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Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic

studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged

the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect

genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged

over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci

(p < 5 3 10�8); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23

(rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837,

near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a

nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit

BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of

genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.
1Departments of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; 2Division of Preventive Medicine, Brigham

and Women’s Hospital, Boston, MA 02215, USA; 3Harvard Medical School, Boston MA, 02115, USA; 4Framingham Heart Study, National Heart, Lung, and

Blood Institute, Framingham, MA 01702, USA; 5Department of Mathematics, Boston University, Boston, MA 02215, USA; 6Institute for Translational Ge-

nomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; 7Department of Pediatrics, Harbor-UCLA Medical

Center, Torrance, CA 90502, USA; 8Department of Epidemiology, Erasmus University Medical Center, ’s-Gravendijkwal 230, 3015 Rotterdam, the

Netherlands; 9Department of Internal Medicine, Erasmus University Medical Center, ’s-Gravendijkwal 230, 3015 Rotterdam, the Netherlands; 10Cardiovas-

cular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; 11Research Center for Human Genetics, Brown

Foundation Institute of MolecularMedicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; 12Icelandic Heart Association,

201 Kopavogur, Iceland; 13Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; 14Department of Cardiology, Peking University First Hospital,

Beijing 100034, China; 15Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns-Hopkins University School of

Medicine, Baltimore, MD 21205, USA; 16Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospitals, 1211 Geneva,

Switzerland; 17Center for Population Studies, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA; 18Division of Cardiovascular Sciences,

National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA; 19Department of Biostatistics, University of Washington, Seattle, WA 98195, USA;
20Divisions of Epidemiology and Cardiology, Department of Medicine, Boston University School for Medicine, Boston, MA 02118, USA; 21Cardiovascular

Research Center and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; 22Medical Genetics Research Institute,

Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; 23Department of Preventive Medicine, Northwestern University Feinberg School of Medicine,

Chicago, IL 60611, USA; 24Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD 20892, USA; 25Department of

Cardiology, Peking University Third Hospital, Beijing 100191, China; 26Clinical Pharmacology and the Genome Centre,WilliamHarvey Research Institute,

Barts and The London School of Medicine and Dentistry, QueenMary University of London, London EC1M 6BQ, UK; 27NIHR Barts Cardiovascular Biomed-

ical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK; 28Human Genetics Center, University of Texas Health Sciences Center at

Houston, Houston, TX 77030, USA; 29Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, Bethesda,

MD 02892, USA; 30Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; 31Human Genomics Laboratory, Pennington Biomed-

ical Research Center, Baton Rouge, LA 70808, USA; 32Department of Epidemiology, University ofWashington, Seattle, WA 98101, USA; 33Netherlands Con-

sortium for Healthy Aging, Netherlands Genomics Initiative, 2593 the Hague, the Netherlands; 34Department ofMedicine, Columbia University, New York,

NY 10032, USA; 35Centre for Medical Systems Biology, Netherlands Genomics Initiative, 2593 the Hague, the Netherlands; 36Human Genetics Center,

School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; 37Boston University School of Medicine, Boston,

MA 02118, USA; 38Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
39These authors contributed equally to this work
40These authors contributed equally to this work

*Correspondence: sganesh@umich.edu (S.K.G.), aravinda@jhmi.edu (A.C.)

http://dx.doi.org/10.1016/j.ajhg.2014.06.002. �2014 by The American Society of Human Genetics. All rights reserved.

The American Journal of Human Genetics 95, 49–65, July 3, 2014 49

mailto:sganesh@umich.edu
mailto:aravinda@jhmi.edu
http://dx.doi.org/10.1016/j.ajhg.2014.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.06.002&domain=pdf


Introduction

Blood pressure (BP) is a quantitative trait that varies both

within subjects, according to diurnal patterns and longer-

term changes (across weeks or months because of changes

in environmental and physiologic influences), and be-

tween subjects, according to environmental factors and

genetic determinants. Measurement error adds a third

source of variability to BP quantification. These sources

of variability present a challenge for the detection of

genetic associations with BP given that the genetic com-

ponent is a relatively small portion of overall variability.

As it stands, the known genetic determinants of complex

quantitative traits, such as BP, are common polymor-

phisms with small allelic effects that require very large

sample sizes for detection. However, if measurement errors

could be reduced, the statistical power could be improved.

Hypertension is an important major cardiovascular risk

factor affecting approximately one-third of the adult

population globally and estimated to contribute to 13.5

million deaths yearly.1 Therefore, further improvements

in methods for signal detection in BP genetic association

studies are important.

Most epidemiologic and genetic association studies of BP

use single-visit, or ‘‘visit 1’’ (V1), measurements of BP.2–5

The standard protocol is to take multiple measurements at

a single point in time, discard the highest (first) value, and

average the rest to account for the ‘‘white-coat effect.’’6

Although these V1 BP traits have proved valuable, they

might be unrepresentative of an individual’s BP norm as

might be assessed from multiple BP measurements for an

individual across years. The use of such longitudinal

phenotype data, also known as repeated measures, might

alleviate some of the effects of measurement error and

similar sources underlying continuous traits, such as BP.

Simple averaging of repeated measurements presents a

straightforward opportunity to reduce phenotypic vari-

ability and thereby increase power to detect associations

while utilizing existing sample sizes. The utility of such

long-term average (LTA) procedures to study BP genetic

association has not been assessed. In this investigation,

we quantitatively explored the nature and degree of impro-

vement of genetic associations by LTA analyses of BP traits.

We performed genome-wide association studies (GWASs)

of LTA BP traits within multiple longitudinal community-

based cohorts in which BP traits have been measured at

multiple visits over several years of follow-up.7 For com-

parison, we also conducted parallel GWASs of V1 BP in

these same cohorts. We identified four loci associated

with BP traits in the LTA analyses; we also conducted

replication analyses by using independent samples with

V1 BP measurements and showed definitive replication

of two loci and nominal association at a third locus. We

compared the results of the LTA discovery analyses to the

corresponding V1 findings for the number of loci detected

and the characteristics of SNP associations within the

detected loci.
50 The American Journal of Human Genetics 95, 49–65, July 3, 2014
Material and Methods

Study Subjects
For the discovery analyses, the phenotype and genotype data of

46,629 individuals from eight participating longitudinal popula-

tion studies collaborating with the Cohorts for Heart and Aging

Research in Genomic Epidemiology (CHARGE) Consortium,7 the

Age, Gene/Environment Susceptibility (AGES) Reykjavik Study,

the Atherosclerosis Risk in Communities (ARIC) Study, the Cardio-

vascular Health Study (CHS), the Framingham Heart Study (FHS),

the Rotterdam Study (RS), the Women’s Genome Health Study

(WGHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and

Coronary Artery Risk Development in Young Adults (CARDIA)

were analyzed for LTA BP and V1 BP trait genome-wide associa-

tions after adjustment for covariates. Only individuals of Euro-

pean ancestry, as confirmed by principal-component analysis of

genetic ancestry, were included in this analysis. For the replication

analyses, V1 BP data from 34,433 individuals across 17 cohorts

participating in the Global BP Genetics (GBPG) Consortium and

5,056 individuals in the Peking University – University of Michi-

gan Study of Atherosclerosis (PUUMA) were analyzed by identical

methods.5 All participants gave written informed consent for

participation in their respective studies and the conduct of genetic

research, and the studies in which the subjects were enrolled

were approved by their respective institutional review boards.

