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Abstract

Therapeutic agents that inhibit a single target often cannot combat a multifactorial disease such as

cancer. Thus, multi-target inhibitors (MTIs) are needed to circumvent complications such as the

development of resistance. There are two predominant types of MTIs, (a) single drug inhibitor

(SDIs) that affect multiple pathways simultaneously, and (b) combinatorial agents or multi-drug

inhibitors (MDIs) that inhibit multiple pathways. Single agent multi-target kinase inhibitors are

amongst the most prominent class of compounds belonging to the former, whereas the latter

includes many different classes of combinatorial agents that have been used to achieve synergistic

efficacy against cancer. Safe delivery and accumulation at the tumor site is of paramount

importance for MTIs because inhibition of multiple key signaling pathways has the potential to

lead to systemic toxicity. For this reason, the development of drug delivery mechanisms using

nanotechnology is preferable in order to ensure that the MDIs accumulate in the tumor

vasculature, thereby increasing efficacy and minimizing off-target and systemic side effects. This
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review will discuss how nanotechnology can be used for the development of MTIs for cancer

therapy and also it concludes with a discussion of the future of nanoparticle-based MTIs as well as

the continuing obstacles being faced during the development of these unique agents.’
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What are Multi-Target Inhibitors (MTIs), and why are they Needed?

During the past several decades, there has been significant progress in treating cancer with

chemotherapy, radiation, and surgery [1]. However, traditional methods of cancer treatment

are frequently limited because of systemic side effects, the development of resistance, and

sub-optimal drug concentrations at the tumor site [2, 3]. Many recent advances in cancer

therapy have centered on targeting oncogenes involved in proliferation and survival

pathways specific to cancer cells [4–6]. Several targeted therapies that have enjoyed great

success are Zelboraf (vemurafenib; formerly known as PLX4032) for treating advanced

melanoma [7], monoclonal antibody trastuzumab for human epidermal growth factor

receptor 2 (HER2) positive breast cancer [8], imatinib for break cluster region-abelson

leukemia (BCR-Abl) positive chronic myelogenous leukemia (CML) and gastrointestinal

stromal tumors (GIST) [9,10], and gefitinib and erlotinib for non-small cell lung cancer

(NSCLC) [11]. However, in many cases, cancer patients develop resistance when treated

with therapies that target single pathways because the multi-genic abnormalities present in

cancer cells allow them to circumvent the action of these agents. The ability of advanced

melanoma to develop resistance to Zelboraf is a recent example of how tumors can bypass

the point of inhibition, leading to disease recurrence and progression [12,13]. Because it is

often true that single-target agents cannot combat a multifactorial disease such as cancer,

multi-target inhibitors (MTIs) are becoming more and more attractive in cancer therapy as

they are often more effective and less prone to resistance development than monotherapies.

Single agent Multi-Target Inhibitors (MTIs)

MTIs can be either single drugs that inhibit multiple targets (SDIs), or a combination of

multiple agents “Multi-Drug inhibitors” (MDIs) that synergistically inhibit multiple

pathways (Figure 1). The most common types of single-drug MTIs are small molecule

kinase inhibitors, which are continually being evaluated as new anticancer therapies (Table

1). Small molecule kinase inhibitors are used most commonly as MTIs because deregulation

of kinase activity is a major mechanism by which cancer cells evade normal controls

regulating cell proliferation and survival [14]. There are roughly 500 kinases in the human

kinome, and there are often multiple aberrant kinase pathways involved in a single tumor.

Kinase inhibitors are often designed to target oncogenic receptors such as vascular

endothelial growth factor receptor (VEGFR), endothelial growth factor receptor (EGFR),

platelet-derived growth factor receptor (PDGFR), or they may be designed to inhibit

downstream intracellular kinases or pathways such as tyrosine-protein kinase (cSrc) and

mitogen activated protein (MAPK) pathways.
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It is also increasingly apparent that simultaneous inhibition of factors within the tumor

microenvironment is necessary and MTIs might be helpful for this application. Hypoxic

tumor microenvironment forces tumors to acquire additional vascularization, which requires

aberrant vascular endothelial growth factor (VEGF) signaling [15]. Carcinoma cells can

recruit macrophages, lymphocytes, and mast cells and form an aberrant paracrine loop,

which causes these cells to secrete VEGF and other factors that provide the cancer cells with

additional nutrients and vascularization [16]. This additional leaky vasculature also provides

an escape route for metastatic cells, which is further exacerbated by macrophage secretion of

matrix metalloproteinases (MMPs) [17]. Furthermore, paracrine signaling by carcinoma

cells can also lead to fibroblast activation and a subsequent change in the production of

growth factors such as platelet-derived growth factor (PDGF) and transforming growth

factor-β (TGF-β) [18].

Fibroblasts can also impact disease progression by secreting MMPs that act on the

extracellular matrix (ECM) surrounding the tumor [19]. These types of paracrine loops are

well established in many cancers [20–25], and thus the future of cancer therapy relies on

targeting pathways present within the tumor cells as well as within the cells of the tumor

microenvironment. This method has the potential to be particularly effective, because the

microenvironment includes normal stromal cells that do not have the same proclivities

towards resistance, which means MTIs affecting neoplastic cells and the microenvironment

may further aid in the prevention of resistant disease [26].

The use of rational drug design to inhibit specific kinases in different cancer types has vastly

improved cancer therapy [27]. There are a number of examples of multi-target kinase

inhibitors currently on the market that inhibit multiple oncogenic pathways within tumors

simultaneously, including sorafenib (inhibits MAPK, VEGFR, PDGFR, and mast/stem cell

growth factor receptor (cKit) for the treatment of renal cell carcinoma (RCC) and

hepatocellular carcinoma (HCC) [28,29], vandetanib (inhibits rearranged during transfection

(RET) kinase, VEGFR, and EGFR) for treatment of thyroid tumors [30], and pozopanib

(inhibits PDGFR, VEGFR, and cKit) for treatment of RCC and sarcoma [31,32]. When

designing these types of agents, it is necessary to understand the structural basis of

individual kinases in order to achieve selective inhibition. While there has been success in

rational drug design for cancer therapy, only a few pathways are druggable with current

chemistries [33,34]. This means that few first-in-class inhibitors enter the market, with

established kinase inhibitors continuing to dominate the field.

