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Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale

genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and

ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with

age-dependent effects on systolic (SBP), diastolic (DBP),mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241

individuals of European ancestry, we identified 20 genome-wide significant (p% 53 10�8) loci by using joint tests of the SNPmain effect

and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the in-

teractions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age in-

teractions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but

nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites

but had DBP main effects replicated (p ¼ 8.3 3 10�4) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity.

A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select sam-

ples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects

identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
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Introduction
Age is a major predictor of cardiovascular health1 but its

impact on the genetic architecture of blood pressure (BP)

has been largely unexplored. A Norwegian study of

parent-offspring pairs, siblings, and twins reported that

60%–70% of the genetic variance of BP at ages 20 and 60

was attributable to genes active at both ages.2 For the genes

that are active across the age spectrum, we do not know

whether the magnitude of the genetic effects are constant

or vary with age.3 Family and population studies suggest

that age may modify the effects of some BP genes. Among
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relative pairs that shared 50% of their genes on average,

the correlation of BP traits was higher inmembers of similar

ages2 andBPs of parents andoffspringmeasured around the

same age yielded correlations similar to that of sibpairs.4

Variance components models that explicitly incorporated

age-dependent genetic effects identified 26 loci that were

missed by linkage analyses that assumed constant effects

across ages.5 Further strengthening the evidence for age-

dependent effects, candidate gene studies have identified

SNPs that interact with age to influence BP.6–10

No large-scale BP studies have assessed the pervasive-

ness of gene-age interactions by using common variants
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Figure 1. Study Design for the Primary Analysis
from genome-wide association studies (GWASs). Most

aggregate studies have focused on the discovery of genetic

main effects, relying on the meta-analysis of GWASs that

included age as a continuous covariate in the study-

specific analyses.11–16 Not only do these studies fail to

provide any knowledge about the change in genetic ef-

fects over time, but they use age adjustments that do

not sufficiently control for the confounding by age6–10

and they meta-analyze studies with substantially different

age distributions (such as containing only the young or

the elderly), which may obscure genetic effects that are

age dependent. The primary aim of this investigation

was to identify both known and novel BP loci whose

magnitude of genetic effects differed by age. Identifying

such gene-age interactions can provide insight into the

biology and temporal regulation of known BP genes and

facilitate the discovery of BP genes obscured in a

main-effects-only analysis.

We employed age stratification and metaregression to

identify BP loci whose magnitude of genetic effects differ

by age (see Figure 1 for an overview of the design). This

nonstandard approach was borne out of a previous anal-

ysis in which we failed to identify any loci when gene-
26 The American Journal of Human Genetics 95, 24–38, July 3, 2014
age interaction analysis was performed within each study

and the results meta-analyzed. Realizing that the null re-

sults could be due to study design issues relating to the

way age was handled rather than a true lack of interactions,

we developed a more computationally intensive alterna-

tive. We stratified participants from each study into

10-year age bins and conducted a GWAS of each BP trait

(systolic BP [SBP], diastolic BP [DBP], mean arterial pressure

[MAP], and pulse pressure [PP]) within each subgroup (rep-

resenting a study and age bin). We then collected the SNP

effect estimates (the coefficients from the GWAS that indi-

cated the change in BP for each copy of the coded allele)

and standard errors from all subgroups. We identified sig-

nificant gene-age interactions through linear regression

of the SNP effect estimates onto the median age of each

subgroup; we referred to this as metaregression because

the SNP effect estimates and the median ages were sub-

group-level variables instead of measures on individuals

and we weighted the subgroup results according to their

precision (by the inverse variance of the SNP effects from

the GWAS).

We also conducted a secondary ‘‘within-age bins’’ anal-

ysis to interrogate the 30%–40% of genetic variance in



BP that is generally attributed to age-specific genetic

effects2 and the differential influence of genetic mecha-

nisms during different periods of life.17 For the secondary

analysis, we meta-analyzed the genetic effects across all

studies within each age strata separately (e.g., a meta-anal-

ysis of 20- to 29-year-olds only). Overall, we show that

explicit modeling of the age dependency of genetic effects

can enhance our understanding of intraindividual varia-

tion in complex traits.
Subjects and Methods

Subjects
Participants from each study provided written informed consent

and all studies received approval from their respective institu-

tional review boards.

Stage 1 Samples

The stage 1 analysis (N ¼ 55,796) included nine studies from the

Cohorts for Heart and Aging Research in Genome Epidemiology

(CHARGE) Consortium: Age, Gene/Environment Susceptibility-

Reykjavik (AGES; N¼ 3,128), Atherosclerosis Risk in Communities

(ARIC; N ¼ 9,306), Coronary Artery Risk Development in Young

Adults (CARDIA; N ¼ 1,713), Cardiovascular Health Study (CHS;

N ¼ 2,902), Framingham Heart Study (FHS; N ¼ 7,520), Multi-

Ethnic Study of Atherosclerosis (MESA; N ¼ 2,339), Rotterdam

Study I (RS I; N ¼ 4,389), Rotterdam Study II (RS II; N ¼ 1,912),

and the Women’s Genome Health Study (WGHS; N ¼ 22,587).

Participants aged <20 years or R80 years were excluded from

the stage 1 samples except for the 17- to 20-year-olds included

in the CARDIA Study; the latter was targeted to young adults,

and therefore all subjects in this sample ranged from 17 to 32 years

old. Detailed descriptions of the study designs and summary statis-

tics are provided in the Supplemental Data and Tables S1 and S2.

Stage 2 Samples

Stage 2 included 15 studies and 43,445 participants of European

ancestry, largely from the Global Blood Pressure Genetics Con-

sortium (Global BPgen) and the ICBP (International Consortium

for Blood Pressure). The stage 2 studies included the Busselton

Health (BHS; N ¼ 1,135), Cohorte Lausannoise (CoLaus; N ¼
4,943), European Prospective Investigation of Cancer-Norfolk

(EPIC; N ¼ 2,407), Fenland (N ¼ 1,399), Kooperative Gesundheits-

forschung in der Region Augsburg Third Survey (KORA S3; N ¼
1,594), LifeLines Cohort (N ¼ 8,088), Myocardial Infarction

Genetics Consortium (MIGen; N ¼ 1,196), Netherlands Study of

Depression and Anxiety (NESDA; N ¼ 1,547), Prevention of Renal

and Vascular End Stage Disease (PREVEND; N¼ 3,303), Precocious

Coronary Artery Disease (PROCARDIS; N ¼ 7,050), SardiNIA (N ¼
1,248), Study of Health In Pomerania (SHIP; N ¼ 4,058), Supple-

mentation en Vitamines et Mineraux Antioxydants (SUVIMAX;

N¼ 1,673), Tracking Adolescent’s Individual Lives Survey (TRAILS;

N¼ 1,556), and the Young Finns (YFS; N¼ 2,248) studies. Detailed

descriptions of the study designs and summary statistics are pro-

vided in the Supplemental Data and Tables S4 and S5. Individuals

aged 20–80 years old were included in the analysis, along with the

TRAILS clinical and population cohorts that included individuals

<20 years old.