Detailed information on each participating study is provided in

the Supplemental Data, available online.
BP Phenotypes
BP in each study was measured according to protocols described in

the cohort descriptions in the Supplemental Data. The traits

analyzed were systolic BP (SBP), diastolic BP (DBP), mean arterial

pressure (MAP), and pulse pressure (PP) as continuous traits. PP

was defined as SBP minus DBP, and MAP was defined as two-thirds

DBP plus one-third SBP. BP at each visit was corrected for antihy-

pertensive medication use by the addition of 10 mmHg to the

observed SBP value and 5mmHg to the observed DBP value. These

adjustments were also implemented prior to the calculation of

estimated off-treatment MAP and PP. To obtain the LTA BP traits,

we averaged repeated BP measurements for study participants;

individuals with two, three, or four repeated BP measures at least

1 year apart and within a 15-year timespan were included in our

analyses. For the ARIC cohort, we removed outliers greater than

4 SD units from the mean at each visit, but we did not remove

outliers from the other cohorts. Follow-up measurements beyond

15 years were not included in this analysis; individuals with only

one BP measurement were also excluded. At each study visit, we

performed linear regression, including adjustment for age, age-

squared, gender, body mass index, and study-specific corrections

for population substructure (based on principal-component anal-

ysis) to generate visit-specific BP residuals. These residual values

were subsequently averaged over all available visits, and the final

averaged residual was the LTA trait analyzed (termed LTA SBP,

LTA DBP, LTA MAP, and LTA PP). In the analyses of V1 BP traits,

BP values at the earliest visit among those included in this study

were analyzed. To facilitate comparisons of the LTA and V1 ana-

lyses, we conducted the V1 analyses in the same individuals

included in the LTA analyses. We adjusted V1 BP traits for anti-

hypertensive medication use and performed linear regression by

using covariate adjustment in a manner identical to what has

been done in prior V1 BP association analyses.4



Genotyping and Quality Control
Each study in the discovery LTA and V1 analyses genotyped sam-

ples by using high-density SNP marker platforms (Affymetrix

SNP6.0 in ARIC, CARDIA, and MESA; Affymetrix 500K in the

FHS; Illumina 370K in the AGES Reykjavik Study, CHS, and

WGHS; and Illumina 550K in the RS). Genotypes were imputed

to a set of approximately 2.5 million HapMap SNPs with the use

of HapMap Phase II CEU individuals (Utah residents with ancestry

from northern and western Europe from the CEPH collection) as a

reference and either MACH (ARIC, AGES Reykjavik Study, FHS,

MESA, RS, and WGHS), BEAGLE (CARDIA), or BIMBAM (CHS)

software. Similar methods were used in the replication cohorts.

Further details of SNP genotyping and quality-control measures

used for each cohort have been previously published.2,4,5

Statistical Association and Meta-analysis
Individual SNP association statistics were calculated for each SNP

meeting quality-control criteria via linear regression for LTA and

V1 BP traits. In each cohort, except in the FHS, association analysis

was performed with PLINK8 with linear regression under an addi-

tive genetic model. In the FHS, family structure was modeled with

a linear mixed-effects model implemented in R.9 Regression coef-

ficients and corresponding SEs for each SNP and trait were meta-

analyzed by inverse-variance-weighted meta-analysis to provide

the primary findings. Genomic control10 was applied to individual

study results and to the final meta-analysis results to control

effects possibly due to population stratification or cryptic related-

ness. The statistical-significance threshold was set at the p value of

5.0 3 10�8. For loci where variants showed significant associa-

tions, we examined the linkage-disequilibrium (LD) patterns

with SNAP;11 we assumed that loci with r2 < 0.3 were effectively

independent associations.

Replication Analyses Using V1 BP Traits
For replication analyses, we carried forward the five trait-locus

associations that we identified in our discovery LTA analyses but

that were not found in single-visit BP data in European-ancestry

individuals from GBPG and Chinese-ancestry individuals from

PUUMA. Details on the cohorts used for reproducibility analyses

are provided in the Supplemental Data. There are no sufficiently

sized replication cohorts with LTA traits to our knowledge, and

we elected to include as many samples as possible in a meta-anal-

ysis to increase power for the discovery analysis. Because the

follow-up association testing performed in the GBPG Consortium

and PUUMA participants was based on V1 data rather than trait

averages, as in our LTA discovery analyses, this experiment does

not constitute a true statistical ‘‘replication analysis’’ but rather a

biological one that might be partly underpowered.We used a Bon-

ferroni correction for the number of SNP-trait associations tested

for each of the four BP traits. To assess associations close to a

genome-wide significance threshold (p < 5 3 10�8), but not yet

meeting this criterion, we used V1 BP traits to test all LTA-analysis

SNPs with p < 5.0 3 10�7 in the GBPG Consortium V1 data.

Simulation of Statistical Power
We conducted computer simulations to evaluate the change in

statistical power to detect associations by using LTA versus V1 BP

traits as a function of sample size and effect size. The genome-

wide significance level was set to p < 5 3 10�8. We simulated

phenotypic data across four visits, as well as SNP data with

different allele frequencies and different effect sizes. Phenotype
Th
data were simulated from a multivariate normal distribution

with correlation structures based upon those observed in the

ARIC Study. Next, we simulated genotype for a single SNP by

setting the minor allele frequency to 0.05, 0.1, 0.2, 0.3, or 0.4

and then randomly drawing genotypes as 0, 1, or 2, with probabil-

ities p2, 2pq, or q2, respectively, by assuming Hardy-Weinberg

equilibrium. We tested three scenarios in these simulation tests:

(1) in V1, we took simulated SBP measurements from V1 only

and ignored the following three visits and regressed SBP onto

each SNP; (2) in LTA, we averaged the four visits and performed

a linear regression of SBP onto each SNP; (3) in a third analysis,

using generalized estimating equations (GEEs), we included data

from all four visits in a model with an exchangeable correlation

structure between the visits. In initial experiments, assuming a

sample size of 1,000, we repeated our simulations 10,000 times

(with independent sampling of both phenotype and genotype

data from their distributions) and computed the proportion of

times when a SNP was significantly associated with the trait. To

estimate power in a more representative case, such as for the

ARIC cohort, we assumed a sample size of 10,000 and repeated

the simulations.
Analysis of Signal Enrichment by LTA in Comparison

with V1 BP Trait Associations
Using the LTA and V1 association results on the same 46,553

individuals, we used the Kolmogorov-Smirnov (K-S) statistic

to compare each region’s –log10 p values meeting criteria for

genome-wide significance (p < 5 3 10�8) to evaluate whether

LTA results showed departure of the association statistics from

the distribution of corresponding V1 association statistics. This

analysis was performed to compare LTA SBP with V1 SBP and to

compare LTA DBP with V1 DBP. Regions with at least one SNP

marker with p < 5 3 10�8 in either LTA or V1 analyses were

selected for enrichment analysis. Regions were defined by the

lead SNP and by the LD-pruned list of SNPs in the region (r2> 0.3).
Analysis of Expression Quantitative Trait Loci
For the purpose of annotating our findings, we searched for

