

NIH Public Access

Author Manuscript

Acta Neuropathol. Author manuscript; available in PMC 2014 July 08.

Published in final edited form as:

Acta Neuropathol. 2012 September; 124(3): 449-451. doi:10.1007/s00401-012-1011-7.

Low rate of R132H *IDH1* mutation in infratentorial and spinal cord grade II and III diffuse gliomas

Benjamin Ellezam,

Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Brett J. Theeler,

Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Tobias Walbert,

Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Aaron G. Mammoser,

Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Craig Horbinski,

Department of Pathology, University of Kentucky, Lexington, KY, USA

Bette K. Kleinschmidt-DeMasters,

University of Colorado, Denver, CO, USA

Arie Perry,

University of California, San Francisco, CA, USA

Vinay Puduvalli,

Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Gregory N. Fuller,

Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Janet M. Bruner, and

Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Kenneth D. Aldape

Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Benjamin Ellezam: benjamin.ellezam@umontreal.ca

Diffuse gliomas not only are more frequent in the cerebral hemispheres but also occur in the brainstem, cerebellum, and spinal cord. In adult populations, 5 % or less localize to the infratentorium [6, 14]. Primary tumors of the spinal cord are uncommon and only 2.5 % are

[©] Springer-Verlag 2012

Correspondence to: Benjamin Ellezam, benjamin.ellezam@umontreal.ca.

Ellezam et al.

Analysis of R132H mutant isocitrate dehydrogenase 1 (*mIDH1*), either by molecular methods or by immunohistochemistry (*mIDH1*-IHC) [4, 5, 13], has been shown to reliably distinguish diffuse astrocytomas from some of their most frequent mimickers, including pilocytic astrocytomas, gangliogliomas, or reactive gliosis [1, 3, 8, 9, 11], or likewise to distinguish oligodendroglioma from other brain tumors with clear cell morphology like neurocytomas or dysembryoplastic neuroepithelial tumors [2]. However, results from *mIDH1*-IHC are only diagnostically useful when positive and although prior reports have shown that about 75 % of supratentorial grade II and III diffuse gliomas are *mIDH1* positive [10], no such data are available in adult infratentorial and spinal cord diffuse gliomas.

We searched our surgical pathology archives (1990–2011) for infratentorial and spinal cord diffuse gliomas, excluding glioblastomas and patients under the age of 16, and selected all cases with paraffin-embedded tissue available. All sections were reexamined and cases were reclassified according to the WHO 2007 criteria. None of the cases had histologic features of ganglioglioma. Small biopsies initially designated "low grade astrocytoma" that showed contrast enhancement, incomplete features of pilocytic astrocytoma, and no recurrence after many years were excluded since they may have represented pilocytic astrocytomas.

A total of 44 cases were selected for *mIDH1*-IHC (clone H09, Dianova, Hamburg, Germany), including 23 brainstem, 12 cerebellar and 9 spinal cord tumors (Table 1). The median age at diagnosis was 36 years (range 16–90) and the male to female ratio was 1.75:1. Two patients had neurofibromatosis type 1 (case B18 and C12). Surprisingly, only 3/44 tumors (7 %) were positive for the mutation, all localizing to the brainstem. None of the cerebellar or spinal cord tumors had the mutation. The median overall survival of this cohort (grade II, 43 months; grade III, 25 months) was similar to that previously reported for same grade supratentorial *IDH* wild-type tumors [12].

The vast majority of these infratentorial and spinal cord specimens were needle or small biopsies with insufficient tissue for DNA extraction and sequencing, as is often the case in routine clinical practice. In the nine cases in which DNA extraction was achieved (six cerebellar and three brainstem tumors), mass spectrometry array mutation profiling (MassARRAY system, Sequenom, San Diego, CA) or fluorescence melting curve PCR analysis [7] confirmed the absence of R132H *IDH1* mutation. Testing for other rarer *IDH1* mutations or mutations in *IDH2* revealed one case with an *IDH1* R132G mutation.