Singapore Samples

The Singapore samples included four studies of Asians comprised of

8,682 Chinese, Indian, and Malay individuals from Singapore.

These studies were the Singapore Chinese Eye (N ¼ 1,849),
Th
Singapore Indian Eye (N ¼ 2,476), Singapore Malay Eye (N ¼
2,502), and the Singapore Prospective Study Program (N ¼ 1,855).

Detailed descriptions of the study designs and summary statistics

are provided in the Supplemental Data and Tables S6 and S7.

Phenotypes
Blood pressure (BP) measurements and covariates were selected

from a single visit that maximized the sample size or age range

of the study. Each study conducted phenotype harmonization

on systolic blood pressure (SBP) and diastolic blood pressure

(DBP). For individuals on antihypertensive medications at the

time of the chosen clinic visit, 10 and 5 mmHg were added to

the measured SBP and DBP, respectively.18 The addition of a con-

stant to the measured BP in treated participants has been shown

to increase statistical power and reduce shrinkage bias, compared

to no medication adjustment or the exclusion of treated individ-

uals.19 Mean arterial pressure (MAP) and pulse pressure (PP) were

calculated from the medication-adjusted SBP and DBP values as

MAP ¼ SBP/3 þ 2DBP/3 and PP ¼ SBP � DBP. Outliers, defined

as those with BP values that were at least four standard deviations

away from the mean of their subgroup (defined by study and age

bin), were excluded from the analysis.

Genotypes
The genotyping platforms, SNP quality control filters, imputation

software, and reference human genome used varied by study and

are detailed in Tables S2, S5, and S7. Each study imputed the allele

dosages for ~2.5 million SNP genotypes.

Association Analyses within Each Study-Age Bin

Subgroup
Each stage 1 study stratified participants into six 10-year age bins

(20–29 years, 30–39 years, 40–49 years, 50–59 years, 60–69 years,

and 70–79 years) for a total of 28 subgroups (defined by study

and age bin); the CARDIA study used one age bin from 17 to

32 years of age (the entire study sample). For age bins containing

more than 250 individuals, a genome-wide association analysis

(GWAS) of SNP main effects was conducted by regressing each

BP trait (SBP, DBP, MAP, and PP) onto the allele dosage (the

observed [genotyped data] or estimated [imputed data] number

of copies of the coded allele in an individual) while adjusting for

age, age-squared, body-mass-index, gender, and field center (if a

multicenter study). The adjustment for both age and age-squared

allowed age to have a nonlinear main effect on BP as suggested

by multiple longitudinal studies.20–22 The estimated SNP effect

(the coefficient for the allele dosage) from the GWAS represented

the BP change associated with each copy of the coded allele in

that age bin. The GWAS analysis software used by each stage 1

study is detailed in Table S2. Genomic control was applied to the

GWAS results from each stage 1 subgroup to control for popula-

tion stratification (the genomic inflation factors, l, ranged from

0.977 to 1.057; see Table S3).

The stage 2 and Singapore studies adopted a similar strategy:

they stratified participants into 10-year age bins, combining adja-

cent age bins when necessary to achieve a sufficient sample size

(two studies used an age bin for 20- to 39-year-olds, one study

used an age bin for 60- to 79-year-olds, and another used age

bins for 35- to 49-year-olds and 50- to 64-year-olds). Because

many of the stage 2 and Singapore studies had smaller sample sizes

than did the stage 1 studies, the association analysis was per-

formed in all subgroups containing more than 124 individuals
e American Journal of Human Genetics 95, 24–38, July 3, 2014 27



(see Tables S5 and S7 for analysis software). After stage 1 analysis,

the SNP with the smallest p value by the 2 df test, the ‘‘index’’ SNP,

was chosen to represent each locus for each trait. The stage 2 and

Singapore analyses were conducted only for these index SNPs, and

therefore no genomic control was applied to their analyses. In all

stages of this investigation, family-based studies maintained inde-

pendence between bins and applied analysis methods to account

for correlations between family members in the same bin.
Harmonization of Subgroup-Specific Association

Results
The association results were harmonized to ensure that the beta

coefficients from different subgroups represented the effect of

the same allele on the BP trait. Autosomal SNPs were aligned to

the positive strand of HapMap release 22 via NCBI Build 36. The

LiftOver utility mapped SNP coordinates between NCBI builds.

We supplemented the quality control performed by the individual

studies by excluding (1) genotyped SNPs called in fewer than 90%

of participants or with Hardy-Weinberg p < 10�6 and (2) imputed

SNPs with r2 < 0.3 (ratio of the empirically observed variance of

the allele dosage to the expected binomial variance). We further

excluded SNPs with fewer than 40 copies of the minor allele in

any stage 1 subgroup or fewer than 20 copies in the stage 2 or

Singapore subgroups.
Aggregate Analyses
Metaregression to Reveal SNP-Age Interactions

For each BP trait (SBP, DBP, MAP, and PP), we collected the esti-

mated SNP effects and standard errors (multiplied by the square

root of the genomic inflation factor) from the stage 1 subgroup

analyses. We performed a metaregression of the SNP association

coefficients onto an intercept and the median age of the subgroup

(using PROCMIXED in SAS 9.1, SAS Institute).We let ai be the SNP

main effect and agei be the median age of included individuals

from the GWAS of the subgroup indexed by i. We fit the regression

ai ¼ b0 þ b1*agei þ ei, where the errors, ei, were assumed to be

independent and normally distributed with zero means and vari-

ances equal to that of the SNP coefficients from the subgroup-

specific association analyses. The coefficient for the median age

(b1) represented the change in the SNP effect with each year of

age (the gene-age interaction) and the intercept (b0) represented

the hypothetical SNP effect at age 0; the predicted SNP effect at

a particular age was the addition of the intercept and the product

of that age and the coefficient for age.