primary SNPs identified in our LTA analyses and LD proxies

against a collected database of expression SNP (eSNP) results

from several tissues. Using SNAP,11 we identified alias rsIDs

for rs445925. SNAP also helped us identify four further proxy

SNPs (rs72654473, rs80125357, rs7412, and rs283810) in LD

(r2 > 0.5) in four HapMap builds. SNP rsIDs were searched for

primary SNPs and LD proxies against a collected database of

eSNP results.12–60 The collected eSNP results met criteria for

statistical thresholds for association with gene transcript levels,

as described in the original papers, for several tissues. mRNA

quantitative trait loci (QTLs) were also queried for gluteal and

abdominal adipose.12

Additional expression QTL (eQTL) data were integrated from

online sources, including ScanDB, the Broad Institute GTex

browser, and the Prichard Lab (see Web Resources). Data on cere-

bellum, parietal lobe, and liver eQTLs were downloaded from

ScanDB; cis-eQTLs were limited to those with p < 1.0 3 10�6, and

trans-eQTLs were limited to those with p < 5.0 3 10�8. The top

1,000 eQTL results were downloaded (on November 26, 2013)

from the GTex Browser at the Broad Institute for nine tissues:

thyroid, leg skin (sun exposed), tibial nerve, tibial artery, skeletal

muscle, lung, heart (left ventricle), whole blood, and subcutaneous

adipose.14 All GTex results had associations with p < 8.43 10�7.
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Table 1. Summary of Discovery Cohorts, Sample Sizes, and Visits for the LTA Analyses

Cohort
No. of
Visits

No. of
Individuals

Age at First
Visit in
Years (SD)

Age at Last
Visit in
Years (SD)

Mean
BMI in
kg/m2 (SD)

Mean
SBP in
mmHg (SD)

Mean
DBP in
mmHg (SD)

Antihypertensive
Therapy at
First Visit

Antihypertensive
Therapy at
Last Visit

AGES Reykjavik
Study

2 526 66.0 (7.0) 78.5 (5.9) 26.2 (3.9) 141.4 (18.8) 82.1 (8.7) 24% 65%

ARIC Study 4 7,310 54.3 (5.7) 63.1 (5.6) 27.0 (4.9) 118.5 (17.0) 71.7 (10.0) 26% 40%

CARDIA 4 1,671 32.6 (3.3) 45.8 (3.4) 25.6 (5.1) 106.3 (11.4) 67.8 (9.5) 0.9% 11%

CHS 4 3,159 72.4 (5.4) 75.3 (5.4) 26.3 (4.5) 138.7 (22.5) 72.2 (11.9) 35% 41%

FHS original
cohort

4 660 74.4 (4.5) 85.6 (4.0) 26.7 (4.6) 148.1 (23.5) 72.9 (11.3) 49% 60%

FHS offspring 4 3,235 50.7 (9.8) 61.0 (9.5) 26.8 (4.9) 127.4 (20.0) 79.7 (10.6) 15% 32%

MESA 4 2,414 62.7 (10.2) 66.9 (10.2) 27.7 (5.1) 123.5 (20.5) 70.1 (9.9) 33% 45%

RS 1 4 4,710 67.9 (8.2) 75.5 (6.2) 26.3 (3.6) 140.4 (22.8) 74.9 (11.7) 22% 37%

RS 2 4 1,535 63.7 (2.3) 67.9 (7.2) 27.2 (4.1) 143.4 (21.6) 79.7 (11.1) 21% 30%

WGHS 3 21,409 54.7 (7.0) 65.2 (6.8) 25.9 (4.9) 124.8 (15.4) 77.3 (9.7) 13% 43%

Abbreviations are as follows: AGES, Age, Gene/Environment Susceptibility; ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CARDIA, Coronary
Artery Risk Development in Young Adults; CHS, Cardiovascular Health Study; DBP, diastolic blood pressure; FHS, Framingham Heart Study; MESA, Multi-Ethnic
Study of Atherosclerosis; RS, Rotterdam Study; SBP, systolic blood pressure; and WGHS, Women’s Genome Health Study.
Results

Longitudinal Analysis of BP

The discovery analyses of LTA BP traits were conducted in a

sample size of 46,629 individuals, whose characteristics,

including age, sex, and trait summaries, are summarized

in Table 1. Our overall study design is shown in Figure S1.

By requiring each study participant included in the LTA

analyses to have two or more BP measurements, we ex-

cluded a total of 8,887 individuals with data at V1 only

across the cohorts (Table S1) and consequently analyzed

46,553 individuals for both the LTA and V1 analyses re-

ported. Information on the specific visits included in the

LTA analyses is provided in Table S2. Phenotypic correla-

tions were performed in the ARIC cohort on the average

LTA and V1 residuals we analyzed (Figure 1) and showed

r > 0.7 (the V1 measurement was included in the LTA

measurement, and thus correlation was expected).

Meta-analysis of GWASs for LTA BP Traits for

Discovery of Genetic Associations

When individual cohort results were combined via inverse-

variance-weighted meta-analysis, 488 SNP-trait associa-

tions at 19 independent loci (r2 < 0.3 between SNPs)

reached genome-wide significance (p < 5 3 10�8) (Table

2). Quantile-quantile p value plots are shown in Figure S2,

and genomic-control inflation factors (lGC) ranged from

1.055 to 1.095 for the LTA traits (Table S3) and were com-

parable for V1 SBP (1.076) and V1 DBP (1.066). The �log10
p value genome-wide association plots for SBP and DBP

are shown in Figure 2, and those forMAP and PP are shown

in Figure S3. In total, there were 39 trait-locus combina-

tions with at least one genome-wide significant associa-

tion. We identified 13 loci associated with LTA SBP, ten
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loci associated with LTA DBP, 11 loci associated with LTA

MAP, and five loci associated with LTA PP (all are sum-

marized in Table 2). The complete set of SNPs identified

is provided in Table S4. For the purpose of annotating

the associations identified in our analyses, index SNPs

and proxies were checked for eQTL associations. Some

SNPs showed associations with expression levels, includ-

ing with genes with known BP roles (e.g., AGT [MIM

106150] and NPR3 [MIM 108962]). The loci identified in

this analysis, but not previously described, did not show

new eQTL associations, suggesting that mechanisms of

effect are not mediated through regulation of gene expres-

sion. The full results are summarized in Table S5.

Replication Studies

For follow-up, we focused on the five SNP-trait associations

that we identified in the LTA analyses but that had not

been identified in prior studies of V1 BP (Table 3). We con-

ducted replication analyses of independent samples not

studied in the discovery work by using pooled V1 data

from 23 GBPG Consortium cohorts—for a total sample

size of 34,433 individuals of European ancestry5—and

5,605 Han Chinese individuals from PUUMA. Clinical

summaries have been previously published for the GBPG

Consortium. 5 Clinical summaries for PUUMA are pro-

vided in Table S6. We tested the lead SNP from each

region identified in our LTA analyses for its associa-

tion with each corresponding V1 trait and corrected for

the number of regions tested (the p value threshold was

0.05 / 1 ¼ 0.05 for LTA SBP, LTA DBP, and LTA MAP and

0.05 / 2 ¼ 0.025 for LTA PP). The GBPG Consortium and

PUUMA results were combined in a fixed-effects meta-

analysis and demonstrated significant association between

chromosomal region 2p23 (KCNK3 [MIM 603220]) and



Figure 1. LTA versus V1 SBP and DBP Re-
siduals in the ARIC Cohort
The final averaged residuals for LTA SBP
and LTA DBP (n ¼ 8,778) are plotted on
the y axis against the corresponding V1
SBP and V1 DBP residuals on the x axis.
both MAP (p ¼ 0.0091) and SBP (p ¼ 0.0079) and between

chromosomal region 6p21 (CRIP3) and PP (p ¼ 0.0041), all

of which met the Bonferroni-corrected threshold (Table 4).

