinate TβRI and promote TGF-β signaling
(Al-Salihi et al., 2012).

USP15 is a DUB for both TGF-β type I receptor and
R-SMADs

A DUB RNAi library mediated loss-of-function screen also
identified USP15 as a key regulator of TGF-β signaling
(Eichhorn et al., 2012). Distinct from USP4, USP15 was not

Table 1. Summary of DUBs implicated in TGF-β signaling

DUB Targets (possible
targets)

References

UCH37 Type I receptor Wicks et al., 2005

USP4 Type I receptor Zhang et al., 2012a, b

USP11 Type I receptor Al-Salihi et al., 2012

USP15 Type I receptor;
R-SMADs

Eichhorn et al, 2012;
Inui et al., 2011

USP9X SMAD4 Dupont et al., 2009

CYLD SMAD7 Zhao et al., 2011

AMSH (Binds to SMAD6) Itoh et al., 2001

AMSH-2 (Binds to SMAD2
and SMAD7)

Ibarrola et al., 2004
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found to bind to activate TβRI directly; rather, it is recruited to
the active receptor by SMAD7. In the model proposed by the
authors, SMAD7 acts as a scaffold that brings both the
ubiquitin E3 ligase SMURF2 and the deubiquitinase USP15
to the TβRI receptor (Fig. 5). When the level of (active) TGF-
β is low, TβRI ubiquitinylation by SMURF2 is quickly

removed by USP15 according to this model. However, when
TGF-β signaling is increased, a higher level of SMAD7
expression is induced as a feedback response and this will
make the amount of USP15 insufficient, thereby limiting the
duration of TGF-β/SMAD signaling (Aggarwal and Massa-
gue, 2012; Eichhorn et al., 2012).

UCHUBLUBLDUSP

C311

UCHUBLUBLDUSP

C318

UCHUBLUBLDUSP

C269

USP4

USP11

USP15

Figure 4. Alignment of USP4 and its paralogs USP11 and USP15. The highly similar domain structure of USP4, USP11, and

USP15 is schematically illustrated; the degree of identity is also shown. Overall, USP4 shares 46.7% identity with USP11, and 59.6%

identity with USP15. USP11 shares 45.9% identity with USP15 (For further details see text).

SMURF2 Degradation

USP11/15

T
βR

I 

S
M

A
D

7

USP4

Other 
DUBs

p

Receptor-DUBs complex

pp
Ubi

USP15

SMURFs

SMAD4R-SMADR-SMAD

Ubi

USP9x

TIF1g

Cancer metastasis

SMADs-DUBs complex

Figure 5. Effects of USP4, USP15, and USP9X on TGF-β type I receptor and SMADs. As depicted schematically, USP4

associates with and deubiquitinates TβRI and recruits other DUBs. USP15 binds TβRI via SMAD7 and competes with SMURF2 to

balance TβRI ubiquitination. The transcriptional activity of R-SMAD can be restricted by the SMURFs via monoubiquitination and

reversed by USP15. USP9X reverses SMAD4 monoubiquitination that can be conjugated by Ectodermin/TIF1γ E3 ligase.
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As described above, advanced human cancer cells that
retain TGF-β/SMAD signaling but lack tumor suppressive
responses can make use of the SMAD pathway to their
advantages, and via SMAD3/SMAD4 stimulate pro-invasive
and pro-metastatic target genes (for example, IL11, CTGF,
CXCR4) and reprogram (EMT) phenotypes (Aggarwal and
Massague, 2012). This happens frequently in aggressive
breast carcinoma and glioblastoma. In this respect it is
important to note that while functional linkage of USP4 to the
TGF-β/SMAD pathway was shown by employing a breast
cancer model, USP15 can enhance the tumorigenic effect of
TGF-β in glioblastoma (Eichhorn et al., 2012).