We performed a joint 2 degree of freedom (df) likelihood ratio

test that there was no SNP main effect or SNP-age interaction

(b0 ¼ 0 and b1 ¼ 0). We also performed a 1 df test of the SNP-age

interaction (b1 ¼ 0), although this test was used to gauge whether

interaction was driving the 2 df test and whether the 1 df interac-

tion test could enhance gene discovery efforts. After metaregres-

sion, we applied genomic control to the joint 2 df tests (l varied

between 1.07 and 1.09) and 1 df interaction tests (l varied between

1.02 and 1.03); Figure S1 contains the quantile-quantile plots for

the raw p values.

We identified all suggestive (5 3 10�8 < p % 10�6) and signifi-

cant (p % 5 3 10�8) results from the joint 2 df tests for each trait

and divided them into distinct loci based on regional plots that

extended up to one megabase in each direction from the most-

significantly associated SNP (r2 < 0.4 considered separate loci);

we selected one index SNP (the most-significantly associated

by the 2 df test) for each locus-trait combination and conducted
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separate metaregressions with the stage 2 subgroups. We then

conducted a combined metaregression of all stage 1 and stage 2

subgroups for each index SNP-trait combination.

Main-Effects-Only Meta-analysis of Index SNPs

To determine whether the index SNP-trait associations would have

been detected in a main-effects-only analysis, we conducted an

inverse-variance weighted meta-analysis of SNP main effects by

using the stage 1 and combined stages 1 and 2 subgroups (with

SAS v.9.1). Genomic control was applied to the stage 1 meta-anal-

ysis results for each trait (l varied between 1.10 and 1.17; see

Figure S1) because the inflation factors were available. No genomic

control adjustment was applied to the main-effects-only meta-

analysis of stage 2 subgroups because we analyzed only the index

SNPs.

Evaluating Significant Stage 1 and Combined Stages 1 and 2 Results in

Singapore Subgroups

For each index SNP that achieved genome-wide significance in

either the stage 1 or the combined stages 1 and 2 metaregression

analyses, we conducted a joint 2 df test and a 1 df main-effects-

only test using all Singapore subgroups. We performed both

the main-effects-only and joint 2 df tests to evaluate potential

differences in aging and interactions across populations. The age

distributions in Singapore and stage 1 were similar (4.7% and

7.5% of participants were under 40 years of age, respectively,

versus 21.9% of participants in stage 2), so we followed up signif-

icant SNPs from stage 1 even if they were not significant in the

combined analysis with stage 2. Loci with main effects or linear

gene-age interactions limited to those more than 40 years of age

might be detected in the stage 1 and Singapore subgroups only.

To maintain a 0.05 level of significance, a Bonferroni adjustment

was applied for the two tests and the number of index SNPs chosen

for that trait.

Secondary Within-Age Bins Meta-Analysis

We conducted an inverse-variance weighted meta-analysis of the

SNPmain effects separately within each age bin (i.e., meta-analysis

using all subgroups in the 20–29 years age bin). We used the

METAL software23 to perform the genome-wide meta-analysis in

each age bin that contained two or more stage 1 studies. The

30–39 years age bin contained only one study, so five meta-ana-

lyses were conducted for each BP trait. Genomic control was

applied after meta-analysis (l varied between 1.00 and 1.045; see

Table S17). Significant and suggestive associations from each

meta-analysis were separated into loci (regions that were sugges-

tive/significant were narrow and spanned <110 kilobases each).

The index SNP chosen to represent each locus-trait association

was followed up in a combined meta-analysis of all stage 1 and

stage 2 subgroups from the corresponding age bin, as well as the

Singapore subgroups. Because some replication bins used different

age ranges, the median of the replication bin determined age bin

membership. The TRAILS cohort was included in replication

analyses for the 20- to 29-year-olds.
Results

Table 1 displays the age distribution of the subjects in

each stage 1 and stage 2 study. The narrow age ranges in

CARDIA, CHS, and TRAILS demonstrate the utility of the

age bin approach; these studies would have contributed

little information to the meta-analysis if we incorporated

gene-age interactions into these study-level analysis even



Table 1. Age Distribution of Each Stage 1 and Stage 2 Study

Study

Number of Individuals in Each Age Bin

20–29 30–39 40–49 50–59 60–69 70–79

Stage 1 Metaregression: 28 GWASs with N ¼ 55,796

AGES 1,260 1,603 265

ARIC 2,392 4,772 2,142

CARDIA 1,713

CHS 1,230 1,672

FHS 533 1,926 2,608 1,916 537

MESA 342 708 726 563

RS1 910 2,060 1,419

RS II 740 851 321

WGHS 7,219 10,386 4,271 711

Total 2,246 1,926 13,821 21,035 12,082 4,686

Stage 2 Metaregression: 59 GWAS with N ¼ 43,445

BHS 276 223 225 207 204

CoLaus 534 1,437 1,334 1,195 443

EPIC 442 775 819 371

Fenland 388 607 404

KORA S3 191 984 419

LifeLines 393 1,576 3,039 1,893 899 288

MIGen 124 527 391 154

NESDA 340 361 424 422

PREVEND 853 980 820 650

PROCARDIS 649 2,399 3,362 640

SardiNIA 287 232 268 257 204

SHIP 550 729 726 760 733 560

SUVIMAX 819 854

TRAILS CC 266

TRAILS Pop 1,290

YFS 1,562 686

Total 3,126 6,403 10,982 11,529 8,695 2,710

Age bins that encompassed more than one decade were assigned the bin con-
taining their median age.
though they provided information on undersampled age

groups. For the stage 1 meta-analysis of gene-age interac-

tions, we analyzed 28 GWASs (one for each study and

age bin subgroup) per trait representing 55,796 individuals

of European ancestry. We then followed up the significant

(p% 53 10�8) and suggestive (53 10�8< p% 10�6) loci in

a combined analysis of the stage 1 subgroups with 59 stage

2 subgroups comprised of 43,445 participants of European

ancestry. A Singapore sample, which included 19 sub-

groups containing 8,682 Chinese, Indian, and Malay indi-

viduals, was used to assess the interethnic generalizability
Th
of significant findings. An overview of the primary results

is provided in Figure 2.

Metaregression of Blood Pressure onto Age:

Identifying Linear Gene-Age Interactions

In themetaregression of stage 1 subgroups, 13 loci attained

genome-wide significance and 17 loci exhibited suggestive

evidence for at least one BP trait by a 2 df joint test of the

SNPmain effect and SNP-age interaction (see Tables S8, S9,

S10, S11, and S12). Ten of these 30 loci were not reported

in published GWAS results, including the Fer-1-like 5

(FER1L5) locus that achieved genome-wide significance.

