RESEARCH PAPER

Photosynthetic flexibility in maize exposed to salinity and shade

Robert E. Sharwood*, Balasaheb V. Sonawane and Oula Ghannoum[†]

Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Locked bag 1797, Penrith NSW 2751, Australia

* Present address: Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.

[†] To whom correspondence should be addressed. E-mail: o.ghannoum@uws.edu.au

Received 19 December 2013; Revised 20 February 2014; Accepted 25 February 2014

Abstract

C₄ photosynthesis involves a close collaboration of the C₃ and C₄ metabolic cycles across the mesophyll and bundlesheath cells. This study investigated the coordination of C₄ photosynthesis in maize plants subjected to two salinity (50 and 100 mM NaCI) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δ_{n}) and reduced leaf dry-matter carbon isotope composition ($^{13}\delta$) due to changes in p_i/p_a (intercellular to ambient CO₂ partial pressure), while CO₂ leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced $\Delta_{\rm p}$ and ϕ without significantly affecting leaf ¹³ δ or p_i/p_a relative to control plants. Accordingly, shade perturbed the balance between the C_3 and C_4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C₄ acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf ¹³δ and photosynthetic Δ_{0} , and the role of the secondary decarboxylase PEP-CK in NADP-ME plants such as maize.

Key words: C₄ photosynthesis, carbon isotope discrimination, leakiness, NADP-ME, PEP-CK, PEPC, Rubisco.

Introduction

 C_4 photosynthesis evolved as a spatial and biochemical adaptation to remedy the inefficiency of C_3 photosynthesis under conditions of high temperature, low CO₂, and water stress, all of which exacerbate photorespiration (Ludwig, 2013). The propensity of photorespiration is determined by the extent of oxygenation carried out by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Andrews *et al.*, 1973; Cleland *et al.*, 1998). For C₃ plants, the current O₂ concentration in the atmosphere (210 mmol mol⁻¹) severely inhibits the carboxylation of ribulose-1,5-bisphosphate by Rubisco. Together, these environmental conditions are hypothesized to be the drivers for the independent evolution of plants operating a CO₂ concentration mechanism (CCM; Sage *et al.*, 2012). The distinguishing features of the CCM in most C₄

Abbreviations: BSC, bundle-sheath cell; CABP, carboxyarabinitol bisphosphate; CCM, CO₂ concentration mechanism; MC, mesophyll cell; NADP-ME, nicotinamide adenine dinucleotide phosphate malic enzyme; PEPC, phosphoenolpyruvate carboxylase; PEP-CK, phosphoenolpyruvate carboxylase; Rubisco, ribulose-1,5-bi-sphosphate carboxylase/oxygenase.

[©] The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

plants include the operation of two metabolic cycles (C₃ and C_4) across two photosynthetic cell types, mesophyll cells (MCs) and bundle-sheath cells (BSCs), which compartmentalize the initial carboxylation and decarboxylation reactions (Hatch, 1987; Langdale, 2011). The primary step of HCO₃ fixation to phosphoenolpyruvate is catalysed by phosphoenolpyruvate carboxylase (PEPC) to produce oxaloacetate, which is subsequently converted into C4 acids within the MCs (Jenkins et al., 1987). These organic acids then diffuse into neighbouring BSCs where decarboxylation of C₄ acids releases CO₂. A high CO₂ concentration within the semi-gastight BSCs suppresses photorespiration and enhances the capacity for CO₂ fixation by Rubisco. C₄ photosynthesis has three biochemical subtypes depending on the C₄ decarboxylase enzyme: nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME), NAD malic enzyme, and phosphoenolpyruvate carboxykinase (PEP-CK) (Gutierrez et al., 1974; Kanai and Edwards, 1999). C₄ plants have been classified into one of the three subtypes based on the dominant C_4 acid decarboxylation enzyme. Specialized leaf anatomy, biochemistry, and physiology are associated with each of the C_4 subtypes (Ghannoum *et al.*, 2005, 2011).

Nevertheless, there is evidence emerging that PEP-CK activity is more widespread among the biochemical subtypes, suggesting that a degree of flexibility within the C₄ cycle may exist depending on species or environmental conditions (Leegood and Walker, 2003; Furbank, 2011). In maize, an NADP-ME C₄ grass, 25% of the oxaloacetate produced is cycled through an alternative pathway involving the aspartate aminotransferase shuttle and the subsequent decarboxylation of oxaloacetate within the cytosol of BSCs catalysed by PEP-CK (Wingler *et al.*, 1999; Furbank, 2011). This has been shown to exist for maize and other C₄ grasses (Gutierrez *et al.*, 1974). Therefore, the presence of alternative decarboxylase pathways within maize provides the possibility for flexibility in the use of the decarboxylation pathways of the CCM under certain growth conditions (Leegood and Walker, 2003).