Multi-Drug Multi-target Inhibitors (MDIs)

In addition to single-agent MTIs, synergistic drug combinations are also becoming

increasingly important in cancer therapy. The hypothesis is that by combining multiple

agents, a ratio for optimal inhibition of multiple targets can readily be achieved. Discovery

of synergistic drug combinations can be accomplished through the use of drug synergy

screens (Figure 2). In the example shown, agent A leads to 10% inhibition, agent B to 20%

inhibition and agent C to 10% inhibition. However, in this hypothetical scenario, combining

them causes 90% tumor inhibition. At a minimum, compound libraries for drug synergy

screens should contain all active pharmaceutical ingredients (APIs) from the United States,
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Europe, and Japan. Over-the-counter (OTC) drugs, and Generally Recognized As Safe

(GRAS) drugs and additives, as these compounds are already approved and can be moved

through preclinical and clinical testing more quickly than new chemical entities [35]. When

conducting these types of screens, synergy can be demonstrated using the Chou-Talalay

method to determine the combination index (CI) using Calcusyn software [36,37].

Combination index values of <0.85 are synergistic, 0.9–1.1 are nearly additive, and >1.1 are

antagonistic (Figure 3A), which are illustrated graphically with an isobologram (Figure 3B).

Current clinical and preclinical development of MTIs

Single drug MTIs (SDIs)—There are a number of drugs currently in the market or in

development that are single-agent MTIs. The various types of single-agent MTIs, the

companies that market them, protein targets, and the type of cancer treated are shown (Table

1). Sorafenib is a single-agent MTI developed by Onyx and Bayer’s that targets VEGFR,

PDGFR, c-Kit, and rapidly accelerated fibrosarcoma (Raf) for the treatment of RCC and

HCC [38,39]. It has been shown to improve progression-free survival (PFS) and overall

survival (OS) for both indications [40,41]. Novarti’s nilotinib inhibits Bcr-Abl, PDGFR,

cSrc, and cKit kinases, and it has been shown to be effective in treating imatinib-resistant

chronic CML [42]. Sunitinib is a multi-target tyrosine kinase inhibitor with antitumor

activity has been identified as a potent inhibitor of PDGFR, VEGFR, RET, and FMS-like

tyrosine kinase 3 (FLT3), and it is being used for imatinib-resistant GIST as well as

advanced RCC [43]. Furthermore, CUDC-101 is a novel, small-molecule inhibitor, which

simultaneously targets histone deacetylases (HDACs), EGFR, and HER2 in cancer cells.

The multi-functional activity of CUDC-101 has the potential to be able to overcome drug

resistance and is also currently in phase I clinical development in patients with solid tumors.

Crizotinib also inhibits hepatocyte growth factor receptor (HGFR), which is an oncogene

implicated in numerous cancers [44,45]. Thus, crizotinib is currently approved for NSCLC,

but it is being tested in clinical trials against anaplastic large cell lymphoma, neuroblastoma,

and several solid tumors in both adults and children [44,45].

Amgen & Takeda’s motesanib is being evaluated in phase II clinical trials as a first-line

therapy against breast cancer. Motesanib is an inhibitor of PDGFR, VEGFR, and cKit, and

earlier phase III studies against NSCLC failed to show a significant treatment-related benefit

[46]. AstraZeneca’s vandetanib is a selective kinase inhibitor that selectively targets

pathways critical for tumor growth and angiogenesis and being used to treat medullary

thyroid cancer [30], and also currently in clinical trials with the combination of docetaxel for

the treatment of NSCLC [47]. Cephalon’s lestaurtinib is in phase III trials for treatment of

acute myeloid leukemia and is an inhibitor of janus kinase 2 (JAK2), FLT3, and

tropomyosin receptor kinase (Trk) family kinases [48,49]. Exelixis developed cabozatinib

for the treatment of medullary thyroid cancer [50], which inhibits VEGFR, cKit, FLT3,

RET, and TEK. It is currently in clinical trials against numerous types of solid tumors

[51,52].

GlaxoSmithKline (GSK) has developed pazopanib, a VEGFR, PDGFR, and cKit inhibitor,

for the treatment of RCC and soft tissue sarcoma, and it may also be effective against

NSCLC and ovarian cancer [53]. E7080 is an orally active multi-targeted kinase inhibitor
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whose targets include VEGFR, EGFR and PDGFR and was tested on-six human cell lines

representing a number of different tumor types. However, E7080 had little effect on tumor

cell proliferation but inhibits tumor angiogenesis by targeting endothelial cells. Because all

of the aforementioned treatments target many pathways simultaneously, there are often

severe systemic side effects when they are used. In addition, actual drug concentrations at

the tumor site may be sub-optimal in many cases. With the use of a nanoparticle delivery

platform, these agents may have the potential to become more effective while producing

fewer side effects.

Multidrug MTIs (MDIs)—Combinatorial therapeutic regiments for cancer therapy have

been well documented [54]. Administration of a combined array of therapeutic agents

affecting different targets and displaying different toxicity profiles can lead to an improved

therapeutic index [55]. While the combination therapy might be more expensive than mono-

therapies, its benefits may include substantially reduced treatment failure, decreased

mortality and as lower rate of drug resistance development [56]. In addition, combination

therapy is also increasingly gaining in importance because it has numerous merits over

conventional therapy. These merits include synergistic anticancer effects, reduced individual

drug-related toxicity and reversal of drug resistance [57,58].

There are also a number of combination-MTIs on the market or in preclinical and clinical

development. In some cases, combination MTIs can act synergistically to kill the cells.

Recently, the mammalian target of rapamycin (mTOR) inhibitor everolimus was shown to

act synergistically with gemcitabine or paclitaxel for treatment against non-Hodgkin

lymphoma (NHL) cell lines [59]. The knockdown of mTOR signaling was shown to

enhance the apoptosis-inducing effects of gemcitabine and paclitaxel [59]. In another study,

elevated concentrations of paclitaxel were detected in brains of mice when co-administered

the P-glycoprotein (P-gp) inhibitors elacridar and tariquidar [60]. Similarly, in a phase I

trial, zosquidar co-delivered with daunorubicin and cytarabine increased the anticancer

activity of these agents by themselves through inhibition of P-gp expression and activity

[61]. Tanabe et al. [62] showed that co-delivery of mitomycin C and methotrexate

significantly improved the antitumor effects against breast cancer patients pretreated with

taxanes and anthracyclines. Combinations of monoclonal antibodies directed against several

tumor-specific oncogenes is another method of treatment that relies on the unique ability of

collections of antibodies to target cancer cells and utilize the body’s immune response to kill

them through the complement cascade [57]. Expanded uses of examples of combinatorial

chemotherapeutic agents are shown in Table 2.

