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Aicardi-Goutières Syndrome
Is Caused by IFIH1 Mutations

Hirotsugu Oda,1,2 Kenji Nakagawa,1 Junya Abe,1,3 Tomonari Awaya,1 Masahide Funabiki,4

Atsushi Hijikata,5 Ryuta Nishikomori,1,* Makoto Funatsuka,6 Yusei Ohshima,7 Yuji Sugawara,8

Takahiro Yasumi,1 Hiroki Kato,4,9 Tsuyoshi Shirai,5 Osamu Ohara,2,10 Takashi Fujita,4 and Toshio Heike1

Aicardi-Goutières syndrome (AGS) is a rare, genetically determined early-onset progressive encephalopathy. To date, mutations in six

genes have been identified as etiologic for AGS. Our Japanese nationwide AGS survey identified six AGS-affected individuals without

a molecular diagnosis; we performed whole-exome sequencing on three of these individuals. After removal of the common polymor-

phisms found in SNP databases, we were able to identify IFIH1 heterozygous missense mutations in all three. In vitro functional analysis

revealed that IFIH1mutations increased type I interferon production, and the transcription of interferon-stimulated genes were elevated.

IFIH1 encodesMDA5, andmutantMDA5 lacked ligand-specific responsiveness, similarly to the dominant Ifih1mutation responsible for

the SLE mouse model that results in type I interferon overproduction. This study suggests that the IFIH1 mutations are responsible for

the AGS phenotype due to an excessive production of type I interferon.
Aicardi-Goutières syndrome (AGS [MIM 225750]) is a rare,

genetically determined early-onset progressive encepha-

lopathy.1 Individuals affected with AGS typically suffer

from progressive microcephaly associated with severe

neurological symptoms, such as hypotonia, dystonia, sei-

zures, spastic quadriplegia, and severe developmental

delay.2 On brain imaging, AGS is characterized by basal

ganglia calcification, white matter abnormalities, and cere-

bral atrophy.3,4 Cerebrospinal fluid (CSF) analyses show

chronic lymphocytosis and elevated levels of IFN-a and

neopterin.3–5 AGS-affected individuals are often misdiag-

nosed as having intrauterine infections, such as TORCH

syndrome, because of the similarities of these disorders,

particularly the intracranial calcifications.1 In AGS, etio-

logical mutations have been reported in the following

six genes: TREX1 (MIM 606609), which encodes a

DNA exonuclease; RNASEH2A (MIM 606034), RNASEH2B

(MIM 610326), and RNASEH2C (MIM 610330), which

together comprise the RNase H2 endonuclease complex;

SAMHD1 (MIM 606754), which encodes a deoxynucleo-

tide triphosphohydrolase; and ADAR1 (MIM 146920),

which encodes an adenosine deaminase.6–9 Although

more than 90% of AGS-affected individuals harbor etiolog-

ical mutations in one of these six genes, some AGS-affected

individuals presenting with the clinical characteristics of

AGS still lack a genetic diagnosis, suggesting the existence

of additional AGS-associated genes.1

We recently conducted a nationwide survey of AGS

in Japan and reported 14 AGS-affected individuals.10 We

have since recruited three other Japanese AGS-affected in-
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dividuals, and among these 17 individuals, we have identi-

fied 11 individuals with etiologic mutations; namely,

TREX1 mutations in six, SAMHD1 mutations in three,

and RNASEH2A and RNASEH2B mutations in one each.

Of the remaining six individuals without a molecular diag-

nosis, trio-based whole-exome sequencing was performed

in three whose parents also agreed to participate in

further genome-wide analyses (Figure 1A). Genomic DNA

from each individual and the parents was enriched for

protein-coding sequences, followed by massively parallel

sequencing. The extracted nonsynonymous or splice-site

variants were filtered to remove those withminor allele fre-

quencies (MAF) > 0.01 in dbSNP137. To detect de novo

variants, any variants observed in family members,

listed in Human Genetic Variation Database (HGVD), or

with MAF > 0.02 in our in-house exome database were

removed. To detect autosomal-recessive (AR), compound

heterozygous (CH), or X-linked (XL) variants, those

with MAF > 0.05 in our in-house database were removed

(Figure S1 available online). All samples were collected

with the written informed consents by parents, and the

study protocol was approved by the ethical committee of

Kyoto University Hospital in accordance with the Declara-

tion of Helsinki.