For C₄ plants, there is an additional energetic cost associated with the operation and overcycling of the CCM. Minimally, an extra two ATP molecules per CO₂ fixed are required for the regeneration of PEP from pyruvate. During C₄ photosynthesis, the C_4 cycle operates faster than the C_3 (Calvin) cycle in order to raise the BSC CO₂ concentration and saturate the carboxylation reaction of Rubisco. Inevitably, a fraction of this CO₂ is not fixed by Rubisco and ultimately leaks back from the BSCs to the MCs. This fraction is termed leakiness (ϕ) and entails additional energy costs associated with the overcycling of the C₄ cycle (Farquhar, 1983; Furbank et al., 1990). Consequently, the efficiency of C₄ photosynthesis requires the tight regulation of CO₂ supply with Rubisco activity within the BSCs in order to minimize leakiness and associated energy costs. This is often the case, given that leakiness varies within a narrow range and averages about 20%for a wide range of C₄ plants and environments (Henderson et al., 1992; von Caemmerer et al., 1997a; Cousins et al., 2008). Bundle-sheath leakiness can be estimated by concurrently measuring leaf gas exchange with carbon isotope discrimination (Evans et al., 1986). A number of studies have examined the effects of short-term and long-term changes in environmental parameters, such as light, water stress, and salinity, yielding mixed results. A few studies have estimated leakiness from measurements of dry-matter carbon isotope, and found that leakiness was impacted by light, salinity, or water stress (Buchmann et al., 1996; Saliendra et al., 1996; Fravolinil et al., 2002). When leakiness was estimated from carbon isotope discrimination measured during gas exchange, small changes in leakiness have been reported in some studies but not others in response to short- or long-term changes in the environment (Bowman et al., 1989; Kubasek et al., 2007). In particular, Bowman et al. (1989) found that leakiness changed diurnally in salt-stressed Zea mays and Andropogon glomeratus, two C₄, NADP-ME grasses, while Kubasek et al. (2007) reported that leakiness increased with low light and low temperature. Lowering light intensity during gas-exchange measurements had no effect on bundle-sheath leakiness in a number of C_4 plants (Henderson et al., 1992), and leakiness was unchanged under long-term exposure to low light (Bellasio and Griffiths, 2013a). Ubierna et al. (2013) found that the increase in leakiness commonly reported at low light (Henderson et al., 1992) was only marginally present when using the full model for carbon isotope discrimination in C₄ leaves (Farquhar and Cernusak, 2012). Leakiness depends on a number of anatomical (e.g. CO₂ diffusion path length, chloroplast position in the BSC, BSC wall conductance) and biochemical (e.g. activities of the carboxylases and decarboxylases during C₄ photosynthesis) factors (Henderson et al., 1992; von Caemmerer and Furbank, 2003). In contrast to manipulations using transgenic C₄ plants (von Caemmerer *et al.*, 1997*b*; Cousins *et al.*, 2006; Pengelly et al., 2012), few studies have investigated the effects of environmental variables on leakiness together with possible underlying biochemical mechanisms.

Consequently, the current study was aimed at investigating the efficiency of C₄ photosynthesis in maize exposed to long-term shade and salinity, by combining measurements of leakiness with assays of the two carboxylases and decarboxylases known to operate in maize leaves. A second aim of this study was to probe the plasticity of the C₄ acid decarboxylases in response to these environmental variables. Salinity and shade were chosen because they impact on photosynthesis through contrasting effects on leaf CO₂ diffusion and fixation. Mild to moderate salinity inhibits root water uptake, thus indirectly reducing the plant water status, as detected by increased leaf water potential and reduced stomatal conductance, both of which reduce photosynthesis (Munns and Tester, 2008; Omoto et al., 2012; Shabala and Munns, 2012). Low light reduces photosynthesis mainly by reducing activity and activation of photosynthetic enzymes (Edwards et al., 1985).