Impediments in the Development of MTIs Overcome through

Nanotechnology

The development of MTIs for the treatment of cancer faces numerous hurdles. By using

MTIs, the pharmacokinetics of the individual drugs can be coordinated and controlled,

leading to optimized therapeutic activity over conventional combination treatments, which

presents significant advantages for enhanced cancer chemotherapy [63]. Both types of MTIs

(SDIs and MDIs) have advantages and disadvantages. For example, when using single agent
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MTIs, there is a customary drug development process, a standard new chemical entity

intellectual property (IP) position, and easier manufacturing for a single APIs [35].

However, it can be difficult to prevent non-selectivity while achieving good potency against

all intended molecular targets. Thus, there cannot be sequenced action time or dose titration

when using a single agent MTI.

Combining multiple agents makes it much easier to tailor the ratio of the different agents to

achieve optimal potency against all intended targets and also allows for sequenced action as

well as varied target exposure through the use of immediate or extended release

formulations [35]. For example, studies have reported that the phosphatidylinositol-3-kinase

and protein kinase B (PI3K/Akt) and MAPK signaling cascades can be additively inhibited

in melanoma xenograft using to small interfering ribonucleic acid (siRNA) Akt3 and

V600EB-Raf loaded into cationic nanoliposomes (Figure 4). Nanoliposomes were applied

topically to tumor-bearing mice that had been pretreated with low-frequency ultrasound

using a lightweight four-cymbal transducer array enabling penetration of the nanoliposomal-

siRNA complex throughout the epidermal and dermal layers of laboratory-generated or

animal skin [64,65]. Nanoliposomal-mediated siRNA targeting of V600EB-Raf and Akt3

resulted in improved synergistic reduction in tumor size in early or invasive cutaneous

melanoma compared with inhibition of each target separately with negligible associated

systemic toxicity (Figure 4).

On the other hand, the increased risk of drug-drug interactions when multiple drugs are

delivered simultaneously presents a serious challenge to the development of viable MDIs.

By modulating mass ratios to an optimal level, these interactions can be effectively

minimized while maximizing the therapeutic efficacy of the combined agents [66]. For

example, poly (lactide-co-glycolide) microsphere formulations that co-deliver an antisense

oligonucleotide and 5-fluorouracil (5-Fu) do not work due to the interaction of 5-FU with

the oligodeoxynucleotide [66]. Each individual drug has its own distinct pharmacokinetic

profile and the synergistic drug ratio for the “drug cocktails” needs to be controlled and

optimized in the laboratory to reduce changes in drug dynamics, and these studies must then

be replicated in animal models prior to evaluation in humans [58].

Use of Nanotechnology to Develop MTIs

Both types of MTIs (SDIs & MDIs) have particular sets of strengths and weaknesses, but a

common problem is how to achieve successful delivery and accumulation at the tumor site.

Current combination therapies are limited because different drug molecules have different

pharmacokinetics, biodistribution, and membrane transport properties, which creates

complications in dosing and scheduling optimization [67–70]. These challenges have driven

clinicians and scientists to investigate various methods of delivering multiple therapeutic

agents within a single nanoparticle [71,72]. The goal of nanoparticle-based therapy is to

achieve better specificity and optimized pharmacokinetics while delivering multiple

therapeutic agents [73,74].

Nanoparticle-based drugs have unique properties such as small size (1–100 nm) and large

surface-to-volume ratios [75]. They also benefit from self-assembly, better solubility,
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increased stability, and natural accumulation in the leaky tumor vasculature [73], all of

which can help improve the utility of MTIs. Resistance to initially effective agents can

develop because of increased metabolism, mutation of drug targets, circumvention of target

pathways, or overexpression of efflux pumps [76]. By creating a nanoparticle with drug(s)

that target multiple pathways, the likelihood of developing resistance decreases [77,78].

Types of nanoparticles that could be used as MTIs

Nanoparticles are being used to circumvent many of the limitations of conventional drug

delivery systems used to load single or multiple active ingredients [79–81]. The advantages

include (a) delivery systems that can extend drug circulation half-life, (b) increased drug

concentration at the tumor site through the passive enhanced permeation and retention

(EPR) effect, (c) the ability to modify the ratio-metric dosing based on pharmacological

dispositions, and (d) reduced nonspecific uptake [79,82–84]. Therefore, using

nanotechnology may allow for a single platform in which multiple genetic or

pharmacological agents can be loaded into nanoparticles and synergistically inhibit cancer

development as well as overcome the occurrence of resistance [85–89]. Many types of

nanotechnology-based therapies have been developed for treating cancers, including

nanoliposomes, polymeric nanoparticles, dendrimers, magnetic nanoparticles, micelle, and

nanogels (shown in Figure 5) [90–96]. These nanocarriers have been demonstrated to be

capable of carrying two or more types of therapeutic payloads while promoting synergy

through controlled combinatorial drug delivery. Each platform has its unique strengths and

characteristics, which will be discussed briefly [97,98].

Nanoliposomes

Nanoliposomes (shown in Figure 5) are an extensively studied drug delivery platform that is

currently used in clinical practice, and it has shown promise for improving the solubility of

many amphiphilic drugs [92,97,99–101]. Liposomes of certain sizes, typically less than

100–200 nm, can rapidly enter tumor sites from the blood due to EPR effect, but are kept in

the bloodstream by the endothelial wall in healthy tissue vasculature [65,102–104].

Furthermore, liposomes can have various molecules attached to the surface. The most

common surface modification is PEGylation to make the particle stealthy, in which

polyethylene glycol (PEG) is covalently linked to the surface of the liposome

[65,91,95,105,106].