Eleven of the significant or suggestive loci demonstrated

nominal (p % 0.05) evidence of age dependency through

the 1 df test of SNP-age interaction. For each trait, we

selected an index SNP (most significantly associated by

the 2 df test) to represent each significant or suggestive

locus so that the stage 2 analyses could be conducted.

A total of 63 index SNP-trait combinations were followed

up across the 30 loci. A total of 20, 17, 22, and 4 SNPs

were followed up for SBP, DBP, MAP, and PP, respectively

(Figure S2 contains the regional association plots for the

stage 1 analyses, created with LocusZoom24).

As shown in Table 2, 20 loci harbored index SNPs that

were significant in the combined metaregression of stage

1 and stage 2. The strongest statistical evidence for interac-

tion was provided by the EH domain binding protein 1-like

1 (EHBP1L1) locus associated with MAP (p¼ 2.93 10�7 for

the 1 df interaction test); this locus was discovered only

through the inclusion of the age interaction (Figure S2

contains the regional plot for this locus). Of the 20 loci

that achieved genome-wide significance, 9 exhibited at

least nominal (p% 0.05) evidence of gene-age interactions

(see Table 2). The index SNPs in CASZ1 (MIM 609895),

EHBP1L1, and GOSR2 (MIM 604027) exhibited the largest

modulation of BP effects by age (as shown by the magni-

tude of the interaction coefficients), with the coded alleles

increasing their respective BP traits in young individuals

but decreasing them in older individuals (see Figure 3).

For these three loci, the estimated difference in SNP effects

on the primary trait for 20-year-olds compared to 80-year-

olds ranged from 1.17 mmHg to 1.58 mmHg. The age at

which the variant changed direction of effect was ~27

years for GOSR2, 33 (SBP) to 36 (MAP) years for CASZ1,

and 41 (MAP) to 42 (DBP) years for EHBP1L1.

As shown in Table S13, five loci (EHBP1L1, CASZ1,MAP4

[MIM 157132]-CDC25A [MIM 116947], CCDC71L-PIK3CG

[MIM 601232], GOSR2) would have been missed by the

two-stage main-effects-only meta-analysis but were

captured by the two-stage joint 2 df tests. Four of these

five loci (MAP4-CDC25A, CCDC71L-PIK3CG, EHBP1L1,

GOSR2) lacked suggestive main effects in the stage 1

main-effects-only analysis and would not have been fol-

lowed up in stage 2, and the CASZ1 locus would have

been followed up but failed to achieve genome-wide signif-

icance in the combined stage 1 and stage 2 main-effects-

only analysis.
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Figure 2. Overview of Results from Each Stage of the Primary Analysis
In summary, the joint analysis of SNP main effects

and SNP-age interactions by metaregression identified 20

genome-wide significant loci, 9 of which exhibited nomi-

nal gene-age interactions. Five loci, including the EHBP1L1

locus with the strongest statistical evidence of interaction,

were missed when SNP-age interactions were excluded

from the model.

Generalizability of Genome-wide Significant

Associations to Singapore Subgroups

We examined the interethnic generalizability of the 47

index SNP-trait associations (from 22 loci) that achieved

genome-wide significance in the metaregression of stage

1 subgroups only (AGT [MIM 106150] and FER1L5 loci)

or in the metaregression of the combined stage 1 and stage

2 subgroups (the 20 loci in Table 2). We evaluated 13, 15,

17, and 2 SNPs for SBP, DBP, MAP, and PP, respectively;

however, two SNPs were not available in the Singapore

subgroups. Because of the potential differences in aging

and interactions across ethnic populations, we performed

the SNP main-effects-only test and the joint 2 df test in

the meta-analysis of Chinese, Indian, and Malay sub-
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groups from Singapore. After a Bonferroni correction for

the planned number of SNPs tested per trait and the two

tests performed, 2, 1, 2, and 0 SNPs met the significance

threshold for SBP (p % 1.92 3 10�3), DBP (p % 1.67 3

10�3), MAP (p % 1.47 3 10�3), and PP (p % 0.0125),

respectively, corresponding to three loci replicating an

association for at least one BP trait. The Singapore sub-

groups confirmed an association between EHBP1L1 and

DBP (main effects only p ¼ 8.33 10�4), as well as the asso-

ciations between SBP and MAP with the PRDM8-FGF5

(MIM 165190) and ATP2B1 (MIM 108731) loci.

As shown in Table S13, the index SNPs in CASZ1,

CCDC71L-PIK3CG, EHBP1L1, and GOSR2, which were

identified through the joint 2 df test in the primary anal-

ysis, had stronger evidence of main effects (p < 0.05)

than interactions (tested with the joint 2 df test) in

Singapore subgroups. The missense variant in FER1L5

that was significantly associated with DBP in the stage 1

analysis demonstrated nominal (p ¼ 0.03) evidence of a

main effect in the same direction in the meta-analysis of

Singapore subgroups. In addition, an intronic variant

(rs11741255) in C5orf56 that demonstrated suggestive



Table 2. Significant Findings from the Combined Metaregression of Stage 1 and Stage 2 Subgroups

SNP ID Chr
Position
(in basepairs) Genomic Location

Primary
Trait

Other
Trait(s) NS N

Ref
Freq

Ref
All

p Value Main-
Effects-Only
Model

Metaregression Model with SNP Main Effect and Age Interaction (2 df)

b0 se(b0) b1 se(b1)
p Value of
Interaction

p Value of
2 df Test

At Least Nominal Evidence (p < 0.05) of Interactions

rs880315 1 10,719,453 intron CASZ1 SBP MAP 56 74,498 0.64 T 2.35 3 10�7 0.861 0.353 �0.026 0.007 1.52 3 10�4 1.21 3 10�9*

rs6797587 3 48,172,618 near 30 CDC25A MAP DBPa 87 99,189 0.68 G 4.69 3 10�11* 0.748 0.202 �0.008 0.004 0.04 4.36 3 10�11*

rs11099098 4 81,388,936 intergenic (PRDM8-FGF5) SBP MAP 81 96,217 0.29 T 2.85 3 10�13* �0.199 0.335 0.016 0.007 0.02 1.56 3 10�13*

rs198846 6 26,215,442 downstream HIST1H1T DBP MAPa 87 99,207 0.84 G 1.78 3 10�13* 0.088 0.250 �0.011 0.005 0.03 1.48 3 10�13*

rs12705390 7 106,198,013 intergenic (CCDC71L-
PIK3CG)