Materials and methods

Plant culture

Maize seeds (Sweet Corn, Kelvedon Glory 5713) were germinated in 5 1 pots (shaded plants were raised in 2 1 pots) containing standard potting mix in a sunlit glasshouse during summer (December–March 2012). Nutrients were supplied through the addition of Osmocote

and periodic watering with soluble Aquasol supplemented with magnesium sulfate. Maize plants destined for the salinity treatments were initially watered with tap water. Once seedlings were well established (2 weeks after germination), NaCl was added at increasing concentrations to the watering solution over a period of 2 weeks until the endpoint concentrations of 50 and 100mM NaCl were reached. To minimize NaCl accumulation, pots were flushed with water once a week, and then irrigated with the desired NaCl concentration. Plants destined for shading were germinated as above in full sunlight and then placed under a shade cloth, which limited light to 20% of the ambient sunlight. At midday, the photosynthetic active radiation of full sunlight ranged between 1000 and 1800 umol m⁻² s^{-1} when measured at pot level during the experiment. Air temperature inside the glasshouse compartment was regulated by a temperature-control system, and day/night temperatures averaged 26/18 °C. Relative humidity was monitored and ranged between 60 and 80% during the day. There were five pots per treatments. Plants were harvested 12 weeks after germination.

Measuring leaf gas exchange

Leaf gas-exchange measurements were carried out 1–2 weeks before harvest using a portable open photosynthesis system (LI-6400XT; LI-COR, Lincoln, USA). Measurements of light-saturated photosynthetic rate (A_{sat}) and stomatal conductance (g_s) were taken between 10:00 and 14:00 at ambient CO₂ (400 µl l⁻¹), a leaf temperature of 26 °C, and a photosynthetic photon flux density of 1800 µmol m⁻² s⁻¹. Each leaf was allowed to reach a steady state of CO₂ uptake in the LI-6400XT leaf chamber before measurements were taken.

Photosynthetic responses to intercellular CO₂ concentration $(A/C_i \text{ curves})$ were measured at 10 CO₂ steps using similar conditions as described above. The A/C_i curves were fitted using a C₄ photosynthesis model (von Caemmerer, 2000) to estimate maximal PEPC (*in vivo* V_{pmax}) and Rubisco (*in vivo* V_{cmax}) activities. V_{cmax} and V_{pmax} were varied simultaneously until the best fit with the gas-exchange data was obtained.

Photosynthetic carbon isotope discrimination

Bundle-sheath leakiness was determined by measuring real-time ${}^{13}CO_2/{}^{12}CO_2$ carbon isotope discrimination using a gas exchange system (LI-6400XT: LI-COR) attached to a tunable diode-laser (model TGA100; Campbell Scientific, Logan, UT, USA), under similar conditions to the spot gas exchange measurements. Photosynthetic discrimination against ${}^{13}C$ (Δ_p) was calculated using the following equations (Evans *et al.*, 1986):

$$\Delta_{p} = \frac{\xi(\delta_{o} - \delta_{c})}{1 + \delta_{o} - \xi(\delta_{o} - \delta_{c})}$$
(1)

$$\xi = \frac{C_{\rm e}}{C_{\rm e} - C_{\rm o}} \tag{2}$$

where δ_e , δ_o , C_e , and C_o are the δ^{13} C (δ) and CO₂ mol fraction (*C*) of the air entering (e) and leaving (o) the leaf chamber and were measured with the tunable diode-laser. In this study, ξ ranged between 5 and 11. Leakiness (ϕ) was calculated using the model of Farquhar (1983) as modified by Pengelly *et al.* (2010, 2012). The formulae used are described briefly below.

$$\phi = \frac{\left(\frac{1-t}{1+t}\right)\Delta - \frac{a'}{1+t} - (a_i - b'_4)\frac{A}{g_{\rm m}C_{\rm a}} - (b'_4 - a')\frac{C_{\rm i}}{C_{\rm a}}}{(b'_3 - s)\left(\frac{C_{\rm i}}{C_{\rm a}} - \frac{A}{C_{\rm a}g_{\rm m}}\right)}$$
(3)

where the term t, which represents the ternary effect, is defined as by Farquhar and Cernusak, (2012):

Maize photosynthesis under salinity and shade | 3717

$$t = \frac{(1+a')E}{2g_{\rm ac}^{\rm t}} \tag{4}$$

where *E* is the transpiration rate and g_{ac}^{t} the total conductance to CO₂ diffusion including boundary layer and stomatal conductance (von Caemmerer and Farquhar, 1981). The symbol *a'* denotes the combined fractionation factor through the leaf boundary layer and through stomata:

$$a' = \frac{a_{\rm b} \left(C_{\rm a} - C_{\rm ls}\right) + a \left(C_{\rm ls} - C_{\rm i}\right)}{C_{\rm a} - C_{\rm i}} \tag{5}$$

where C_a , C_i , and C_{ls} are the ambient, intercellular, and leaf surface CO₂ partial pressures, a_b (2.9‰) is the fractionation occurring through diffusion in the boundary layer, *a* (4.4‰) is the fractionation due to diffusion in air (Evans *et al.*, 1986), *s* (1.8‰) is the fractionation during leakage of CO₂ out of the bundle sheath, and a_i is the fractionation factor associated with the dissolution of CO₂ and diffusion through water. Here, we assume that $s=a_i$.