Results from an independent screen using an RNAi
library against human DUB family members also indicated
the physiological relevance of USP15 in regulating TGF-β
superfamily function. In this study USP15 was found to
potentiate both the TGF-β pathway and the related BMP
pathway by targeting mono-ubiquitinated R-SMADs for de-
ubiquitination (Fig. 5) (Inui et al., 2011). Thus, USP15 is not
only required for TGF-β signal transduction and biological
functions, including TGF-β-induced cell arrest and cell
migration, but also necessary for BMP-induced osteoblast
differentiations. Moreover, Xenopus embryo analysis in this
study also uncovered a role for USP15 in embryonal
development in vivo, dependent on its effect on TGF-β
superfamily signaling (Inui et al., 2011).

OTUB1 activates TGF-β signaling via activating
(phospho-) SMAD2/3

Recently, OTU domain-containing ubiquitin aldehyde-bind-
ing protein 1 (OTUB1) was found to act on R-SMAD as well
(Herhaus et al., 2013). However, different from USP15,
OTUB1 enhances TGF-β signaling by inhibiting the ubiqui-
tination and degradation of active SMAD2/3 (and not the
inactive un-phosphorylated form), because the association
of OTUB1 to SMAD2/3 is phosphorylation dependent.
Moreover, OTUB1 was found to antagonize SMAD2/3’s
ubiquitination independent of its catalytic activity as it inter-
acts with E2 enzymes and inhibits efficient ubiquitin transfer
from E2 to E3. This mechanism is reminiscent to the
mechanism described in an earlier study on OTUB1-medi-
ated inhibition of ubiquitination (Wiener et al., 2012).

CYLD binds to Smad7

The deubiquitinase cylindromatosis (CYLD) was first identi-
fied as a tumor suppressor gene, mutations in patients with
familial cylindromatosis (Bignell et al., 2000). As a member of
USPs subfamily, CYLD can antagonize Lysine-63 poly-
ubiquitin chain conjugation (Kovalenko et al., 2003; Trom-
pouki et al., 2003b). As mentioned previously, CYLD is
involved in NF-κB, Wnt/β-catenin and JNK signaling pathway
(Reiley et al., 2004; Tauriello et al., 2010; Trompouki et al.,
2003b). By using CYLD knock-out mice, a recent study
shows that in TGF-β-treated Tcells, CYLD deficiency causes

enhanced TAK1 and p38 mitogen-activated protein kinase
activities (Zhao et al., 2011). Accumulation of non-degraded
polyubiquitin chains and enhanced activities of SMAD7 in the
absence of CYLD led to a study on the putative role of CYLD
in the TGF-β signaling (Zhao et al., 2011). This showed that
CYLD can bind to SMAD7 and deubiquitinate SMAD7 at
Lysine 360 and 374 residues, which are required for the
activation of TAK1 and p38 signaling (Zhao et al., 2011).

USP9X associates with SMAD4

Although SMAD4 is not obligatory for TGF-β signaling, it is
required to provide the highest response to signaling.
SMAD4 stabilizes SMAD-DNA interaction complexes in the
nucleus and also recruits transcriptional coactivators such as
histone acetyltransferases to regulatory elements (Wrana,
2009; Yang and Yang, 2010). Compared with other compo-
nents of the TGF-β/SMAD pathway, SMAD4 possesses a
very long half-life and thus is a rather stable protein. Nev-
ertheless, Ectodermin/TRIM33/TIF1γ, a member of TRIM
protein family of RING domain E3 ubiquitin ligases, has been
suggested to be a determinant of vertebrate gastrulation by
targeting SMAD4 for polyubiquitination and degradation
(Dupont et al., 2005). This hypothesis was adjusted in a later
study by the same group, in which they showed that only the
monoubiquitination of SMAD4 is mediated by Ectodermin
(Dupont et al., 2009). Lysine 519 of SMAD4 was found to
conjugate by Ectodermin with a single ubiquitin molecule in
the nucleus, which impairs SMAD4’s binding affinity to
R-SMADs. This monoubiquitinated SMAD4 stays in an
inhibitory state and regains activity in the cytoplasm once it
has been deubiquitinated by FAM/USP9X (Fig. 5) (Dupont
et al., 2009). FAM was first discovered in the fly, where FAM
stands for fat facets. In contrast to what has been shown for
FAM/USP9X-mediated deubiquitinating of β-catenin, AF-6,
AMPK-related kinase 5 (NUAK1), and microtubule-affinity-
regulating kinase 4 (MARK4) (Al-Hakim et al., 2008; Taya
et al., 1999; Taya et al., 1998), FAM/USP9X specifically
removes the site directed monoubiquitin molecule but not the
polyubiquitin chains from SMAD4 (Dupont et al., 2009).