PP 87 99,094 0.78 G 1.08 3 10�12* 0.281 0.264 �0.014 0.005 0.006 2.42 3 10�13*

rs7070797 10 63,221,779 intergenic (C10orf107-
ARID5B)

MAP SBP, DBPa 87 99,189 0.84 G 6.31 3 10�19* 0.014 0.282 0.012 0.006 0.02 5.62 3 10�19*

rs4601790 11 65,110,482 intron EHBP1L1 MAP DBP 87 99,188 0.27 G 0.001 0.909 0.220 �0.022 0.004 2.90 3 10�7 9.93 3 10�9*

rs11072518 15 73,021,663 upstream COX5A MAP SBP, DBP 87 99,189 0.36 T 3.91 3 10�21* 0.973 0.192 �0.010 0.004 0.006 1.11 3 10�21*

rs17608766 17 42,368,270 intron or UTR 30

of GOSR2
PP 86 97,437 0.84 T 5.62 3 10�9* 0.524 0.322 �0.019 0.006 0.003 4.49 3 10�10*

Joint Test Driven by Main Effects Only

rs7537765 1 11,809,890 intron CLCN6 MAP SBPa, DBP 87 99,181 0.16 G 1.66 3 10�19* �0.957 0.249 0.008 0.005 0.12 5.58 3 10�19*

rs6707357 2 164,722,539 intergenic (FIGN-GRB14) SBP 87 99,177 0.45 T 1.49 3 10�11* �0.634 0.268 0.004 0.005 0.50 1.03 3 10�10*

rs7733138 5 157,807,971 intergenic (nearest
gene EBF1)

MAP DBPa 87 99,189 0.39 T 6.01 3 10�13* 0.006 0.194 �0.007 0.004 0.05 8.75 3 10�13*

rs4841569 8 11,489,586 intergenic (BLK-GATA4) SBP MAP 82 97,928 0.57 G 5.56 3 10�10* 0.140 0.311 0.008 0.006 0.21 2.03 3 10�9*

rs1813353 10 18,747,454 intron CACNB2 MAP SBP, DBP 87 99,189 0.68 T 1.29 3 10�17* 0.564 0.202 �0.003 0.004 0.52 1.13 3 10�16*

rs11191454 10 104,649,994 intron AS3MT SBP 84 97,234 0.08 G 6.50 3 10�12* �0.320 0.484 �0.011 0.010 0.25 2.98 3 10�11*

rs1801253 10 115,795,046 missense ADRB1 MAP SBPa, DBP 82 97,928 0.27 G 7.71 3 10�14* �0.336 0.215 �0.002 0.004 0.71 6.86 3 10�13*

rs381815 11 16,858,844 intron PLEKHA7 MAP 87 99,189 0.25 T 3.31 3 10�9* 0.028 0.217 0.006 0.004 0.16 9.26 3 10�9*

rs2681472 12 88,533,090 intron ATP2B1 SBP DBPa, MAP 87 99,177 0.17 G 4.59 3 10�23* �0.483 0.348 �0.008 0.007 0.24 2.84 3 10�22*

rs3184504 12 110,368,991 missense SH2B3 MAP SBP, DBPa 87 99,187 0.48 T 1.17 3 10�21* 0.325 0.186 0.003 0.004 0.47 1.09 3 10�20*

rs260014 20 57,192,854 upstream ZNF831 MAP SBPa, DBP 82 97,941 0.85 T 1.50 3 10�11* �0.302 0.284 �0.004 0.006 0.49 1.02 3 10�10*

Abbreviations are as follows: Chr., chromosome; NS, number of study and age bin subgroups included in the analysis; N, number of participants represented by the analysis; Ref Freq, frequency of the coded allele; Ref All, the
coded allele; se, standard error; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure. The primary trait had the minimum p value for the joint 2 df test of the index SNP in
that locus. The other traits column indicates nonprimary traits significantly associated with SNPs in this locus.
aThe index SNP for this trait differed from the index SNP for the primary trait (see Tables S8, S9, S10, S11, and S12). The p value main effect test was derived from themodel containing only the SNPmain effect (i.e., test that the
intercept is zero). For themodel containing the SNPmain effect andage interaction,b0 is the theoretical SNPeffect onbloodpressure (inmmHg) atbirth (age¼0) andb1 is the change in theSNPeffect onbloodpressure (inmmHg)
per 1 year increase in age; the estimated SNP effect at a particular age was the addition of the intercept and the product of that age and the coefficient for age. Asterisks (*) indicate values that achieve genome-wide significance.
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Figure 3. CASZ1, EHBP1L1, GOSR2, the Three Loci Exhibiting the Largest SNP-Age Interactions during the Combined Metaregres-
sion of Stage 1 and Stage 2 Subgroups
The figures display the SNP effect as a function of age. Study- and age bin-specific genetic effects from stage 1 and stage 2 are represented
by red squares and blue circles, respectively, with the symbol size proportional to the inverse variance of the SNP main effect. The cor-
responding stage 1, stage 2, and combined consortia metaregressions are represented by red long-dashed, blue dashed-dotted, and green
solid lines, respectively. The coded alleles of all three index SNPs are associated with increased blood pressure in the young but reduced
blood pressure in the elderly.
evidence in the stage 1 analysis but that appeared to be

driven by main effects achieved nominal (p ¼ 0.04) evi-

dence of a main effect in the same direction in the meta-

analysis of the Singapore subgroups. The C5orf56 index

SNP, only 6.1 kb away from interferon regulatory factor 1

(IRF1 [MIM 147575]), had a much larger effect size

(2.28 mmHg versus 0.35 mmHg) and smaller minor allele

frequency (0.02 versus 0.40) in Singapore subgroups than

in stage 1 subgroups. Variants near or in C5orf56 have

been associated with biomarkers and diseases of inflamma-

tion such as for fibrinogen,25,26 C-reactive protein,27 and

Crohn disease.28,29

In summary, the Singapore samples confirm associations

between BP and the EHBP1L1, PRDM8-FGF5, and ATP2B1

loci. Many of the loci found through age interactions in

the populations of European descent exhibited stronger

evidence of main effects in Singapore samples, indicating

potential interethnic heterogeneity in age interactions.