PEGylated liposomes are highly stable and lead to improvement in circulation time,

enhanced tumor uptake, avoidance of the reticulo-endothelial system, and minimization of

toxicity [107–109]. For example, PEGylated-liposomal doxorubicin (Doxil) was

characterized by a very long circulating half-life, favorable pharmacokinetic behavior and

specific accumulation in tumor tissues compared with conventional liposomal doxorubicin

or free doxorubicin [110,111]. Numerous liposomal drug formulations containing

chemotherapeutic agents, antisense-oligodeoxynucleotides, siRNA, deoxyribonucleic acid

(DNA), or radioactive particles that can target multiple signaling pathways are in various

stages of development [71,92,112]. Several examples of combination drug delivery systems

based on liposomes are listed in Table 3.
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Liposomes containing nucleic acids—Nucleic acid-based nanoliposomes are used

when pharmacological agents are not available to target particular oncogenic proteins. There

are a large number of mutations and perturbations in cancer cells, but few play a role in

disease progression. While there has been some success in designing inhibitors of specific

targets, such as the use of vemurafenib against mutant V600EB-Raf protein in melanoma

cells [5], few targets are able to be inhibited with current technologies [113], which means

that few first in class inhibitors enter the market [114]. Thus, there is great promise for

siRNA-based nanoliposomal drug delivery to target these proteins, as this technique can

make almost any oncogene a potential therapeutic target.

RNA interference (RNAi) blocks translation of messenger RNAs (mRNAs), thereby

reducing oncogene or mutant gene protein levels. Combinations of different siRNAs

targeting multiple oncogenes in different pathways may be on the horizon. For drugs such as

these, it is an absolute necessity to use a nanotechnology-based method of delivery. Initial

studies using localized delivery of RNAi into tumors involved viral vectors to express the

siRNAs; however, limitations included several side effects, high production costs, and poor

biodistribution. Nanoliposomal delivery of non-viral, less toxic methods of siRNA is being

refined [115]. 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) is one of the first

cationic lipids that was created for use in liposomes for in vivo delivery of siRNAs [116].

These particles have a size of 60–100 nm are PEGylated (mPEG2000-C-DMA), contain

cholesterol, a neutral helper lipid, and the ionizable lipid dimethylaminopropane

(DLinDMA), which facilitates membrane fusion and is essential for in vivo efficacy of

RNAi-based therapeutics [117]. Newer forms of DOTAP with 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxypoly(ethylene glycol)2000] carboxamide (DPPE-

PEG2000) and egg phosphatidylcholine (egg-PC) have demonstrated serum bioavailabity

for up to 20 hours [118]. Dioleoylphosphatidylcholine (DOPC)-based nanoliposomes are

neutral liposomal formulations for siRNA delivery that are used against a variety of targets

[119–121].

Liposomes combining nucleic acids and traditional pharmacological agents—
Co-delivery of siRNA and chemotherapeutic agents is also another emerging area of

nanoliposomal-based combination therapy [122]. For example, a positively charged cationic

liposome containing siRNA in combination with doxorubicin effectively inhibits the activity

of B cell lymphoma-1 (BCL-1) and multidrug-resistance-associated protein-1 (MRP1) in

H69AR lung cancer lines [123]. In addition, combining nanoliposomes containing ceramide

(a lipid based Akt inhibitor) with sorafenib has been shown to synergistically decrease

melanoma cell growth [124]. Further studies on cancer genomes, at both the tumor and

individual cell level, will enable the identification of a complete list of targets and cancer-

relevant genes. By combining in-depth analysis of cancer genomes (e.g. the Cancer Genome

Atlas) with RNAi technologies, there should be ample room for the growth of siRNA-based

nanoliposomal therapeutic agents [125].

A recent report has described the use of trilysinoyl oleylamide (TLO)-based cationic

liposomes which effectively co-delivers siMcl-1 and chemotherapeutic drug suberoylanilide

hydroxamic acid (SAHA) [126]. In addition, N′,N″-dioleylglutamide-based cationic

liposomes (DGL) with mitogen-activated protein/extracellular signal-regulated kinase
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(MEK) inhibitor PD0325901 encapsulated in lipid layers and siMcl-1 complexed to the

DGL [127] has been explored. Combination treatment of PEGylated siBcl-2-lipoplex and

S-1(5-FU) pro-drug has been found to exhibit enhanced antineoplastic activity in a human

colorectal adenocarcinoma xenograft model [92]. Furthermore, novel fibroblast growth

factor receptor (FGFR)-mediated cationic liposomes for co-delivery of doxorubicin and

Msurvivin T34A plasmid have been assessed for enhanced cancer chemotherapy [128]. A

recent vaccine-based approach with important implications for cancer therapy has been

reported in which a liposomal delivery system carries a self-tumoral epitope (HER-2/neu-

derived peptide) and CpG oligodeoxynucleotides (CpG ODN) as an adjuvant, which elicits a

CD8+ mediated immune response and enhances efficacy [129].

Liposomes containing traditional pharmacological agents—Several

nanoliposomes have been created that contain pharmacological agents and other types of

compounds. Nanoliposomes containing ceramide and sorafenib have been shown to

synergistically decrease melanoma cell growth [124]. Combinatorial approaches aimed at

achieving greater synergistic anti-angiogenic effects have been reported by Kim et al. [130],

wherein a cationic nanolipoplex has been designed to co-deliver heparin-taurocholate

conjugate and SAHA. A novel polymer-lipid hybrid nanoparticle (PLN) formulation has

been developed with doxorubicin and the P-gp inhibitor GG918, which can help overcome

multidrug-resistant (MDR) breast cancer lines at significantly lower doses than free drugs

[131]. Similarly, doxorubicin-mitomycin C co-loaded PLNs were effective in killing MDR

breast cancer lines at 20–30-fold lower doses, thus indicating the potential to enhance

chemotherapy and reduce the therapeutic limitations of systemic toxicity [132]. Another

study Basu et al. revealed that, novel hexadentate-polyD,L-lactic acid-co-glycolic acid

polymer chemically conjugated to PD98059 (MEK1 inhibitor) can significantly retard tumor

development in xenograft models [133]. Dual doxorubicin-and verapamil-loaded liposomes

with surface-conjugated transferrin successfully inhibited the doxorubicin-resistant K562

leukemia tumor cell line with about 5-fold greater potency compared to non-targeted,

doxorubicin/verapamil loaded liposomes [134]. Since systemic injection of verapamil can

cause serious cardiotoxicity, liposomal delivery of verapamil together with doxorubicin

presents a promising approach to reversing cancer drug resistance and minimizing

verapamil-related side effects [134]. Furthermore, alginate/bis(2-ethylhexyl) sulfosuccinate

(AOT)-alginate nanoparticle-mediated photodynamic therapy using doxorubicin and

methylene blue was also able to overcome resistance mechanisms in mammary

adenocarcinoma tumor models, resulting in enhanced cytotoxicity against multiple drug

resistant tumor cells [135].