Other possible DUBs involved in TGF-β signaling

Before the identification and characterization of human
DUBs, certain deubiquitinating enzymes were already found
to be involved in TGF-β/SMAD signaling, yet not known to
act through deubiquitination. Associated molecule with the
SH3 domain of STAM (AMSH), a member of JAMMs DUB
subfamily, was first identified as a signal-transducing adaptor
molecule (STAM) binding protein (Tanaka et al., 1999).
AMSH was later found to antagonize the inhibitory effect of
SMAD6 on BMP signaling through binding to SMAD6, and
did not bind to R-SMAD or Co-SMAD (Itoh et al., 2001).
Thus, it will be interesting to examine whether the stimulatory
effect of AMSH on BMP signaling is dependent on its DUB
activity. Another example is AMSH-2, also a member of the
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JAMMs subfamily, which has been demonstrated to enhance
TGF-β/SMAD signaling when ectopic overexpressed (Ibar-
rola et al., 2004). Co-immunoprecipitation assays have
indicated that AMSH-2 could associate with SMAD2 and
SMAD7 (Ibarrola et al., 2004), but also in this case it is not
yet known whether the DUB activity of AMSH-2 is required
for the enhancement of TGF-β signaling.

DUBS AS THERAPEUTIC TARGETS

Because of their druggable enzymatic activity, DUBs can be
considered as therapeutic targets. Although protea-
some inhibitor has been approved for the therapy of multiple
myeloma (Hoy, 2013), there are still no DUB inhibitors
endorsed for clinical usage. However, multiple studies
already revealed such possibilities. As an example, P1130-
mediated inhibition of tumor-activated DUBs results in
downregulation of antiapoptotic and upregulation of proa-
poptotic proteins, such as MCL-1 and p53, thereby causing
tumor cell apoptosis (Kapuria et al., 2010). A selective
inhibitor of the DUB USP14 could be effective against neu-
rodegenerative diseases and myeloma (Lee et al., 2010).
Using stereotaxis, direct incubation into brain tumors with
PR-619, a broad-spectrum DUB inhibitor, could limit the
concentrations of TβR-I and p-SMAD2, in which the effective
target is considered to be USP15 (Eichhorn et al., 2012).
With the availability of technologies for large scale screen-
ing, design and development specific small inhibitor mole-
cules for specific DUBs is required and will be helpful for the
generation of novel cancer therapeutics.

CONCLUSION

The increasing attention for the clinical importance of the
TGF-β/SMAD pathway as a tumor promoter makes it more
and more worthwhile to search for critical regulators of this
pathway as putative therapeutic targets. Since deubiquiti-
nating enzymes can be targeted with drugs, DUBs that
control TGF-β/SMAD signaling are emerging as potential
targets for cancer therapies (Cohen and Tcherpakov, 2010;
Colland, 2010). Several studies utilizing DUB screening
methods have provided detailed insights in and mapping of
the dynamic functions of ubiquitination in TGF-β/SMAD
signaling. Further understanding of the catalytic activity of
DUBs, as well as of knowledge on their regulation and
substrate specificity, will promote the development of DUB
inhibitors as potential anti-cancer drugs. Several DUBs have
been identified as driving forces that can trigger and/or
enhance tumorigenic TGF-β/SMAD signaling. Among these,
promising drug targets are apparently a group of highly-
similar DUBs, including USP4, USP11, and USP15. For
instance, it would be interesting to develop inhibitors for
USP4/11/15 and examine their potentials for anti-invasive
and anti-metastatic roles in aggressive human cancers such
as breast cancer and glioblastoma.
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