A nominal association (p < 0.05) was noted between re-

gion 7p13 (IGFBP3 [MIM 146732]) and PP (Table 4). In

the individual replication groups, we observed positive

replication for two SNP-trait associations in the GBPG

Consortium V1 replication analyses (p ¼ 0.030 between

chromosomal region 2p23 [KCNK3] and SBP and p ¼
0.0067 between region 6p21 [CRIP3] and PP). In two of

the remaining loci, there was a nonsignificant trend (p <

0.10) of association (between 2p23 [KCNK3] and MAP

and between 7p13 [IGFBP3] and PP). In the PUUMA study,

replication was observed for the association between chro-

mosome region 2p23 (KCNK3) and MAP (p ¼ 0.0079).

Plots of the –log p value for these regions are shown in

Figure S6.

To assess overall rates of replication, including for

known signals, in the GBPG Consortium V1 data, we as-

sessed the associations for all SNPs where the LTA associa-

tion analyses provided p < 5.0 3 10�7 (213 SNPs for LTA

SBP, 186 SNPs for LTA DBP, 273 SNPs for LTA MAP, and

225 SNPs for LTA PP). In the analysis of these top SNPs,

we reproduced associations (p < 5 3 10�7) in the GBPG

Consortium V1 data for 13/16 DBP-associated loci, 14/18

SBP-associated loci, 15/18 MAP-associated loci, and seven

PP-associated loci (Table S7). Restricting testing to the loci

with genome-wide significant association results in the

LTA analyses and association p values < 5 3 10�8 resulted

in reproduction of associations at 11/13 SBP-associated

loci, 8/10 DBP-associated loci, 9/11 MAP-associated loci,

and 4/4 PP-associated loci (Table S7). Thus, the overall

replication rates in this analysis were 83% (49/59) and

84% (32/38) for p< 53 10�7 and p< 53 10�8, respectively.

Comparing LTA and V1 BP Association Patterns to

Evaluate the Impact of LTA

Using exactly the same samples and genotypes as in the

discovery LTA analyses, we conducted a secondary analysis
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of V1 BP traits for the purpose of char-

acterizing the difference between LTA

BP and V1 BP associations. Overall,

we identified more loci meeting

genome-wide significance thresholds

in the LTA analyses than in the V1

analyses. In the LTA analyses, we

observed 488 SNP-trait associations

with p < 5 3 10�8 in 19 loci (117 for

LTA SBP, 96 for LTA DBP, 155 for LTA
MAP, and 120 for LTA PP); in the corresponding V1 ana-

lyses, we observed 402 SNP-trait associations with p <

5 3 10�8 (122 for V1 SBP, 126 for V1 DBP, 153 for V1

MAP, and 1 for V1 PP) (Figure S4). At the p value threshold

of 53 10�7, we identified 897 SNP-trait associations in the

LTA analyses (213 for LTA SBP, 186 for LTADBP, 273 for LTA

MAP, and 225 for LTA PP) and 570 SNP-trait associations

in the V1 analyses (163 for V1 SBP, 182 for V1 DBP, 222

for V1 MAP, and 3 for V1 PP) (Table S8). Overall, these

data show that the LTA analyses yielded a greater number

of significant associations. The V1 results in the same sam-

ples as the LTA analyses are shown for the top LTA loci in

Table 5; they show a large degree of concordance in both

analyses but a greater yield from the LTA analyses.

To further evaluate the impact of LTA, we performed

additional comparisons between the LTA and V1 BP asso-

ciation statistics by focusing on SBP and DBP results only.

Comparisons of beta estimates, SEs, and chi-square values

demonstrated the impact of averaging on the SE of the

phenotypic estimate (Figure S5). Correlations between

the genome-wide LTA and V1 association statistics were

high; the correlations of standardized effect estimates

were r2 ¼ 0.82 for SBP and r2 ¼ 0.80 for DBP. When

restricted to the sentinel SNP-trait associations for SBP

(13 SNPs) and DBP (ten SNPs), the correlations of the beta

estimates were higher at r2 ¼ 0.99 for both SBP and DBP.

In comparisons of the LTA and V1 association results,

the p values for LTA SBP and LTA DBP summary results

were generally lower than the corresponding V1 results

(Table 5). However, in some regions, the association

p values were lower in the V1 analyses, demonstrating

that LTA might not enrich association signals in all

genomic regions. We assessed the distribution of the lead

LTA-identified SNPs (p < 5 3 10�8) across all loci by

comparing the number of SNPs found at the tails of the

ranked p value distribution for each trait in the LTA and

V1 analyses. In each of the four traits, there was substantial

enrichment of signals at the tails of the p value distribution

in the LTA analyses (Table S9).
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Table 2. Summary of LTA Discovery Analyses for Loci with SNP-Trait Association p Values < 5 3 10�8

SNP ID Allele Chr Position In Gene Closest Gene Genes in LD Block Beta SE p Value

LTA DBP

rs13306561 a 1 11,788,391 MTHFR MTHFR NPPA-AS1, CLCN6, MTHFR, NPPA 0.48 0.07 2.08 3 10�10

rs2004776 t 1 228,915,325 AGT AGT AGT 0.35 0.06 3.20 3 10�8

rs7599598a a 2 96,715,567 FER1L5 FER1L5 FER1L5 �0.31 0.05 2.91 3 10�8

rs198823 t 6 26,230,912 NA HIST1H2BC HIST1H1T, HIST1H4A, HIST1H2BB,
HIST1H3C, HIST1H3A, HIST1H2BC,
TRIM38, HFE, HIST1H2AB, HIST1H2AC,
HIST1H3B, HIST1H4B, HIST1H4C,
HIST1H1A, HIST1H1C

�0.33 0.06 6.57 3 10�9

rs12258967 c 10 18,767,965 CACNB2 CACNB2 CACNB2 0.35 0.06 2.48 3 10�9

rs12244842 t 10 63,109,192 C10orf107 C10orf107 C10orf107 �0.38 0.06 7.05 3 10�9

rs2681472 a 12 88,533,090 ATP2B1 ATP2B1 ATP2B1, LOC338758 0.52 0.07 4.01 3 10�13

rs3184504 t 12 110,368,991 SH2B3 SH2B3 TRAFD1, PTPN11, RPL6, ALDH2,
ATXN2, TMEM116, ERP29, MAPKAPK5,
ADAM1, SH2B3, C12orf51, C12orf47,
NAA25, ACAD10, BRAP

0.39 0.05 6.08 3 10�13

rs1133323 t 15 72,999,278 NA COX5A CSK, CPLX3, COX5A, SCAMP2, C15orf17,
MPI, ULK3, LMAN1L, MIR4513

�0.33 0.05 2.66 3 10�9

rs6092743 a 20 57,133,765 NA C20orf174 NA 0.50 0.08 1.11 3 10�8

LTA SBP

rs880315 t 1 10,719,453 CASZ1 CASZ1 MTOR, C1orf127, TARDBP, EXOSC10,
C1orf187, FBXO2, FBXO6, MAD2L2,
MTHFR, FBXO44, SRM, PTCHD2, MASP2,
UBIAD1, CASZ1, ANGPTL7, AGTRAP