After common polymorphisms were removed, we identi-

fied a total of 40, 18, 89, and 22 candidate variants under

the de novo, AR, CH, and XL inheritance models, respec-

tively, that were present in at least one of the three indi-

viduals (Table S1). Among them, missense mutations

were identified in IFIH1 (MIM 606951, RefSeq accession
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Figure 1. Pedigree Information for the AGS-Affected Individ-
uals and Details of the IFIH1 Mutations Identified
(A) The pedigrees of the three families indicating the AGS pro-
bands.
(B) Sanger sequencing chromatograms of the three IFIH1 muta-
tions found in the AGS-affected individuals. The locations of these
mutations in the amino acid sequence of the MDA5 protein are
shown in alignment with the conserved amino acid sequences
from several species. This alignment was obtained via ClustalW2.
The amino acids that are conserved with human are circled in red.
(C) The MDA5 protein domain structure with the amino acid sub-
stitutions observed in these AGS-affected individuals.
number NM_022168.2), which encodes MDA5 (RefSeq

NP_071451.2). These missense mutations are c.1354G>A

(p.Ala452Thr) in AGS-1; c.1114C>T (p.Leu372Phe)

in AGS-2; and c.2336G>A (p.Arg779His) in AGS-3

(Figure 1B). None of the mutations are found in HGVD,

including the 1,208 Japanese samples, or our in-house

exome database of 312 Japanese individuals. Multiple-

sequence alignment by ClustalW2 revealed that each of

the amino acids affected by these mutations are conserved

among mammals (Figure 1B). The subsequent amino acid

alterationswere all suggested tobedisease causing in at least

one of the four function-prediction programs used (Table

1). None of the other genes identified in the de novo inher-

itance model, or any of the genes identified in the other

three inheritancemodels, weremutated in all three individ-

uals. The IFIH1 mutations identified were validated by

Sanger sequencing. The other coding exons of IFIH1 were
122 The American Journal of Human Genetics 95, 121–125, July 3, 20
also examined by Sanger sequencing, and no other muta-

tions were found.

MDA5 is one of the cytosolic pattern recognition recep-

tors that recognizes double-stranded RNA (dsRNA).11

MDA5 consists of N-terminal tandem CARD domains,

a central helicase domain, and a C-terminal domain

(Figure 1C). When bound to dsRNA, MDA5 forms a closed,

C-shaped ring structure around the dsRNA stem and ex-

cludes the tandem CARD as well as creates filamentous

oligomer on dsRNA.12 It is hypothesized that the tan-

dem CARD interacts each other and activates MAVS on

the mitochondrial outer membrane. Oligomerization of

MAVS induces TBK1 activation, IRF3 phosphorylation,

and induction of type I interferon transcription, resulting

in the activation of a large number of interferon-stimu-

lated genes (ISGs).

The neurological findings of the individuals with

these IFIH1 mutations are typical of AGS (Table S2). They

were born with appropriate weights for their gestational

ages without any signs of intrauterine infection. However,

they all demonstrated severe developmental delay in early

infancy associated with progressive microcephaly. No

arthropathy, hearing loss, or ophthalmological problems

were observed. As for extraneural features, all three individ-

uals had at least one of the following autoimmune features:

positivity for autoantibodies, hyperimmunoglobulinemia,

hypocomplementemia, and thrombocytopenia. Notably,

none of the individuals with IFIH1mutations had chilblain

lesions, although all the five individuals with TREX1

mutations and two of the three individuals with SAMHD1

mutations in the Japanese AGS cohort showed chilblain

lesions.10 Individuals with SAMHD1 mutations and IFIH1

mutations both show autoimmune features; however, chil-

blain lesions have been observed only in individuals with

SAMHD1mutations.10

To predict the effects of the identified amino acid substi-

tutions on MDA5, three-dimensional model structures of

MDA5 mutants were generated from the crystal structure

of human MDA5-dsRNA complex12 (Protein Data Bank

[PDB] code 4gl2), using PyMOL (Schroedinger) and MOE

(Chemical Computing Group) (Figure S2A). The oligo-

meric model of MDA5 was generated using the electron

microscopy imaging data of MDA5 filament lacking

CARD domain13 (Electron Microscopic Data Bank

[EMDB] code 5444) (Figure S2B). The three amino acid sub-

stitutions in the AGS-affected individuals are all located

within the helicase domain (Figures 1C and S2A). Because

Ala452 directly contacts the dsRNA ribose O20 atom, the

p.Ala452Thr substitution probably affects the binding af-

finity to dsRNA due to an atomic repulsion between the

side chain of Thr452 and the dsRNA O20 atom (Figures

S2C and S2D). Leu372 is located adjacent to the ATP bind-

ing pocket, and the p.Leu372Phe substitution could in-

crease the side chain volume of the binding pocket,

affecting its ATP hydrolysis activity (Figures S2E and S2F).

In our oligomeric model, Arg779 is located at the interface

between the two monomers, which is consistent with the
14



Table 1. Functional Predictions of the IFIH1 Variants

Individuals Nucleotide Change Amino Acid Change SIFT PolyPhen2 Mutation Taster PROVEAN

AGS-1 c.1354G>A p.Ala452Thr tolerated benign disease causing neutral

AGS-2 c.1114C>T p.Leu372Phe tolerated probably damaging disease causing neutral

AGS-3 c.2336G>A p.Arg779His tolerated probably damaging disease causing deleterious

The potential functional effects of the IFIH1 variants identified in the AGS-affected individuals were predicted via SIFT, PolyPhen2, Mutation Taster, and PROVEAN.

Figure 2. Quantitative RT-PCR of a Panel of Seven ISGs in
PBMCsObtained from the IFIH1-Mutated Individuals andHealthy
Control Subject
qRT-PCR was performed as previously described.15 The relative
abundance of each transcript was normalized to the expression
level of b-actin. Taqman probes used were the same as previous
report,14 except for ACTB (MIM 102630). Individual data were
shown relative to a single calibrator (control 1). The experiment
was performed in triplicate. Statistical significance was determined
by Mann-Whitney U test, *p < 0.05.
recent report showing that Lys777, close to Arg779, is in

close proximity to the adjacent monomer.12 Furthermore,

in our model, Arg779 is in close to Asp572 on the surface

of the adjacent monomer. We speculate that losing the

positive charge due to the p.Arg779His substitution would

possibly affect the electrostatic interaction between the

MDA5 monomers (Figures S2G and S2H).

To connect the identified IFIH1 mutations with the AGS

phenotype, we examined the type I interferon signature in

the individuals by performing quantitative RT-PCR (qRT-

PCR) of seven ISGs.14 Peripheral blood mononuclear cells

(PBMCs) from the three AGS-affected individuals showed

upregulation of ISG transcription (Figure 2), confirming

the type I interferon signature in the individuals with

IFIH1 mutations.