In a phase II trial of weekly nab (nanoparticle albumin-bound)- paclitaxel (nab-paclitaxel)

(Abraxane®) in combination with gemcitabine, established the activity and manageable

toxicity as a first-line therapy of metastatic breast cancer patients [136]. Furthermore, these

favorable results provide a rationale for testing nab-paclitaxel, gemcitabine, and an anti-

angiogenic agent in future clinical trials [136]. In another study, Zucker et al. [137]

developed a PEGylated liposomal formulation containing dual anticancer inhibitors topican

and vincristine (LipoViTO), which displayed 91% tumor suppression compared with either

liposomal formulations containing only one drug (40%) or a combination of free drugs (30
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%) [138]. Furthermore, simultaneous liposomal delivery of quercetin and vincristine was

shown to enhance estrogen-receptor-negative breast cancer treatment [139]. In vitro 3-[4,5-

dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays of this liposomal

formulation showed significant synergism, with a combination index of 0.113 and a dose-

reduction index value of 115 at ED50 for vincristine [139].

Recently, advances in liposome creation and drug-loading methods have produced specific

control over combinatorial drug dosing in liposomes [140–143]. Mayer et al. [143] reported

that liposomal drug combinations could be loaded at the required ratios by modifying the

liposome synthesis and drug encapsulation process. This technology has yielded several

products that are currently in clinical trials. For example, CPX-351 is a 5:1

cytarabine:daunorubicin dual drug loaded liposome that is currently under phase II clinical

trial for the treatment of acute myeloid leukemia [144]. In addition, CPX-1, a 1:1

irinotecan:floxouridine liposome is currently under investigation in a phase II trial for

colorectal cancer treatment. It exhibited superior anticancer activity in various human tumor

xenograft murine models compared with liposomal irinotecan or liposomal floxouridine

alone [145]. These liposomal formulations may bring a paradigm shift in clinical treatment

by enabling dosage optimization in combination chemotherapy.

Palmitoyl ascorbate-modified liposomes have been described as a promising nanoparticle

platform for co-delivery of paclitaxel and ascorbate, which mediates oxidative stress-

induced cytotoxicity [146]. In addition, a study involving co-encapsulation of combretastatin

A-4 (vascular disrupting agent) and doxorubicin (anticancer agent) suggested that a

combinatorial strategy focused on arginyl-glycylaspartic acid (RGD) mediated delivery of

drugs may be a promising strategy for cancer treatment [147]. Another ‘mix and match’

combinatorial treatment regimen involving a multidrug carrier (MDC) containing both

gemcitabine and tamoxifen for the treatment of breast cancer has also shown good

therapeutic potential [148].

Sengupta et al. [149] suggested that a nanocell drug delivery platform could enable a

temporal release of multiple drugs. For this type of system, the outer PEGylated lipid

envelope first releases an antiangiogenic drug shutting down the tumor vasculature and

trapping the inner nanoparticle inside. The inner particle is then free to release its drug(s)

targeting additional pathways in the tumor microenvironment. In addition, the liposomes can

be functionalized with ligands for tumor-specific receptors, such as transferrin, folate, and

integrin [150,151]. Recent advancements report the targeted nanoliposomal delivery of

octreotide to the somatostatin receptor in gastric cancer [152]. On the other hand, targeted

nanoconjugates are not yet effective anti-cancer agents, because they do not have easily

reproducible synthesis and the surface targets display a heterogeneous intra-tumoral

distribution making uniform dispersal difficult. An in-depth understanding of liposomal-

drug interaction with biological system will lead to the emergence of a novel class of

nanoliposomal drug delivery systems with improved anticancer activity, efficacy and safety.

Polymeric nanoparticles

Most polymeric nanoparticles (shown in Figure 5) contain a solid, polymer-filled

hydrophobic core that is better suited for water-insoluble MTI payloads [153–156]. These
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nanoparticles generally have higher stability, subcellular size distribution, controlled/

sustained drug-release profiles, and higher loading capacity for poorly water-soluble drugs

[157–159]. Polymeric nanoparticles are fabricated from biodegradable natural or synthetic

polymers [98]. Several synthetic polymers are approved by the United States Food and drug

administration such as poly lactic co glycolic acid (PLGA), and polycaprolactone (PCL).

Other natural polymers such as chitosan, polysaccharides, and polypeptides have been

investigated extensively for drug delivery and clinical applications, including cardiovascular

disease, cancer, vaccines and tissue engineering [160,161]. Furthermore, these polymeric

micelle systems can also be used to or concurrently deliver two or more therapeutic MTI

modalities such as radiation sensitizers and drugs [79,162].

Milane et al. [163] demonstrated that epidermal growth factor receptor (EGFR)-targeted

polymeric nanoparticles loaded with ionidamine and paclitaxel displayed antitumor activity

through down regulation of MDR proteins in human breast and ovarian tumor cells.

Furthermore, PLGA nanoparticles loaded with vincristine and verapamil triggered MDR

reversal activity on MCF-7/ADR cells resistant to vincristine [164]. In another study, Misra

and Sahoo [165] demonstrated that the synergistic effect of doxorubicin/curcumin PLGA

nanoparticles enhances the cytotoxicity of the drugs in leukemic K562 cells in vitro by

overcoming the MDR phenotype.

Dendrimers

Dendrimers (shown in Figure 5) have emerged as another class of drug delivery nanoparticle

platform because of their unique properties [166–168]. While these nanoparticles have not

received as much attention as liposomes and polymeric nanoparticles for delivery of MTI’s,

several efforts have been made to deliver multiple therapeutic agents simultaneously using a

dendrimeric platform [92]. Dendrimers are globular, highly branched and synthetic

polymers that are characterized by a central inner core surrounded by repetitive layers and

an outermost layer of multivalent functional groups [166,167]. The high level of control

over the architecture affecting size, shape, density, and surface functionality makes these

compounds excellent carriers of MTIs as well as imaging agents through chemical

modification of multiple terminal groups [169–172].

Despite the promise of dendrimers, a major constraints for delivery of MTIs is toxicity due

to the interaction of surface cationic charges with negatively charged biological membranes

in vivo, which can cause membrane nanoholes [173]. Surface engineering can be used to

mask the cationic charges, which involves PEGylation, acetylation, and carbohydrate or

peptide conjugation. The chemical modifications necessary to overcome the toxicity have

been discussed by others [173,174]. The synthesis of dendrimers can be tightly controlled to

establish specific size range and branching complexity. Drug could be loaded into the core

or branches [175]. The dendritic surface can be further modified with antibodies or ligands

to improve targeting and utility of these nanoparticles to carry anti-cancer agents [176].