Using the One Degree-of-Freedom Test to Detect

Interactions

In the primary analysis, we used the 1 df interaction test to

determine whether the associations identified by the joint

2 df test were driven by SNP main effects alone. To gauge

the role of the 1 df interaction test in finding interaction

loci, we repeated the two-stage metaregression analyses

with the 1 df interaction test instead of the joint 2 df

test. Only three loci exhibited significant (RAB31 [MIM

605694]) or suggestive (EHBP1L1 and PGBD4-KATNBL1)

associations by the 1 df interaction test in the stage 1 anal-

ysis (see Tables S14, S15, and S16); the coded allele of SNP

rs7233332 in an RAB31 intron was associated (p ¼ 2.95 3

10�8) with a decrease in PP for individuals aged<49.5 years

and an increase in PP thereafter. However, this significant

association failed to replicate in the stage 2 or Singapore

subgroups. None of these suggestive or significant loci

achieved genome-wide significance for the 1 df interaction

test using the combined stage 1 and stage 2 analysis

(see Table S16). Thus, the 1 df interaction test failed to pro-
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duce any novel or known replicated loci, underscoring the

importance of the joint 2 df test for identifying gene-age

interactions.

The Secondary Analysis: Exploring Age-Specific

Genetic Effects

As a secondary analysis, we explored age-specific genetic

effects by meta-analyzing the GWAS results (SNP main

effects) within each age bin separately (e.g., 20- to

29-year-old subgroup only). The second age bin (30- to

39-year-olds) contained only one study in stage 1; there-

fore, five age-bin-specific meta-analyses were conducted

per trait. A total of 22 distinct loci (31 SNP-trait combina-

tions) were significantly or suggestively associated with

BP traits in the stage 1 analyses, yielding, respectively, 9,

6, 12, and 4 loci for SBP, DBP, MAP, and PP (see Tables

S18, S19, S20, S21, and S22). Each locus was significant

or suggestive in only one age bin; it is unlikely that a single

10-year age bin will isolate the age-dependent effect, and

therefore the lack of a supportive pattern in adjacent bins

may indicate a false positive or may be due to statistical

issues (such as the lack of data for a meta-analysis in the

adjacent 30- to 39-year age bin, differences in sample sizes

between bins, or differences in study composition between

age bins [such as the CARDIA study, which is present only

in the youngest age bin]). In total, we identified six loci

in the 20–29 years age bin (N z 2,200), five loci in the

40–49 years age bin (N z 13,800), six loci in the 50–59

years age bins (N z 21,000), four loci in the 60–69 years

age bin (N z 12,100), and one locus in the 70–79 years

age bin (N ¼ 3,014). Thirteen of these loci (see Table 3),

including all six in the youngest age bin and the lone

finding in the oldest age bin, lacked strong evidence in

the literature and failed to achieve even suggestive associ-

ations in the main-effects-only meta-analyses and SNP-

age metaregressions using all age bins. This demonstrates

the importance and promise of meta-analysis across

cohorts within age bins. In the 20- to 29-year-olds, a SNP

(rs16833934) in a locus near microRNA 1263 (MIR1263)



Table 3. Selected Significant and Suggestive Findings from the Within-Age-Bin Meta-analysis of Stage 1 Subgroups

Age
Bin

rs Number
(NCBI 36) Chr. Position

Genomic
Location

Ref
Allele Trait

No.
Studies N

All
Freq

b (in
mmHg) se (b) l p Value

Direction
of Effects

20–29 rs16833934 3 165,219,944 intergenic
near
MIR1263

G DBP 2 2,242 0.26 �1.63 0.29 1.00 1.39 3 10�8* - -

MAP 2 2,241 0.26 �1.33 0.27 1.02 7.12 3 10�7 - -

rs12195230 6 97,606,768 intron
KLHL32

G SBP 2 2,246 0.75 1.79 0.35 1.01 4.60 3 10�7 þþ

rs12195036 6 166,371,687 near
LINC00602

T MAP 2 2,241 0.95 �3.11 0.61 1.02 5.04 3 10�7 - -

rs2702888 8 6,752,442 DEFB1-
DEFA6

G PP 2 2,242 0.65 �1.36 0.27 1.00 3.87 3 10�7 - -

rs2196122 11 4,842,124 OR51H1P-
OR51H2P

G SBP 2 2,246 0.84 1.91 0.38 1.01 7.20 3 10�7 þþ

rs10143078 14 69,951,242 intron
SYNJ2BP

C SBP 2 2,246 0.04 �4.06 0.81 1.01 5.93 3 10�7 - -

40–49 rs825937 2 4,785,902 near
LINC01249

C PP 5 13,810 0.83 0.83 0.16 1.01 2.32 3 10�7 þþþþþ

rs11816631 10 99,552,562 SFRP5-
GOLGA7B

G PP 3 9,946 0.06 1.99 0.39 1.01 2.95 3 10�7 þþþ

50–59 rs3118867 9 89,451,515 intron
DAPK1

G DBP 7 21,033 0.47 �0.49 0.09 1.05 3.87 3 10�7 - - - - - - -

MAP 7 21,035 0.47 �0.55 0.11 1.04 4.12 3 10�7 - - - - - - -

60–69 rs4638749 2 108,250,474 downstream
SULT1C3

G DBP 8 12,082 0.76 �0.81 0.16 1.03 6.13 3 10�7 þ- - - - - - -

rs4841895 9 136,563,863 RXRA-
COL5A1

G MAP 8 12,082 0.65 0.81 0.16 1.02 7.62 3 10�7 þþþþþþþþ

rs747685 17 721,801 intron NXN T MAP 8 12,082 0.86 1.50 0.30 1.02 6.32 3 10�7 þþþþþþþþ

rs747687 17 722,084 intron NXN G DBP 8 12,082 0.86 1.37 0.26 1.03 1.50 3 10�7 þþþþþþþþ

70–79 rs603788 10 78,881,268 intron
KCNMA1

G DBP 4 3,014 0.50 1.73 0.35 1.00 9.37 3 10�7 þþþþ

MAP 4 3,014 0.50 2.08 0.42 1.01 8.84 3 10�7 þþþþ

Abbreviations are as follows: Chr, chromosome; Ref Allele, coded allele; N, number of participants meta-analyzed in the age bin; All Freq, coded allele frequency; b,
effect of each copy of the coded allele on blood pressure; se(b), standard error of the b; l, genomic inflation factor in that age bin. Age bins 1 through 6 comprised
individuals 20 to 29 years old and subsequently in 10 year increments. Asterisk (*) indicates value achieves the p % 5 3 10�8 threshold for significance.
was significantly (p ¼ 1.39 3 10�8) associated with a

1.63 mmHg reduction of DBP per copy of the G allele.