This low rate of R312H *IDH1* mutation is in sharp contrast with the high rate seen in same grade diffuse gliomas in the supratentorial compartment and suggests *mIDH1*-IHC may only rarely be of diagnostic help in the context of small biopsies from infratentorial and spinal cord tumors.

Acta Neuropathol. Author manuscript; available in PMC 2014 July 08.

Acknowledgments

We wish to thank Lindsey Heathcock and Alicia Ledoux and her team for technical assistance. This work was supported in part by the Gyorkey Endowed Chair for Research and Education in Pathology.

References

- Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Cosper AK, Dias-Santagata D, Nutt CL, Iafrate AJ, Louis DN. A sensitive and specific diagnostic panel to distinguish diffuse astrocytoma from astrocytosis: chromosome 7 gain with mutant isocitrate dehydrogenase 1 and p53. J Neuropathol Exp Neurol. 2011; 70:110–115. [PubMed: 21343879]
- Capper D, Reuss D, Schittenhelm J, Hartmann C, Bremer J, Sahm F, Harter PN, Jeibmann A, von Deimling A. Mutation-specific *IDH1* antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol. 2011; 121:241–252. [PubMed: 21069360]
- Capper D, Sahm F, Hartmann C, Meyermann R, von Deimling A, Schittenhelm J. Application of mutant *IDH1* antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol. 2010; 34:1199–1204. [PubMed: 20661018]
- 4. Capper D, Weissert S, Balss J, et al. Characterization of R132H mutation-specific *IDH1* antibody binding in brain tumors. Brain Pathol. 2010; 20:245–254. [PubMed: 19903171]
- Capper D, Zentgraf H, Balss J, Hartmann C, Deimling A. Monoclonal antibody specific for *IDH1* R132H mutation. Acta Neuropathol. 2009; 118:599–601. [PubMed: 19798509]
- CBTRUS. Source: Central Brain Tumor Registry of the United States. Hinsdale, IL: 2012. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2008. Website: www.CBTRUS.org
- Horbinski C, Kelly L, Nikiforov YE, Durso MB, Nikiforova MN. Detection of *IDH1* and *IDH2* mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn. 2010; 12:487–492. [PubMed: 20431032]
- Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN. Diagnostic use of *IDH1*/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol. 2009; 68:1319–1325. [PubMed: 19915484]
- Horbinski C, Kofler J, Yeaney G, Camelo-Piragua S, Venneti S, Louis DN, Perry A, Murdoch G, Nikiforova M. Isocitrate dehydrogenase 1 analysis differentiates gangliogliomas from infiltrative gliomas. Brain Pathol. 2011; 21:564–574. [PubMed: 21314850]
- Kloosterhof NK, Bralten LBC, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011; 12:83–91. [PubMed: 20615753]
- Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, Pfister S, von Deimling A, Hartmann C. Combined molecular analysis of *BRAF* and *IDH1* distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009; 118:401–405. [PubMed: 19543740]
- Labussiere M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on *IDH1* or *IDH2*. Neurology. 2010; 74:1886–1890. [PubMed: 20427748]
- Preusser M, Wohrer A, Stary S, Hoftberger R, Streubel B, Hainfellner JA. Value and limitations of immunohistochemistry and gene sequencing for detection of the *IDH1*-R132H mutation in diffuse glioma biopsy specimens. J Neuropathol Exp Neurol. 2011; 70:715–723. [PubMed: 21760534]
- Rineer J, Schreiber D, Choi K, Rotman M. Characterization and outcomes of infratentorial malignant glioma: a population-based study using the Surveillance Epidemiology and End-Results database. Radiother Oncol. 2010; 95:321–326. [PubMed: 20451276]

Table 1

Study cohort listed with patient age at first diagnosis, sex, location, current diagnosis, result of mIDH1-IHC, result of IDH genotyping, overall survival, and status at last follow-up