The unique properties of dendrimers make them a desirable platform for simultaneous

delivery of hydrophobic and hydrophilic MTI’s [171,172]. Tekade et al. [177] developed

dual drug-loaded polyamidoamine dendrimers loaded with hydrophobic methotrexate and

hydrophilic all-trans retinoic acid. These particles exhibited less hemolytic toxicity and
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enhanced cytotoxicity in HeLa cells compared to free drugs. In another study, Kaneshiro et

al. formulated novel nanoglobular dendrimers conjugated with cyclo(-Arg-Gly-Asp-d-Phe-

Lys-(cRGDfK) peptide with PEG spacer for co-delivery of doxorubicin (DOX) and siRNA.

The siRNA complex of the targeted conjugates resulted in higher gene silencing efficiency

in glioblastoma U87-Luc cells and greater efficacy than either agent alone [178]. Other

examples of dendrimer-based combination cancer therapy are summarized in Table 4.

Magnetic nanoparticles

Magnetic nanoparticles (MNPs) (shown in Figure 5) are a major class of nanoparticles with

the potential to enhance magnetic resonance imaging (MRI), targeted therapy, tissue repair,

virus detection, magnetically enhanced transfection, magnetically induced hyperthermia,

cell/protein/DNA separation and radiotherapy [179–183]. MNPs are spherical nanocrystals

of 10–100 nm in size with an Fe2+ or Fe3+ core surrounded by lipids, liposomes, proteins,

polymers, or dextran and surface-coated with non-polymeric stabilizers, providing the

opportunity for the smart delivery of therapeutic materials.

Iron oxide MNPs (magnetite, Fe3O4; maghemite, Fe2O3) are extensively used as the core of

magnetic nanocarriers due to super paramagnetic properties and biocompatibility [184–186].

Iron oxide provides significant advantages over traditional contrast agents, including high

magnetic signal strength, relatively low cytotoxicity, longer lasting contrast enhancement,

and improved delineation of tumor margins as well as low sensitivity to the number of

surrounding water molecules [187–189]. While copper, cobalt and nickel are also highly

magnetic materials, the chemical composition makes them naturally toxic and more

susceptible to oxidation. Thus, they have limited utility for the MTIs based applicaitons. In

contrast, titanium and iron oxide-based particles are considered significantly less damaging

to cells and could have utility of delivery of MTIs [190,191].

Currently, various studies have investigated the potential application of magnetic nano

systems for pharmaceutical and biomedical applications [192–194]. Jaemoon et al.

developed an anti-HER2 antibody conjugated to multifunctional magneto-polymeric

nanohybrids (MMPNs) encapsulated by an amphiphilic block copolymer that showed

excellent synergetic effects for inhibition of tumor growth and simultaneous breast cancer

imaging [195]. Furthermore, Yu et al. [196] has developed doxorubicin-loaded thermally

cross-linked superparamagnetic iron oxide nanoparticles (Dox@TCL-SPION) and

demonstrated simultaneous detection of tumors by magnetic resonance imaging and delivery

of anticancer drugs via release from nanoparticles. This strategy exhibited exceptional

antitumor effects without any systemic toxicity. Kumar et al. [197] synthesized and

characterized novel hybrid MNPs containing hyaluronic acid (HA) and iron oxide, and

successfully delivered nearly 100 % in HEK293 and A549 cell lines, which is an

encouraging development in effective tissue and cell targeting systems. Murali et al.

developed MNPs that are loaded with curcumin as the anticancer agent and used them for

simultaneous targeting and imaging in breast cancer cell lines [198]. In addition, Shi et al.

[200] developed a multifunctional drug delivery system, which is based on covalently

attaching genistein into iron oxide (Fe3O4) nanoparticles coated by cross-linked
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carboxymethylated chitosan (CMCH). Results suggest that these particles improve the

inhibitory effects of SGC-7901 in cancer cells relative to the free drug.

Micelle

A micelle composed of numerous amphiphilic surfactant molecules is emerging as a

promising class of MTIs anticancer nanoparticles (shown in Figure 5) [200]. A mixture of

hydrophobic interactions, electrostatic interactions, metal complexation, and hydrogen

bonding of block copolymers drives the process of micellization in aqueous solutions [201].

The core of the micelle can be a storage area for drugs with many different properties. The

outer core can be functionalized to improve its drug-like qualities and also to modify its

physicochemical characteristics [201]. The fundamental mechanisms of self-assembly, drug

loading/release, stability, and intracellular delivery of micellar formulations has been

reviewed in the literature [202,203]. However, to translate micellear formulations into

widespread clinical applications, a better understanding of the physicochemical properties of

this type of nanoparticle is still needed [204].

Polymeric micelles are a subset of micelles comprised of block copolymers consisting of

both hydrophilic and hydrophobic monomeric units [205]. The first clinical polymeric

micelle formulation received approval in South Korea and is currently undergoing phase II

trials in the United States where it is known as Genexol-PM64 (PEG-poly (D,L-lactide)-

paclitaxel) [206,207]. A biodegradable cationic nanomicelle based on a triblock copolymer

of poly (N,N-dimethylamino-2-ethyl methacrylate)-polycaprolactone-poly(N,N-

dimethylamino-2-ethyl methacrylate) (PDMAEMA-PCL-PDMAEMA) was reported by Zhu

et al. [208]. This nano-micellar drug delivery system has paclitaxel loaded in its micellar

core while siRNA is complexed to the outer PDMAEMA shell of the micelle [208].

A recent report describes a hybrid polymeric micelle consisting of a PEG-phospholipid

block copolymer with an envelope containing the anti-angiogenesis agent combretastatin

surrounding an inner PLGA nanoparticle bearing the chemotherapeutic agent doxorubicin

[149,209]. Furthermore, simultaneous delivery of two chemotherapeutics agents paclitaxel

and 17-allylamino-17-demethoxygeldanamycin (17-AAG) was achieved by employing

PEG-distearoylphosphatidylethanolamine/tocopheryl polyethylene glycol 1000 (PEG-

DSPE/TPGS) mixed micelles [210]. Fan et al. [211] designed multifunctional micellar

nanoparticles containing pyrrolidine dithiocarbamate (PDTC) and doxorubicin with the goal

of simultaneously delivering the chemotherapeutic agents and bypassing the multidrug

resistance proteins. Co-delivery of survivin small hairpin RNA (shRNA) and paclitaxel has

been used by Hu et al. for its synergistic cytotoxic effects in ovarian cancer therapy [212].