Although none of the index SNPs from the 13 loci listed

in Table 3 were significant in the combined stage 1 and

stage 2 analysis (see Table S22), the significant association

near the microRNA in the young is biological plausibile

because microRNAs can change gene expression during

aging.30 Four known loci (FIGN [MIM 605295]-GRB14

[MIM 601524], PRDM8-FGF5, AS3MT [MIM 611806],

POC1B [MIM 614784]-ATP2B1) achieved genome-wide sig-

nificance during the stage 1 or combined stage 1 and stage

2 within-age bins analysis; these loci had decent stage 1

(N z 14,000 to 21,000) and stage 2 (N z 11,000) sample

sizes, were associated with BP in the 40–49 or 50–59 years

age strata, and were implicated in the main effects meta-

analyses with all age bins.

In summary, age-specific genetic effects can influence BP

and designing studies to leverage age specificity, particu-

larly in the young, may enhance gene-discovery efforts.
Th
Discussion

Identifying gene-environment interactions that influence

common complex traits and diseases is an arduous task.

Linkage and candidate gene studies indicate the presence

of environment-dependent genetic effects, yet few have

been identified through published genome-wide interac-

tion studies.31–45 The complex genetic and environmental

architecture underlying blood pressure is no exception.

Even though previous epidemiological studies suggest

age-dependent effects, we identified 20 loci for BP in the

analysis of 99,241 participants of European descent (N ¼
55,796 in stage 1 and N¼ 43,445 in stage 2), 9 of which ex-

hibited nominal evidence of gene-age interactions. Index

SNPs in CASZ1, EHBP1L1, and GOSR2 exhibited the largest

gene-age interactions, with the coded alleles increasing

BP traits in the young and decreasing them in the old.

The effect of each of these SNPs on a BP trait may change

by as much as 1.58 mmHg over 60 years.
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The EHBP1L1 locus demonstrated the most compelling

evidence for gene-age interactions: it exhibited no appre-

ciable main effects and its discovery depended on the

inclusion of gene-age interactions. A missense variant

(rs6591182) in EHBP1L1 was suggestively associated with

lobular inflammation in women with nonalcoholic fatty

liver disease;46 this variant was 4,150 basepairs from our

index SNP but was in low linkage disequilibrium (r2 ¼
0.315). Our index SNP (rs4601790) was associated with

the expression of the small ubiquitin-like modifier-1

(SUMO1 [MIM 601912]; p ¼ 4 3 10�5) in HapMap CEU

samples,47 which causes posttranslational modifications

in proteins influencing apoptosis, gene transcription, and

protein stability. SUMO-1 negatively regulates reactive ox-

ygen species production from NADPH oxidases in human

vascular smooth muscle cells;48 the overproduction of

reactive oxygen species has been implicated in cardiovas-

cular and age-related disease.48 Other potential BP effectors

near the EHBP1L1 index SNP include potassium channel

subfamily K member 7 (KCNK7 [MIM 603940]), mitogen-

activated protein kinase 11 (MAP3K11 [MIM 600050] is a

positive regulator of JNK signaling pathway), and micro-

RNA 4690 (MIR4690).

Several biological phenomena could contribute to gene-

age interactions. For example, intracellular levels of cyclic

adenosine monophosphate (cAMP) may connect aging

and the effect of the known CASZ1 locus on BP. Basal levels

of cAMP may vary by age49 and changes in intracellular

cAMPmay alter CASZ1b and CASZ1amRNA levels.50 These

CASZ1 isoforms encode zinc finger transcription factors

involved in cell survival and tumor suppression.50 After

tetracycline induction of CASZ1 in neuroblastoma cell

lines, 125 genes experienced expression level changes

R1.5-fold, including the potential BP effectors tyrosine

hydroxylase (MIM 191290; catalyzes the rate-limiting

step in the synthesis of catecholamines), dopamine beta-

hydroxylase (MIM 609312), angiotensin II receptor type

1 (MIM 106165), and endothelin receptor type A (MIM

131243).51 Thus, the dynamic nature of gene expression

and posttranslational protein modification could contri-

bute to gene-age interactions.8,9,52 A lifetime of behavioral

and environmental exposures can trigger epigenetic mech-

anisms, such as DNA methylation, histone modification,

andmicroRNA expression, causing changes in gene expres-

sion during aging.30 Increased generation of reactive oxy-

gen species and oxidative damage with age may mediate

the accumulation of posttranslational modifications to

proteins, thereby causing aging and age-related diseases

like hypertension.53 Changes in the cardiovascular envi-

ronment, such as the increased vascular stiffness that

often accompanies aging, may result in enhanced or

muted genetic effects on BP. This is clinically relevant

because different treatment strategies might be warranted

at different ages if the mechanisms of BP regulation vary

across the age spectrum.

We gleaned several important lessons from this investi-

gation. First, the two loci that were significantly associated
34 The American Journal of Human Genetics 95, 24–38, July 3, 2014
with PP (CCDC71L-PIK3CG and GOSR2) lacked corrobora-

tion from any other trait, indicating that the PP asso-

ciation might be independent of SBP and DBP. Second,

careful sample selection might balance the need for

massive sample sizes. The <30-year-old age bin yielded

six significant or suggestive loci using z2,240 individuals

from two studies; these loci were not detected in the meta-

regression or main effects meta-analysis using all age bins.

Young-onset hypertension is postulated to have a stronger

genetic basis than older-onset hypertension54 because the

latter may be modulated by the accumulation of behav-

ioral and lifetime exposures. We can reduce the sample

size by recruiting individuals at the age when the genetic

effect is the strongest55 or by analyzing longitudinal

(repeated-measures) data. The latter increases the probabil-

ity that participants are examined at the age of largest

genetic effect for the largest number of variants while

providing stronger evidence of causation6 and further

insight into the landscape of hypertension genetics over

an individual’s lifespan. An alternate explanation for the

discovery of significant loci in the <30-year-olds, which

also supports careful sample selection, is a more accurate

phenotype due to less confounding by antihypertensive

medications; frequent use of antihypertensives may have

masked putative associations in the older age groups.