Ellezam et al.

ase	Age	Sex	Location	Diagnosis	mIDHI IHC	IDH genotyping	OS (months)	Alive
01	27	Ц	BS (medulla)	DA2	Negative		2	No
02	21	Ц	BS (medulla)	DA2	Negative		145	Yes
03	60	М	BS (medulla)	DA2	Negative		14	No
04	20	Ц	BS (pons)	DA2	Negative		17	No
05	21	Μ	BS (medulla)	DA2	Negative		06	No
90	26	ц	BS (pons)	DA2	Negative		60	Yes
07	40	М	BS (medulla)	DA2	Positive		10	Yes
08	64	М	BS (midbrain)	DA2	Negative		n/a	n/a
60	16	М	BS	DA2	Negative		n/a	n/a
10	24	М	BS (medulla)	DA2	Positive		n/a	n/a
11	56	М	BS (pons)	AA3	Positive		12	No
12	42	М	BS (pons)	AA3	Negative		171	No
13	54	М	BS (pons)	AA3	Negative	IDHwt (Seq)	13	No
14	30	Ц	BS (pons)	AA3	Negative	IDHwt (Seq)	66	No
15	41	М	BS (pons)	AA3	Negative		21	No
16	40	ц	BS (medulla)	AA3	Negative	IDHwt (Seq)	114	No
17	19	М	BS (pons)	AA3	Negative		32	No
18	24	М	BS (pons)	AA3	Negative		21	No
19	26	Μ	BS (pons)	AA3	Negative		6	No
20	26	М	BS (medulla)	AA3	Negative		4	Yes
21	30	М	BS	AA3	Negative		n/a	n/a
22	46	ц	BS (pons)	AA3	Negative		n/a	n/a
23	46	М	BS (medulla)	AA3	Negative		n/a	n/a
01	49	ц	CBL	DA2	Negative		80	No
02	29	ц	CBL	DA2	Negative		48	Yes
03	63	М	CBL	DA2	Negative		n/a	n/a
04	42	М	CBL	OA2	Negative		n/a	n/a

Acta Neuropathol. Author manuscript; available in PMC 2014 July 08.

Case	Age	Sex	Location	Diagnosis	<i>mIDHI</i> IHC	IDH genotyping	OS (months)	Alive
205	90	М	CBL	AA3	Negative	IDHwt (Seq)	2	Yes
306	37	Ц	CBL	AA3	Negative	IDHwt (Seq)	11	No
207	31	Ц	CBL	AA3	Negative	IDHwt (Seq)	57	No
308	38	М	CBL	AA3	Negative	IDHwt (Seq)	69	No
60	39	М	CBL	AA3	Negative	IDHwt (Seq)	18	No
10	53	М	CBL	AA3	Negative	IDH1-R132G (FMCA)	76	Yes
H	46	М	CBL	AA3	Negative		12	No
12	28	М	CBL	AA3	Negative		n/a	n/a
01	LL	Ц	SC (T12)	DA2	Negative		38	No
02	28	Ц	SC (C4-T4)	DA2	Negative		32	Yes
03	21	ц	SC (T6–T8)	DA2	Negative		n/a	n/a
04	45	М	SC (T6-T11)	02	Negative		138	Yes
05	33	М	SC	02	Negative		43	Yes
90	39	М	SC (T12-L1)	AA3	Negative		196	Yes
07	29	Ц	SC (T11-L2)	AA3	Negative		n/a	Yes
08	34	ц	SC (T12)	AA3	Negative		72	No
60	31	Μ	SC (thoracic)	AA3	Negative		29	No

OS overall survival, F female, M male, BS brainstem, CBL cerebellum, SC spinal cord, DA2 diffuse astrocytoma WHO grade II, AA3 anaplastic astrocytoma WHO grade III, OA2 oligoastrocytoma WHO grade II, OA2 oligoastrocytoma WHO