Another study by Wiradharma et al. [213] reported the production of [Ac-(AF)6-H5-K15-

NH2] FA32 micelles with enhanced potential to deliver the hydrophobic anticancer drug

doxorubicin and the p53 gene simultaneously.

Nanogels

Nanoscale hydrogels or nanogels are biocompatible, three-dimensional materials consisting

of hydrophilic, cross-linked polymer networks that can be loaded with therapeutic agents

(shown in Figure 5) [214, 215]. This unique drug delivery system is characterized by a
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controlled release mechanism, which is dependent on the diffusion coefficient of the drug

through the hydrogel network [216]. Hydrogel nanoparticle systems are an important

constituent of a new class of drug delivery system popularly known as “intelligent,” or

“smart” or “stimuli-responsive” drug delivery systems. The environmental stimuli include

changes in pH, temperature or ionic strength [217–219]. While the nanogel matrix bearing

the drug is in a collapsed state, stimuli cause the nanogel to swell, leading to an increase in

mesh size and change the drug diffusion rate [220,221].

Nanogels have many characteristics that could be associated with an ideal drug delivery

platform, including stability, response to biologically relevant stimuli, passive and active

targeting, low toxicity, and ease of synthesis [222]. Nanogels can be prepared from polymer

precursors or by fabricating them via heterogeneous polymerization of monomers [222]. In

the first method of generation, amphiphilic copolymers are allowed to self-assemble in

solution, and then the assembly is ‘locked’ via some form of cross-linking [222]. Polymeric

nanogels can also be easily functionalized with cell-targeting ligands, and sizes can be

controlled for various drug delivery applications [222]. Parenteral delivery of nanogels is

possible since they can easily be delivered in a liquid form [223]. Seo et al. [224] recently

reported a chemo-immunotherapeutic strategy to target cervical cancer that employs a

biodegradable chitosan-based hydrogel that can codeliver chemotherapeutic agent such as

doxorubicin, cisplatin, or cyclophosphamide with an immunoadjuvant-granulocyte

macrophage colony-stimulating factor (GMCSF).

General Constraints and Challenges in MTIs Nanoparticle Development

Particle size is the most important and most studied factor affecting nanoparticle toxicity and

success of MTIs. If nanoparticles are too small (e.g. <10nm), they can pass the blood brain

barrier and cause damage. In contrast, particles >100nm do not possess the desired

pharmacological properties for MTIs effective drug delivery [225]. The charge and

composition of a MTIs nanoparticle can also have a profound impact on its toxicity.

Positively charged nanoparticles can be toxic due to hemagglutination and hemolysis of

erythrocytes [225]. They can also agglomerate due to intermolecular forces, to further

increase toxicity. Methods have been developed to circumvent this potentially serious side

effect, involving sonication, use of detergents, and PEGylation of the nanoparticle [225].

MTIs nanoparticle-related toxicities can vary based on each nanoparticle and in these cases

more in depth studies to explore the structural properties that induce organ-specific

cytotoxicity would be needed [225].

PEGylation to reduce toxicity, improve biodistribution and half-life of the agent can be used

to mask toxic nanoparticles. Many studies have conjugated functional groups to

nanoparticles in order to improve targeting, biodistribution, and reduce toxicity. In addition

to toxicity, the lack of reproducibility of large-scale commercial production is another major

drawback to MTIs based nanoparticles development [225].
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Conclusion

The use of MTIs for the treatment of cancer should significantly enhance cancer therapy.

The key challenge in development of MTIs based nanotherapeutics lies in optimization of

drug loading and controlled release of the encapsulated cargo. In order to circumvent these

limitations and to optimally pair the nanocarrier and the therapeutic agent, a greater

understanding of the interplay between properties of the carrier and the mechanisms of

loading is key [216]. The major driving forces for the development of MTI nanotherapeutics

include enhanced efficacy, improved drug delivery, and reduced development of recurrent

resistant disease.

If successful, MTIs based nanotherapeutics could revolutionize the future of cancer

treatment. Single agent MTIs and combinatorial strategies involving synergistically acting

multidrug MTIs have numerous advantages over conventional cancer pharmaceutics. Even

though different types of nanoparticles are being developed for the delivery of MTIs, nano-

liposomal drug delivery platforms are currently the most developed and versatile

nanotechnology based on increased clinical approval of liposomal chemotherapeutic agents.
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Figure 1.
Schematic of multi-target inhibitors (MTI) that affect multiple pathways simultaneously to

inhibit cancer cell growth and survival.
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Figure 2.
Schematic of hypothetical tumor inhibition by synergistically acting drug combinations

targeting multiple key pathways.
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Figure 3.
Schematic of Chou-Talalay method to determine the combination index. (3A) Combination

index values of <0.85 are synergistic, 0.9–1.1 are nearly additive and >1.1 are antagonistic,

and (3B) a representative isobologram showing hypothetical results that could be interpreted

as antagonistic, additive or synergistic.
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Figure 4.
Inhibition of melanoma tumors in an additive manner following treatment with a

nanoparticle containing siRNAs directed against two different targets. (4A) SiMutB-Raf and

siAkt3 cooperate to reduce anchorage independent growth in cell culture. (4B) SiAkt3 and

siMutB-Raf act additively to inhibit cell viability. Calculation of the CI index for the

combination of siAkt3 and siMutB-Raf showed additive inhibition of cell viability with CI

values between 0.94 and 1.10. (4C) Ultrasound treatment followed by topical application of

siAkt3-liposomal complex containingsiMutB-Rafdecreased melanoma development in

animal skin [64].
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Figure 5.
Schematic diagram representing the various types of nanoparticle use to develop MTIs. (5A)

Liposome; (5B) Polymeric nanoparticle; (5C) Dendrimer; (5D) Magnetic nanoparticle; (5E)

Micelle; (5F) Nanogel.

Gowda et al. Page 32

J Nanomed Nanotechnol. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gowda et al. Page 33

Table 1

Single-agent MTIs currently undergoing preclinical and clinical use.