�0.71 0.10 7.98 3 10�12

rs13306561 a 1 11,788,391 MTHFR MTHFR NPPB, NPPA-AS1, CLCN6, MTHFR, NPPA 0.88 0.12 6.38 3 10�12

rs1275988a t 2 26,767,868 NA KCNK3 KCNK3 �0.60 0.09 2.61 3 10�10

rs6712094 a 2 164,751,706 NA GRB14 NA 0.60 0.10 9.89 3 10�9

rs7733331 t 5 32,864,603 NA C5orf23 NPR3 �0.55 0.09 5.38 3 10�9

rs12705390 a 7 106,198,013 NA PIK3CG NA 0.63 0.11 3.17 3 10�8

rs12258967 c 10 18,767,965 CACNB2 CACNB2 CACNB2 0.63 0.10 4.53 3 10�10

rs7070797 a 10 63,221,779 NA C10orf107 C10orf107 �0.74 0.13 4.30 3 10�8

rs2681472 a 12 88,533,090 ATP2B1 ATP2B1 ATP2B1, LOC338758 0.95 0.12 1.04 3 10�14

rs4766578 a 12 110,388,754 ATXN2 ATXN2 TRAFD1, PTPN11, RPL6, ALDH2, ATXN2,
TMEM116, ERP29, MAPKAPK5, ADAM1,
SH2B3, C12orf51, C12orf47, NAA25,
ACAD10, BRAP

�0.56 0.09 2.82 3 10�9

rs35444 a 12 114,036,820 NA TBX3 NA 0.55 0.09 1.47 3 10�8

rs11072518 t 15 73,021,663 NA COX5A CSK, CPLX3, COX5A, SCAMP2, C15orf17,
CYP1A2, MPI, ULK3, LMAN1L, MIR4513

0.57 0.09 6.54 3 10�9

rs6092743 a 20 57,133,765 NA C20orf174 NA 0.84 0.14 2.25 3 10�8

LTA MAP

rs880315 t 1 10,719,453 CASZ1 CASZ1 CASZ1 �0.46 0.07 5.49 3 10�11

rs13306561 a 1 11,788,391 MTHFR MTHFR NPPB, NPPA-AS1, CLCN6, MTHFR, NPPA 0.61 0.08 1.83 3 10�12

rs2004776 t 1 228,915,325 AGT AGT AGT 0.42 0.07 1.18 3 10�8

rs1275988a t 2 26,767,868 NA KCNK3 KCNK3 �0.39 0.06 1.51 3 10�9

rs12258967 c 10 18,767,965 CACNB2 CACNB2 CACNB2 0.45 0.07 4.98 3 10�11

rs2166122 t 10 63,193,080 C10orf107 C10orf107 C10orf107 �0.48 0.08 1.88 3 10�9

rs2681472 a 12 88,533,090 ATP2B1 ATP2B1 ATP2B1, LOC338758 0.69 0.08 1.77 3 10�16

(Continued on next page)
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Table 2. Continued

SNP ID Allele Chr Position In Gene Closest Gene Genes in LD Block Beta SE p Value

rs3184504 t 12 110,368,991 SH2B3 SH2B3 CUX2, FAM109A, TRAFD1, PTPN11, RPL6,
ALDH2, ATXN2, TMEM116, ERP29,
MAPKAPK5, ADAM1, SH2B3, C12orf51,
C12orf47, NAA25, ACAD10, BRAP

0.45 0.06 1.68 3 10�12

rs35444 a 12 114,036,820 NA TBX3 NA 0.36 0.06 3.20 3 10�8

rs11072518 t 15 73,021,663 NA COX5A CSK, CPLX3, COX5A, SCAMP2, C15orf17,
CYP1A2, MPI, ULK3, LMAN1L, MIR4513

0.43 0.06 8.95 3 10�11

rs6092743 a 20 57,133,765 NA C20orf174 NA 0.64 0.10 3.60 3 10�10

LTA PP

rs880315 t 1 10,719,453 CASZ1 CASZ1 CASZ1 �0.42 0.07 5.45 3 10�9

rs7650227 t 3 41,769,941 ULK4 ULK4 ULK4 0.50 0.08 2.84 3 10�9

rs10948071a t 6 43,388,691 NA CRIP3 CRIP3, SLC22A7, ZNF318 �0.38 0.07 9.06 3 10�9

rs2949837a a 7 45,960,903 NA IGFBP3 NA 0.40 0.07 2.94 3 10�8

rs12705390 a 7 106,198,013 NA PIK3CG NA 0.59 0.08 5.40 3 10�14

Abbreviations are as follows: Chr, chromosome; DBP, diastolic blood pressure; LTA, long-term average; MAP, mean arterial pressure; NA, not available; PP, pulse
pressure; and SBP, systolic blood pressure.
aBP-associated loci found in our LTA analyses.
To study the general magnitude of the effect of LTA on

the statistical power to detect SNP associations, we carried

out a set of simulation experiments. Correlations of SBP

and DBP across the four visits included in the ARIC anal-

ysis ranged from r ¼ 0.60 to r ¼ 0.73 (Table S10A). Using

unstructured correlation structures resulted in similar esti-

mates (data not shown). The simulations showed that LTA

increases power by about 20% in most cases (Tables S10B

and S10C). It can be a much larger increase if the initial po-

wer is very low. GEEs do not improve power over LTA by

any significant amount. By comparison, our LTA results

are largely consistent with the simulation results.

The simulation results are corroborated by the com-

parison of our LTA and V1 results: compared with V1 an-

alyses, LTA analyses identified 17 additional trait-locus

associations (two with DBP, seven with SBP, three with

MAP, and five with PP, for a total of nine additional inde-

pendent loci).

Enrichment Analysis

To further examine the extent of signal enrichment by

LTA and to characterize regions with a lack of enrichment

by LTA, we conducted a number of analyses. First, we

plotted the V1 and LTA association statistics for all regions

identified by either the LTA or the V1 analyses. Chromo-

somal region 12q21 (ATP2B1), which shows the strongest

GWAS association signal for BP to date, and region 2p23

(KCNK3), which demonstrated enrichment of the associa-

tion signal in our study, are shown in Figure 3; all other loci

are shown in Figure S7. We also aligned LTA and V1 results

for each region and calculated the K-S statistic for each re-

gion (Figures S8 and S9) and found that evidence of enrich-

ment by the LTA procedure was specific to 21 trait-locus

associations and that a significant lack of enrichment, or
Th
stronger V1 association signal, was a clear pattern noted