To elucidate the disease-causing capability of the identi-

fied IFIH1 mutations, three FLAG-tagged IFIH1 mutant

plasmids containing these mutations were constructed via

site-directed mutagenesis. These plasmids were transiently

expressed on human hepatoma cell line Huh7 and the

IFNB1 promoter activity as well as endogenous expression

of IFIT1 (MIM 147690) was measured 48 hr after transfec-

tion.15 The three mutant plasmids activated the IFNB1 pro-

moter in Huh7 cells more strongly than the wild MDA5

and nearby missense variants reported in dbSNP (Figures 3

and S3). The upregulation of endogenous IFIT1 was also

observed in the transfected cells (Figure S4), suggesting

that these AGS mutations enhance the intrinsic activation

function ofMDA5. Recent genome-wide association studies

(GWASs) showed association of the IFIH1with various auto-

immune diseases, such as systemic lupus erythematosus

(SLE), type I diabetes, psoriasis, and vitiligo.16–19 We exam-

ined IFNB1 promoter activity induced by the c.2836G>A

(p.Ala946Thr) polymorphism (rs1990760) identified in the

GWASs. Although the c.2836G>A polymorphism partially

activated the promoter activity, the induced activity was

lower than those of the AGS-derived mutants. In addition,

the dominantly inherited SLE mouse model in the ENU-

treatedmouse colony is reported to have the Ifih1mutation,

c.2461G>A (p.Gly821Ser).15 These observations suggest

that IFIH1 has strong association with various autoimmune

diseases, especially SLE, which also has a type I interferon

signature.20 Because alteration of TREX1 has been reported

to cause AGS as well as SLE,21 it seems quite plausible for

IFIH1 to also be involved inbothAGSandSLE. Interestingly,

all the individuals identifiedwith IFIH1mutationshadauto-

antibodies, suggesting the contribution of IFIH1mutations

to autoimmune phenotypes.
The A
To further delineate the functional consequences of the

three IFH1mutations, we measured the ligand-specific Ifnb

mRNA induction by stimulating Ifih1null mouse embryonic

fibroblasts (MEFs) reconstituted with retrovirus expressing

the IFIH1mutants by anMDA5-specific ligand, encephalo-

myocarditis virus (EMCV).22 None of the MEF cells ex-

pressing the three mutant IFIH1 responded to the EMCV,

which suggested that the MDA5 variants lacked the

ligand-specific responsiveness. The response of the three

AGSmutants against the MDA5-specific EMCV was similar

to that of the p.Gly821Ser variant reported in the domi-

nantly inherited SLE mouse model with type I interferon

overproduction15 (Figures 4 and S5).

During the revision of this manuscript, Rice et al. identi-

fied nine individuals with IFIH1 mutations, including

the c.2336G>A mutation we identified, in a spectrum of

neuroimmunological features consistently associated with

enhanced type I interferon states including AGS.23

Althoughwe agree that the IFIH1mutations cause constitu-

tive type I interferon activation, Rice et al. show that the

mutated MDA5 proteins maintain ligand-induced respon-

siveness, which was not the case in our study. Because we

measured the ligand-specific responsiveness of MDA5 in

different experimental conditions, further analysis remains

to be performed to reveal the biochemical mechanism of

interferon overproduction by the mutated MDA5.
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Figure 3. The Effects of the Three MDA5 Variants on IFNB1
Expression
Huh7 cells were transfected with a reporter gene containing IFNB1
promoter (p-55C1B Luc), an empty vector (BOS), and expression
vectors for FLAG-tagged humanwild-type IFIH1, c.2836G>A poly-
morphism (p.Ala946Thr) in the GWASs, and the identified IFIH1
mutants. Luciferase activity was measured 48 hr after transfection,
and the MDA5 protein accumulation was examined by immuno-
blotting as previously described.15 FLAG indicates the accumula-
tion of FLAG-tagged MDA5. Each experiment was performed in
triplicate and data are mean 5 SEM. Shown is a representative
of two with consistent results. Statistical significance was deter-
mined by Student’s t test. *p < 0.05, **p < 0.01.

Figure 4. Ifnb mRNA Levels in Ifih1-Deficient MEFs Expressing
IFIH1 Mutants
The MEFs were infected with retroviruses encoding mouse wild-
type Ifih1, mouse Ifih1 with c.2461G>A (p.Gly821Ser) (RefSeq
NM_027835.3) mutation, or the three AGS mutants of human
IFIH1. At 48 hr after the retroviral infection, these MEFs were in-
fected with indicated multiplicity of infection (MOI) of EMCV
for 6 hr, and Ifnb mRNA levels were measured by qRT-PCR.
The relative abundance of each transcript was normalized to
the expression level of 18S ribosomal RNA. Data are shown as
mean 5 SEM of triplicate samples. Shown is a representative
of two independent experiments. Statistical significance was
determined by Student’s t test, *p < 0.001. The expression of the
retrovirally transduced FLAG-tagged constructs was confirmed
by immunoblotting (Figure S5).
In conclusion, we identified mutations in IFIH1 as a

cause of AGS. The individuals with the IFIH1 mutations

showed encephalopathy typical of AGS as well as the

type I interferon signature with autoimmune phenotypes,

but lacked the chilblains. Further analysis remains to eluci-

date themechanism of how the IFIH1mutations identified

in AGS cause the type I interferon overproduction.
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