Agent Company Indication Targets References

Sorafenib Onyx/Bayer RCC, HCC VEGFR, PDGFR, c-Kit, Raf [38–41]

Nilotinib Novartis CML Bcr-Abl, PDGFR, cSrc, c-Kit [42]

Sunitinib Pfizer GIST, RCC PDGFR, VEGFR, c-Kit, RET, FLT3 [43]

Crizotinib Pfizer NSCLC EML4/ALK, HGFR [44, 45, 226]

Motesanib Amgen/Takeda Breast cancer PDGFR, VEGFR, c-Kit [46]

Vandetanib Astra Zeneca Thyroid, NSCLC EGFR, VEGFR, RET [30]

Lesaurtinib Cephalon AML JAK2, FLT3, Trk [48, 49]

Cabozatinib Exelixis Thyroid, solid tumors VEGFR, MET, c-Kit, FLT3, RET, TEK [51, 52]

Pazopanib GlaxoSmithKline RCC, sarcoma VEGFR, PDGFR, c-Kit [53]

Abbreviations: RCC: Renal Cell Carcinoma; HCC: Hepato Cellular Carcinoma; CML: Chronic Myelogenous Leukemia; GIST: Gastro-intestinal
Stromal Tumor; NSCLC: Non-small-cell Lung Cancer; AML: Angiomyolipoma; VEGFR: Vascular Endothelial Growth Factor Receptor; PDGFR:
Platelet-derived Growth Factor Receptor; cKit: Mast/stem Cell Growth Factor Receptor; cSrc: tyrosine-protein Kinase; Bcr-Abl: Break Cluster
Region-Abelson Leukemia; RET: REarranged during Transfection; FLT3: FMS-like Tyrosine Kinase 3; EML4: Echinoderm Microtubule-
associated protein-like 4; ALK: Anaplastic Lymphoma Kinase; HGFR: Hepatocyte Growth Factor Receptor; JAK2: Janus Kinase 2; Trk:
Tropomyosin Receptor Kinase; TEK: Tyrosine Endothelial Kinase
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Table 2

Combination MTIs currently undergoing preclinical and clinical trials.

Agents Indication Reference

Everolimus + Gemcitabine or Paclitaxel Non-Hodgkin’s Lymphoma [59]

Daunorubicin + Cytarabine + Zosquidar Angiomyolipoma [61]

Mitomycin C + Methotrexate + Taxanes Breast cancer [62]

5-Fluorouracil + Leucovorin Colon cancer [227]

Paclitaxel + Carboplatin Non-small-cell lung cancer [228]

Exemestane + Zoledronic acid Breast cancer [229]
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Table 3

Liposomes for combination therapy.

Nanocarrier system Agents Indication Status References

Liposome (CPX-351) Cytarabine + Daunorubicin Advanced Hematologic Cancer Phase II [144]

Liposome (CPX-1) Irinotecan + Floxuridine Advanced Colorectal Cancer Phase II [145, 230]

Liposome (CPX-571) Irinotecan and Cisplatin Non-small-cell lung cancer Preclinical [231]

PEG- Liposome Topotecan + Vincristine Brain cancer Preclinical [138]

Liposome Topotecan + Amlodipine Leukemia Preclinical [232]

Liposome Vincristine + Quinacrine Leukemia Preclinical [233]

Liposome 6-Mercaptopurine + Daunorubicin Leukemia Preclinical [234]

Liposome Paclitaxel + Tariquidar Ovarian cancer Preclinical [235]

Transferrin-conjugated PEGylated liposome Doxorubicin + Verapamil Leukemia Preclinical [134]

Trilysinoyl oleylamide(TLO)-based
cationic liposomes

siMcl1 + Suberoylanilide hydroxamic
acid Cervical cancer Preclinical [126]

Nanolipoplex Taurocholate(LHT7)+
Suberoylanilide hydroxamic acid Oral cancer Preclinical [130]

Liposome PD0325901 +siMcl1 Cervical cancer Preclinical [127]

Liposome Doxorubicin+ Msurvivin T34A
plasmid Lung carcinoma Preclinical [128]

Liposome Ceramide+ Sorafenib Breast Cancer Preclinical [124]

Liposome siB-Raf + siAkt3 Melanoma Preclinical [236]

PEGylated lipoplex siBcl-2-lipoplex+ S-1(5-FU) pro-drug Colorectal cancer Preclinical [92]

RGD-modified liposomes Combretastatin A-4 + Doxorubicin Melanoma Preclinical [147]

Liposome Gemcitabine + Tamoxifen Breast cancer Preclinical [148]
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Table 4

Nanoparticles based combination therapy.

Nanocarrier system Agents Indication Status Reference

RGDfK-G3 Poly-lysine dendrimer Doxorubicin + siRNA Glioblastoma Preclinical [178]

Dendritic PEG Paclitaxel + Alendronate Cancer bone metastases Preclinical [237]

Folate-G5 poly-propyleneimine
dendrimer with ethylenediamine core Methotrexate + all-trans-retinoic acid Leukemia Preclinical [238]

G5 PAMAM dendrimer Antisense-miRNA21 + 5-Fluorouracil Glioblastoma Preclinical [239]

Aptamer-G4 PAMAM dendrimer
conjugates

Unmethylated CpG-ONTs +
Doxorubicin Prostate Preclinical [240]

PLGA Vincristine + Verapamil Hepatocellular carcinoma Preclinical [241]

Methoxy PEG-PLGA Doxorubicin + Paclitaxel Various cancer Preclinical [242]

PLGA-PEG-biotin Paclitaxel + Tariquidar Various cancer Preclinical [243]

PLGA-PEG-biotin Paclitaxel + P-gp siRNA Various cancer Preclinical [244]

HPMA-Gem-Dox Gemcitabine +Doxorubicin Prostate cancer Preclinical [245]

HER2 conjugated- GMO-MNPs Paclitaxel + Rapamycin Breast cancer Preclinical [246]

Ac-(AF)6-H5-K15-NH2 (FA32) micelle Doxorubicin + p53 gene Hepatocarcinoma Preclinical [213]

Abbrviations: RGD: Arginylglycylaspartic Acid; siRNA: Small Interfering Ribonucleic Acid; miRNA: Micro Ribonucleic Acid; HER2: Human
Epidermal Growth Factor Receptor 2; PEG: Polyethylene Glycol; PLGA: Poly(Lactic-co-glycolic Acid); PAMAM: Polyamidoamine; HPMA:
Poly(N-(2-hydroxypropyl)methacrylamide); MNP: Magnetic Nanoparticles
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