at eight other trait-locus associations. One region showed

mixed effects: some SNP associations were enriched by

LTA, and some were significantly stronger in the V1 ana-

lyses (chromosomal region 3p22, ULK4). In 15 regions,

the results were not significantly enriched in either the

LTA or the V1 analyses (Table S11). Specifically, we identi-

fied enrichment by LTA in six regions for SBP (chromosome

1 nearMTHFR [MIM 607093], chromosome 2 near KCNK3,

chromosome 2 near GRB14 [MIM 601524], chromosome 5

near C5orf23, chromosome 7 near PIK3CG [MIM 601232],

and chromosome 10 near C10orf107); in four regions for

DBP (chromosome 1 in MTHFR, chromosome 5 near EBF1

[MIM 164343], chromosome 6 near HFE [MIM 613609],

and chromosome 12 in SH2B3 [MIM 605093]); in four

regions for MAP (chromosome 1 in CASZ1 [MIM 609895],

chromosome 1 in MTHFR, chromosome 2 near KCNK3,

and chromosome 12 in ATP2B1 [MIM 108731]); and in

three regions for PP (chromosome 6 near CRIP3, chro-

mosome 7 near IGFBP3, and chromosome 7 near PIK3CG).
Discussion

This study was designed to assess the effect of utilizing

LTA of BP traits, from longitudinal measures, to detect

genetic associations. The motivation for our analyses

was to use a procedure that would reduce measurement

errors and other variation sources that lower the statistical

power of the analysis. In our LTA analyses, we discovered

39 trait-variant associations and uniquely identified four

loci (2p23 [near KCNK3] for SBP and MAP, 2q11.2

[in FER1L5] for DBP, 6p21 [near CRIP3] for PP, and

7p13 [near IGFBP3] for PP). Replication testing in 34,433
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Figure 2. GWASs: –Log p Plots for LTA and V1 SBP and DBP Analyses
GWAS –log p plots compare (A) LTA SBP and V1 SBP and (B) LTA DBP and V1 DBP. Regions containing one or more SNPs with p < 5 3
10�8 are in red, and suggestive associations (p < 5 3 10�7) are shown in blue.
independent European-ancestry samples and 5,600 Chi-

nese-ancestry samples with V1 BP data definitively

confirmed these associations at two (KCNK3 andCRIP3)

of the four discovered loci, and these were carried forward

to replication analyses. At IGFBP3, we found a nominal as-

sociation not meeting statistical significance after adjust-

ment for multiple-hypothesis testing. When we compared

LTA and V1 associations in the same group of individuals,

we observed that in some loci, the p values of LTA traits

were two orders of magnitude lower than the correspond-

ing V1 BP traits. Overall, we demonstrated enrichment of

association signals with LTA by detecting a larger number

of SNPs and loci. Through computer simulations, we esti-

mated this increase in statistical power by LTA to be

~20%, consistent with the results of our analyses of BP

data.

Several sources of variability of BP affect the ability to

detect genetic associations. First, there is physiologic, in-

traindividual variability following both diurnal patterns

and longer-term and less predictable patterns as a result
56 The American Journal of Human Genetics 95, 49–65, July 3, 2014
of individual-specific factors, such as changes in dietary

intake of sodium. Second, there is variation in BP measure-

ment as a result of imprecise measurement techniques and

biases such as digit preference.61 Noise in themeasurement

of a quantitative trait adversely affects power to detect

association signals, essentially by increasing the variance

of the trait, and the study of BP in particular has been a

notable example in which phenotypic imprecision has

hampered our ability to detect alleles.62 Examples of this

impact are also available in clinical pathology, where the

variance for analysis measurements can be high for specific

analyses, and when up to 20% of the variance derives from

intraindividual variation and measurement error, this can

result in a 15%–20% loss in power to detect statistical

associations.63 Averaging has been studied in a number

of epidemiologic applications, to BP and other continuous

traits characterized by variability, where it can improve

parameter estimation.64–67

We examined the statistical properties of the LTA pro-

cedure, and although it is a relatively simple procedure,



Table 3. Loci with SNP-Trait Association p Values < 5 3 10�8 from LTA Discovery Analyses

Trait SNP ID Allele Locus Position Closest Gene Beta SE p Value

LTA DBP rs7599598 a 2q11 96715567 FER1L5 �0.31 0.05 2.91 3 10�8

LTA SBP rs1275988 t 2p23 26767868 KCNK3 �0.60 0.09 2.61 3 10�10

LTA MAP rs1275988 t 2p23 26767868 KCNK3 �0.39 0.06 1.51 3 10�9

LTA PP rs10948071 t 6p21 43388691 CRIP3 �0.38 0.07 9.06 3 10�9

LTA PP rs2949837 a 7p13 45960903 IGFBP3 0.40 0.07 2.94 3 10�8

Abbreviations are as follows: DBP, diastolic blood pressure; MAP, mean arterial pressure; LTA, long-term average; PP, pulse pressure; and SBP, systolic blood
pressure.
there are several important implications of our results.

First, LTA is expected to describe a more accurate estimate

of an individual’s long-term BP value. We averaged two,

three, or four visits—not the maximum number of avail-

able measurements, which could have been up to 15 visits

in some cohorts—in order to keep phenotypic SEs gener-

ally comparable across the cohorts we studied. Other

age-related trends, such as changes in body mass index

(BMI), were accounted for in the visit-specific adjustment

of BP traits by BMI at the corresponding visit. In published

V1 BP association studies, finding associations for DBP

has been more challenging, and there have generally

been fewer findings for DBP than for SBP. Our results

show a similar trend.

The overall improvement in power with LTA has impor-

tant implications for study design in genetic association

studies. For traits with few extraneous sources of ‘‘noise,’’

such as height, weight, or blood analyses measured with

standardized clinical assays (such as lipid and hematology

traits), GWASs have generally been fruitful in that they

yield many positive associations explaining up to ~10%

of the phenotypic variance of these continuous traits. In

the case of traits with many and varied sources of noise,

such as BP, measures to improve phenotypic accuracy

help identify additional loci. Typically, increasing sample

size is the key strategy to increase statistical power, and

this has been done widely in GWASs to detect associations

with modest effect sizes. However, in the GWAS and meta-
Table 4. Reproducibility-Analysis Association Results in the GBPG Con

Trait SNP ID
Closest
Gene

GBPG Consortium V1 BP
Association Results

PUUMA
Associ

Beta SE p Value Beta

V1 DBP rs7599598 FER1L5 �0.04 0.08 6.14 3 10�1 0.001

V1 SBP rs1275988a KCNK3 �0.26 0.12 2.98 3 10�2 �0.79

V1 MAP rs1275988a KCNK3 �0.16 0.08 5.68 3 10�2 �0.72

V1 PP rs10948071a CRIP3 �0.24 0.09 6.69 3 10�3 �0.25

V1 PP rs2949837 IGFBP3 0.15 0.09 9.96 3 10�2 0.34

Abbreviations are as follows: BP, blood pressure; DBP, diastolic blood pressure; G
pressure; PUUMA, Peking University – University of Michigan Study of Atheroscle
aLoci meeting a Bonferroni-corrected replication threshold.

Th
analysis approach, inclusion of additional cohorts to a

meta-analysis might increase potential phenotypic and ge-

netic variability, which cannot be adequately corrected for

in the analysis. Our results demonstrate that trait aver-

aging is a practical way to increase statistical power for

quantitative phenotypes with substantial variability, such

as BP, in population cohorts with longitudinal BP data.

One surprising finding was that some of the associations

identified in the V1 analyses were not detected in the

LTA analyses, and in specific regions, the V1 analyses

yielded stronger significance. A statistical hypothesis for

this finding is regression to the mean, or winner’s curse,

in the LTA analyses. Biologic hypotheses include possible

physiologic intraindividual sources of variation, such as

the known circadian pattern of BP, or variation of clinical

relevance for which mechanisms are not known.68 As

such, we recommend utilizing LTA to improve the pre-

cision of highly variable continuous traits for which

measurement error or uncertainty is known. Further, we

recommend considering concurrent analysis of LTA and

single measurement of traits and an evaluation of any of

the differences between the two sets of results for possible

insights into the mechanism of the genetic association.