$$b'_{3} = b_{3} - e \left(\frac{R_{d}}{A + R_{d}} - \frac{0.5R_{d}}{A + 0.5R_{d}} \right) - f \frac{0.5V_{0}}{V_{c}}$$
(6)

and

$$b_4' = b_4 - e \frac{0.5 R_d}{(A + 0.5 R_d)} \tag{7}$$

where b_3 is the fractionation by Rubisco (30‰), b_4 is the combined fractionation of the conversion of CO₂ to HCO₃⁻ and PEP carboxylation (-5.74‰ at 25 °C), *f* is the fraction associated with photosrespiration, and V_o and V_c are the rates of oxygenation and carboxylation, respectively. The fractionation factor *e* associated with respiration was calculated from the difference between δ^{13} C in the CO₂ cylinder (-40.5‰) used during experiments and that in the atmosphere under growth conditions (-8‰; Tazoe *et al.*, 2008). *A* and R_d denote the CO₂ assimilation rate and day respiration, respectively; R_d was assumed to equal dark respiration. We assumed a mesophyll conductance (g_m)=1 mol m⁻² s⁻¹ bar⁻¹ for these calculations. In this study, leaf gas exchange was measured at high light, and hence $V_o=0$ (i.e. $f \frac{0.5V_0}{V_c}=0$) (Pengelly *et al.*, 2010, 2012; Ubierna

Rubisco content and soluble protein determination

Following gas-exchange measurements, replicate leaf discs (0.74 cm^2) were rapidly frozen in liquid nitrogen and then stored at -80 °C until analysed. Each leaf disc was extracted in 1 ml of ice-cold extraction buffer [50 mM EPPS/NaOH (pH 8.0), 5 mM dithiothreitol, 20 mM NaHCO₃, 20 mM MgCl₂, 1 mM EDTA, 4% (v/v) Protease Inhibitor Cocktail (Sigma), and 1% (w/v) polyvinyl polypyrrolidone] using a 2ml Potter–Elvehjem glass homogenizer kept on ice. Subsamples were taken from the total extract for SDS-PAGE analysis (see below) of total leaf protein. The remaining extract was centrifuged at 16, 100g for 1 min and the supernatant used for Rubisco and soluble protein assays. Rubisco content was estimated by the irreversible binding of [¹⁴C]carboxyarabinitol bisphosphate (CABP) to the fully carbamylated enzyme (Sharwood *et al.*, 2008). Extractable soluble proteins were measured using a Coomassie Plus kit (Pierce).

Activity of carboxylase and decarboxylase enzymes

Activity of Rubisco in maize extracts was determined by multiplying the number of Rubisco active sites determined using the [^{14}C]CABP binding assay by the Rubisco *in vitro* k_{cat} (5.5 s⁻¹) determined using a $^{14}CO_2$ fixation assay (Sharwood *et al.*, 2008). The activity of the PEPC

3718 | Sharwood et al.

and NADP-ME enzymes were determined spectrophotometrically as described previously (Ashton *et al.*, 1990; Pengelly *et al.*, 2012).

The activity of PEP-CK in maize extracts was measured in the carboxylase direction using the method outlined by Walker *et al.* (2002). For each assay, a separate leaf disc was homogenized in extraction buffer containing 50 mM HEPES (pH 7.2), 5 mM dithio-threitol, 1% polyvinyl polypyrrolidone, 2 mM EDTA, 2 mM MnCl₂, and 0.05% Triton X-100. MgCl₂ was not added to the extraction or assay buffer to remove the possibility of interference from other enzymes. PEP-CK activity was measured in assay buffer [100 mM HEPES (pH 7.0), 4% mercaptoethanol (w/v), 100 mM KCl, 90 mM NaHCO₃, 1 mM ADP, 2 mM MnCl₂, 0.14 mM NADH, and malate dehydrogenase (6 U)] after the addition of PEP to 5mM. The final concentration of 4 mM MnCl₂ has been shown to be sufficient for PEP-CK activity (Chen *et al.*, 2002; Walker *et al.*, 2002).