The third lesson we learned was that genetic replication

may depend on the age distribution of the replication sam-

ple if gene-age interactions are present. The utilization of

the main-effects and interaction tests may help remedy

the nonreplication of genetic findings across samples

and ethnicities.5 Our EHBP1L1 locus, identified only

through gene-age interactions using individuals of Euro-

pean ancestry, replicated using main effects only in

Singapore subgroups. In addition, three of the four known

loci discovered only through gene-age interactions using

cohorts of European ancestry had stronger evidence of

main effects in Singapore subgroups, perhaps due to the

limited age range of the latter (three of the four Singapore

studies contained only individuals over 40 years old).

Gene-age interactions coupled with different age distri-

butions might contribute to the observed interethnic

heterogeneity of BP loci.

The age bin approach we used has some advantages

compared to the standard practice (meta-analysis of

study-specific GWASs that adjust for age only through sim-

ple covariate adjustments). We adjusted for body mass

index (BMI), gender, age, age-squared, and field center in

the GWAS conducted within each age bin; the possibility

of these coefficients varying across age bins contrasts

with traditional unstratified GWAS where the same adjust-

ment is applied for each covariate across all age bins.

Because the effect of BMI, gender, and the SNP may differ

by age, adjustments applied within each bin might pro-

duce more accurate estimates of all the covariate effects,

thus potentially amplifying the SNP effects. Furthermore,

themetaregression of the age-bin resultsmade it possible to

include all studies for investigating gene-age interactions,



even those like CARDIAwith a narrow age range (17- to 32-

year-olds) that contribute little information otherwise

(when gene-age interactions are incorporated into the

study-specific analysis).

A drawback is that our age bin method required a larger

computational and data management burden than the

standard approach. The standard approach would have

required nine GWASs per trait in the stage 1 analysis,

whereas we analyzed 28 GWASs per trait. We also

managed an additional 78 files per trait for the stage 2

and the Singapore analyses, bringing our total data man-

agement burden to 106 files per trait (in total, we analyzed

424 files for the 4 BP traits instead of 120 if we did not use

the age bin approach, a 3.5-fold increase in the data man-

agement burden). Because many studies have unstratified

GWAS results available for common traits like SBP and

DBP, reanalysis using age bins may have deterred study

participation. Our sample size was also slightly reduced

compared to the standard approach. We omitted individ-

uals in age bins with insufficient sample sizes (<250 for

stage 1 samples and <124 for stage 2 samples) and, in or-

der to maintain independence across age bins, included

family members from only one age bin. This reduced

the sample size and hence reduced the power; this,

coupled with fitting an extra parameter to the model for

the interaction, may explain why we missed some of the

known BP-associated loci. Similarly, a few stage 2 studies

combined adjacent age bins to achieve the threshold

sample size for analysis. The estimated SNP effect at the

median age in these wide and sparse age bins may have

greater error, impacting our ability to detect gene-age

interactions in the metaregression and secondary meta-

analyses.

Our analysis was predicated on several assumptions. The

within-age-bin meta-analyses indicated that our assump-

tion of linear interactions and additive main effects may

not be valid. We may need to expand the toolbox of

methods and develop new statistical models to properly

capture complex gene-age interactions.52 We made the

implicit assumption of a strong correlation between bio-

logical and chronological age;56 this correlation may differ

across individuals and populations, and age may be a very

different construct due to disparities in environment and

lifestyle. For example, an association identified in 30- to

40-year-olds in one population may manifest in 50- to

60-year-olds in another population. There may even be

heterogenity of aging within a population; conditions

such as metabolic syndrome may be associated with pre-

mature vascular stiffness and biological aging. We assumed

that the same covariates were important in all age strata.

Because BP levels are often modulated by various diseases

in the elderly, different covariate adjustments may en-

hance our ability to explain the genetic variability in the

older age groups. We decided a priori to use a fixed-effects

metaregression model that ignored any heterogeneity in

SNP effects not due to age. We ignored heterogeneity due

to other population attributes and assumed that there
Th
was one true SNP effect at each age (the fixed effects model)

rather than a distribution of true SNP effects at each age

(the random effects model).

There were some additional limitations to our analysis.

The method we used to infer the underlying BP in treated

participants ignored the number, dose, and type of anti-

hypertensive medications taken and might not accurately

impute the blood pressure, particularly in resistant indi-

viduals or those on multiple medications. There were

also differences in genotyping and reference panels for

imputation across the studies and we restricted analysis

to the index SNPs in the Singapore studies. Given that

the allele frequencies and linkage disequilibrium patterns

may differ across populations, this might hinder our

ability to find these gene-age interactions in Singapore

samples. Although BP physiology may be different in

the female and male lifecourse due to hormonal regula-

tion and menopause, we ignored sex-specific gene-age in-

teractions.6 Although important, stratifying by age bin

and sex would have resulted in GWASs of inadequate sam-

ple sizes for many of the studies included in this investi-

gation and lower statistical power. Two of the studies,

CARDIA (stage 1) and TRAILS (stage 2), were designed to

study young adults and adolescents, respectively, and

contributed individuals under age 20; the inclusion of

these young participants did not drive the significance

of loci identified by the 2 df test because these were still

significant for at least one trait when both studies were

omitted from the analysis. Lastly, and importantly, this

study was designed as a two-staged discovery; all prom-

ising gene-age interactions observed require replication

in additional large independent samples with a diverse

range of ages.

We report nine BP-associated loci whose effects might be

age dependent, including the EHBP1L1 locus, which ex-

hibited the strongest statistical evidence of interaction

and was discovered only through the inclusion of gene-

age interactions. Our results highlight the context-depen-

dent nature of genetic effects and demonstrate that

modeling age-dependent effects can enhance our under-

standing of the temporal regulation of known genes and

identify additional genes influencing intraindividual vari-

ation in complex traits like BP.
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Note Added in Proof
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of more than 150,000 individuals of European descent identified

a BP-associated SNP near (55 kb away; r2 ¼ 0.47) our finding in

EHBP1L1. The variant identified by Tragante et al. exhibited main

effects, whereas our SNP exhibited only gene-age interactions.

Tragante, V., Barnes, M.R., Ganesh, S.K., Lanktree, M.B., Guo, W.,

Franceschini, N., Smith, E.N., Johnson, T., Holmes, M.V., Padma-

nabhan, S., et al. (2014). Gene-centric meta-analysis in 87,736

individuals of European ancestry identifies multiple blood-pres-

sure-related loci. Am. J. Hum. Genet. 94, 349–360.
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