LTA can also capture additional useful information. LTA

BP is a clinically relevant phenotype and is associated

with cardiovascular disease (CVD) events and target organ

damage, an intermediate phenotype for subsequent CVD

events.64,69 Although single ‘‘casual’’ BP measurements in
sortium and PUUMA V1 BP Analyses

V1 BP
ation Results

Meta-analysis of GBPG Consortium
and PUUMA V1 BP Association Results

SE p Value Beta SE p Value

0.21 9.95 3 10�1 �0.03 0.07 6.40 3 10�1

0.39 4.54 3 10�2 �0.30 0.11 7.93 3 10�3

0.27 7.85 3 10�3 �0.21 0.08 9.08 3 10�3

0.27 3.56 3 10�1 �0.24 0.08 4.17 3 10�3

0.26 1.94 3 10�1 0.17 0.09 4.68 3 10�2

BPG, Global Blood Pressure Genetics; MAP, mean arterial pressure; PP, pulse
rosis; SBP, systolic blood pressure; and V1, visit 1.
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Table 5. The LTA Lead SNPs Were Investigated in the V1 Analysis of the Same Cohorts and Study Participants

SNP ID Allele Chr Position
Closest
Gene

LTA BP Results in Discovery Samples V1 BP Results in LTA Discovery Samples LTA-V1 Differences

Trait Beta SE p Value Trait Beta SE p Value D Beta D p Value

rs880315 t 1 10,719,453 CASZ1 LTA SBP �0.71 0.10 7.98 3 10�12 V1 SBP �0.68 0.11 7.20 3 10�9 3.05 3 10�2 �7.19 3 10�9

rs13306561 a 1 11,788,391 MTHFR LTA SBP 0.88 0.12 6.38 3 10�12 V1 SBP 0.76 0.14 1.11 3 10�7 �1.21 3 10�1 �1.11 3 10�7

rs1275988 t 2 26,767,868 KCNK3 LTA SBP �0.60 0.09 2.61 3 10�10 V1 SBP �0.47 0.10 1.38 3 10�5 1.33 3 10�1 �1.38 3 10�5

rs6712094 a 2 164,751,706 GRB14 LTA SBP 0.60 0.10 9.89 3 10�9 V1 SBP 0.58 0.11 5.22 3 10�7 �1.49 3 10�2 �5.12 3 10�7

rs7733331 t 5 32,864,603 C5orf23 LTA SBP �0.55 0.09 5.38 3 10�9 V1 SBP �0.41 0.10 1.41 3 10�4 1.46 3 10�1 �1.41 3 10�4

rs12705390 a 7 106,198,013 PIK3CG LTA SBP 0.63 0.11 3.17 3 10�8 V1 SBP 0.54 0.12 2.63 3 10�5 �8.91 3 10�2 �2.62 3 10�5

rs12258967 c 10 18,767,965 CACNB2 LTA SBP 0.63 0.10 4.53 3 10�10 V1 SBP 0.64 0.11 1.53 3 10�8 1.04 3 10�2 �1.48 3 10�8

rs7070797 a 10 63,221,779 C10orf107 LTA SBP �0.74 0.13 4.30 3 10�8 V1 SBP �0.73 0.14 1.17 3 10�6 1.58 3 10�2 �1.12 3 10�6

rs2681472 a 12 88,533,090 ATP2B1 LTA SBP 0.95 0.12 1.04 3 10�14 V1 SBP 0.93 0.13 1.69 3 10�11 �1.65 3 10�2 �1.69 3 10�11

rs4766578 a 12 110,388,754 ATXN2 LTA SBP �0.56 0.09 2.82 3 10�9 V1 SBP �0.65 0.10 1.18 3 10�9 �9.01 3 10�2 1.64 3 10�9

rs35444 a 12 114,036,820 TBX3 LTA SBP 0.55 0.09 1.47 3 10�8 V1 SBP 0.51 0.11 2.63 3 10�6 �3.03 3 10�2 �2.61 3 10�6

rs11072518 t 15 73,021,663 COX5A LTA SBP 0.57 0.09 6.54 3 10�9 V1 SBP 0.73 0.11 2.93 3 10�11 1.61 3 10�1 6.52 3 10�9

rs6092743 a 20 57,133,765 C20orf174 LTA SBP 0.84 0.14 2.25 3 10�8 V1 SBP 1.01 0.16 2.18 3 10�9 1.66 3 10�1 2.03 3 10�8

rs13306561 a 1 11,788,391 MTHFR LTA DBP 0.48 0.07 2.08 3 10�10 V1 DBP 0.48 0.09 1.28 3 10�7 2.50 3 10�3 �1.28 3 10�7

rs2004776 t 1 228,915,325 AGT LTA DBP 0.35 0.06 3.20 3 10�8 V1 DBP 0.44 0.07 1.53 3 10�8 8.31 3 10�2 1.67 3 10�8

rs7599598 a 2 96,715,567 FER1L5 LTA DBP �0.31 0.05 2.91 3 10�8 V1 DBP �0.37 0.07 6.54 3 10�8 �5.75 3 10�2 �3.63 3 10�8

rs198823 t 6 26,230,912 HFE LTA DBP �0.33 0.06 6.57 3 10�9 V1 DBP �0.32 0.07 4.52 3 10�6 1.51 3 10�2 �4.51 3 10�6

rs12258967 c 10 18,767,965 CACNB2 LTA DBP 0.35 0.06 2.48 3 10�9 V1 DBP 0.43 0.07 3.71 3 10�9 7.05 3 10�2 �1.23 3 10�9

rs12244842 t 10 63,109,192 C10orf107 LTA DBP �0.38 0.06 7.05 3 10�9 V1 DBP �0.43 0.08 6.15 3 10�8 �4.89 3 10�2 �5.45 3 10�8

rs2681472 a 12 88,533,090 ATP2B1 LTA DBP 0.52 0.07 4.01 3 10�13 V1 DBP 0.58 0.09 8.68 3 10�11 5.52 3 10�2 �8.64 3 10�11

rs3184504 t 12 110,368,991 SH2B3 LTA DBP 0.39 0.05 6.08 3 10�13 V1 DBP 0.39 0.07 1.26 3 10�8 �7.50 3 10�3 �1.26 3 10�8

rs1133323 t 15 72,999,278 COX5A LTA DBP �0.33 0.05 2.66 3 10�9 V1 DBP �0.42 0.07 4.89 3 10�10 �9.57 3 10�2 2.17 3 10�9

rs6092743 a 20 57,133,765 C20orf174 LTA DBP 0.50 0.08 1.11 3 10�8 V1 DBP 0.71 0.10 3.37 3 10�11 2.04 3 10�1 1.11 3 10�8

rs880315 t 1 10,719,453 CASZ1 LTA MAP �0.46 0.07 5.49 3 10�11 V1 MAP �0.43 0.08 1.47 3 10�7 2.86 3 10�2 �1.47 3 10�7

rs13306561 a 1 11,788,391 MTHFR LTA MAP 0.61 0.08 1.83 3 10�12 V1 MAP 0.57 0.10 1.48 3 10�8 �3.94 3 10�2 �1.48 3 10�8

rs2004776 t 1 228,915,325 AGT LTA MAP 0.42 0.07 1.18 3 10�8 V1 MAP 0.51 0.08 2.45 3 10�9 8.91 3 10�2 9.33 3 10�9

rs1275988 t 2 26,767,868 KCNK3 LTA MAP �0.39 0.06 1.51 3 10�9 V1 MAP �0.34 0.07 7.06 3 10�6 4.63 3 10�2 �7.06 3 10�6

rs12258967 c 10 18,767,965 CACNB2 LTA MAP 0.45 0.07 4.98 3 10�11 V1 MAP 0.50 0.08 5.57 3 10�10 4.52 3 10�2 �5.07 3 10�10
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Th
a population predict CVD,70 LTA BP, also referred to as

‘‘usual’’ BP, has been shown to be an important predictor

of risk for future CVD events beyond single-measurement

BP levels.71 In the clinical setting, treatment for high BP

is typically recommended on the basis of repeated observa-

tions of elevated BP rather than a single elevated BP mea-

surement, given the known variability and the finding

that casual BP measurements might not reliably predict

hypertension.61,72–75 Although precision of the BP esti-

mate is improved, as we have demonstrated here, LTA

has the potential to discard information and thus diminish

signals by averaging as well. BP variability is also associated

with CVD risk, and the finding of decreased association of

signals previously linked to CVD risk (such as the 10p12

locus2) in the LTA analyses suggests that the relationship

between our findings and CVD risk might be imparted

through different mechanisms. This hypothesis would

need to be formally tested through further hypothesis-

driven laboratory experiments.

For the purposes of testing replication of our LTA find-

ings, we conducted follow-up analyses in a set of GBPG

Consortium and PUUMA cohorts not analyzed in the

LTA analyses. However, these analyses were conducted

with V1 BP results rather than LTA BP phenotypes. Also,

the GBPG Consortium included a larger number of cohorts

(17) in the replication testing than in the LTA discovery

phase, increasing the potential variation in effect size

across samples. Regardless, we confirmed association

with V1 BP traits in three of our four regions tested for

replication in samples of diverse ethnicity. The traits we

report are highly correlated, and we take the set of associa-

tions we identified as determinants of BP traits in the gen-

eral population. We compared the results of the analyses

of LTA SBP and LTA DBP to the published findings of

the International Consortium for Blood Pressure (ICBP),

which is currently the largest GWAS and meta-analysis in

individuals of European ancestry (n¼ 69,395).2 At a signif-

icance threshold of p< 53 10�8 in the analyses of LTA SBP

and LTA DBP, we found 19 loci uniquely identified in the

ICBP analysis (but not in our LTA analyses), ten loci iden-

tified by both the ICBP and LTA BP analyses, and six loci

uniquely identified in the LTA BP analyses. Because the

ICBP analysis also included the majority of the

cohorts in our LTA analyses, concordance of many loci

was expected.

We identified four loci in the LTA discovery analyses. We

found an intergenic variant in high LD with SNPs extend-

ing into KCNK3 (also known as TASK1), which encodes a

potassium channel, to be associated with LTA SBP and

LTA MAP. Exome sequencing studies have shown that

rare missense alleles in KCNK3 cause familial forms of pul-

monary hypertension.76 Mice null for Task1 show lower

SBP and have a defect in adrenal gland depolarization

and fail to suppress aldosterone in response to increased

dietary sodium load.77 We analyzed the data presented in

a previously published report of MAP measured invasively

in four Task1-null mice and six wild-type littermate mice78
e American Journal of Human Genetics 95, 49–65, July 3, 2014 59



Figure 3. –Log p Values of Association Tests for ATP2B1 in Chromosomal Region 12q21 Demonstrate Enrichment by LTA
Plots of –log p values of association tests for LTA SBP are shown for (A) the 12q21 ATP2B1 region, known to be robustly associated with
BP, and (B) the 2p23 KCNK3 region, which was identified in this study. Both regions demonstrated enrichment of the association signal
by LTA. The results of the LTA SBP analysis are plotted in black, and the results of the corresponding V1 SBP analysis of the same indi-
viduals are plotted in blue.
in an unpaired t test (unequal variance was assumed) and

found p¼ 0.0034. MAP in the Task1-null mice was approx-

imately 9 mmHg lower (SD 5 2.4 mmHg). In FER1L5,

which was associated with LTA DBP, we identified a non-

synonymous SNP (exon 21: c.2044A>G [p.Thr682Ala]) in

our GWAS analysis. FER1L5 encodes Fer-1-like 5, identified

in C. elegans, and its function has not been defined. Two
60 The American Journal of Human Genetics 95, 49–65, July 3, 2014
loci, near CRIP3 (chromosomal region 6p21) and IGFBP3

(chromosomal region 7p13), were associated with LTA PP.

The index SNP associated with LTA PP in the CRIP3 region

was highly correlated with a nonsynonymous SNP (exon 8:

c.563T>C [p.Ile188Thr]) in cysteine-rich protein 3 (CRIP3),

whose vascular function has not been defined. The insulin-

like growth factors (IGFs) and their binding proteins, of



which IGFBP3 is one, regulate cellular proliferation and

apoptosis, and IGF1 stimulates aortic elastin production

during development.79 The lead SNP associated with LTA

PP was in LDwith SNPs extending across the gene, suggest-

ing a possible functional variant within the gene or gene

regulatory region, although a lack of an eQTL finding

makes the latter less likely. IGFBP3 is expressed in the

endothelium, and mice null for this gene show decreased

retinal vessel growth.80 Serum levels of IGFBP3 are asso-

ciated with measures of aortic stiffness, of which PP is an

indicator,81 and a GWAS of circulating IGFBP3 amounts

in plasma showed an association with IGFBP3 SNPs we

identified.82 Circulating amounts of IGFBP3 are also

related to SBP.83 Consequently, these genes identified by

LTA analysis are highly plausible biological candidates for

BP regulation.

The limitations of this study include loss of sample size

due to the exclusion of individuals with data at only one

visit. In the longitudinal cohorts studied here, the propor-

tion lost to follow-up was low. However, bias might have

also been introduced through studying only those indi-

viduals willing or able to participate at multiple exam cy-

cles. In the discovery analyses, we used European-ancestry

samples. Ethnic differences in interindividual variability

in BP across years have not been not well defined, and

we did not have an opportunity to evaluate this in our

study. Although we gained phenotypic precision with

LTA, we might have also lost information. BP tracking

over time could be more precisely estimated with the

use of more sophisticated statistical approaches rather

than a crude average.66,67,84–90 As we demonstrated in

our LTA and V1 direct comparisons, there is overall

enrichment with LTA. However, in some specific regions,

V1 analysis yields stronger results, as assessed by lower

p values. The proportion of individuals treated with anti-

hypertensive medication increased between the first and

last visits in each cohort by varying amounts, potentially

adding to the LTA analyses variability that we did not

completely account for, although we did employ a stan-

dard correction method for antihypertensive medication

use at each visit to attempt to correct for this. Finally,

although we adjusted for age and age-squared, there

might have been other age-dependent effects, particularly

the known change in DBP that typically occurs in the

fifth decade of life91 and across which our averages were

obtained in many cases, which might explain the lower

yield with LTA for DBP than for SBP. Consequently, there

might be value in conducting parallel V1 and LTA ana-

lyses to identify BP-associated loci that are subsequently

followed up and validated by independent biological

studies.

In summary, we have evaluated the utility of averaging

repeated BP measurements for the purposes of detecting

genetic association. Alternate approaches to the study of

BP phenotypes are needed, and we have demonstrated

that LTA is useful for improving signal detection. Using

LTA of BP traits, we identified and validated common
Th
variants at several known loci and at loci not previously

known to be associated with BP, and we have shown that

trait-averaging methods have important implications

for study design of genetic analyses of quantitative traits

and ultimately for improved hypothesis generation from

GWASs.
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