SDS-PAGE and immunoblot analysis of Rubisco and CCM proteins

Subsamples of total protein fractions were mixed with 0.25 vols of $4 \times \text{LDS}$ buffer (Invitrogen) containing 100 mM dithiothreitol and placed on ice until analysed within 2h. For confirmatory visualization, protein samples were separated by SDS-PAGE in TGX Any kD (BioRad) pre-cast polyacrylamide gels buffered with 1× Tris/glycine SDS buffer (BioRad) at 200 V using a Mini-Protean apparatus at 4 °C. Proteins were visualized by staining with Bio-Safe Coomassie G-250 (BioRad) and imaged using a VersaDoc imaging system (BioRad).

For immunoblot analyses of total leaf protein, samples were separated by SDS-PAGE as outlined above and then transferred at 4 °C to nitrocellulose membranes (0.45 µm; BioRad) using a Xcell Surelock western transfer module (Invitrogen) buffered with 1× transfer buffer [20×: 25 mM Bicine, 25 mM Bis/Tris, 1 mM EDTA, 20% (v/v) methanol]. After 1 h transfer at 30 V, the membrane was placed in blocking solution [3% (w/v) skimmed milk powder in TBS, 50 mM Tris/HCl (pH 8), 150 mM NaCl)] for 1 h at room temperature with gentle agitation.

Primary antisera raised in rabbit against tobacco Rubisco (prepared by S. M. Whitney, Australian National University, Canberra, Australia) was diluted 1:4000 in TBS before incubation at 1 h with membranes at room temperature with gentle agitation. Antisera raised against PEPC was obtained from AgriSera and diluted 1:2000 with TBS. For NADP-ME and PEP-CK, synthetic peptides based on monocot amino acid sequences for each protein were synthesized by GL Biochem and antisera were raised against each peptide in rabbits. The reactive antisera were the antigen purified for use in immunoblot analysis (GL Biochem). The NADP-ME and PEP-CK antisera were diluted in TBS at 1:1000 and 1:500, respectively.

All primary antisera were incubated with membranes at room temperature for 1 h with gentle agitation before washing three times with TBS. Secondary goat anti-rabbit antiserum conjugated to horseradish peroxidase (Perkin Elmer) was diluted 1:3000 in TBS and incubated with the membranes for 1 h at room temperature followed by three washes with TBS. Immunoreactive peptides were detected using an Immun-Star WesternC kit (BioRad) and imaged using VersaDoc.

Plant biomass, leaf water potential, and nitrogen and carbon isotope composition

Before harvest, leaf water potential (Ψ_L) was measured on a cut, matching gas-exchange leaf using a Scholander-style pressure chamber (PMS Instrument Company, Corvallis, OR, USA). At harvest, leaves were sampled and their area determined using a leaf area meter (LI-3100A; LI-COR) and roots were washed free of soil. Plant tissues were oven dried at 80 °C for 48 h, weighed, and ground to a homogenous powder in a ball mill (MM-400; Retsch).

Leaf N content was determined on the ground tissue using a CN analyser (LECO TruSpec; LECO Corp., MI, USA). For carbon

isotope composition $(^{13}\delta)$, ground leaf samples were combusted in a Carlo Erba elemental analyser (Model 1108) and the CO₂ was analysed by mass spectrometry. Isotopic composition (δ) was calculated as $[(R_{sample} - R_{standard})/R_{standard}] \times 1000$, where R_{sample} and $R_{standard}$ are the $^{13}C/^{12}C$ ratios of the sample and standard (Pee Dee Belemnite), respectively.

Statistical analysis

Statistical significance tests were conducted using one-way analysis of variance computed in a general linear model. Treatment means were ranked using a post-hoc Tukey test.

Results

Plant growth and leaf nitrogen

Plant leaf area was reduced by 18 and 22% for plants exposed to 50 and 100 mM NaCl, respectively, whereas plant biomass was decreased by 34 and 50% for the same treatments when compared with the control (Fig. 1A, B, Table 1). Leaf mass per area was not significantly affected by salinity (Table 1).

The impact of 80% shading (shaded plants received 20% of ambient sunlight) on the maize plants was profound. Leaf area and total plant biomass were reduced to 18 and 3% of that of the control plants, respectively, while leaf mass per area was reduced to 37% of that of the control plants (Fig. 1A, B, Table 1).

Leaf N content per unit mass decreased in the high-salttreated plants only relative to the control. When expressed on an areas basis, leaf N concentration tended to be lower in the shaded plants relative to the control (Table 1).

Leaf photosynthesis

Leaf water potential (Ψ_L) decreased in plants exposed to moderate (100 mM NaCl) but not mild (50 mM NaCl) levels of soil salinity (Table 1). Consequently, photosynthetic rates measured at ambient CO₂ (A_{sat}) decreased in maize plants exposed to the higher salinity treatment only (Fig. 1C, Table 1), whereas g_s decreased in plants exposed to both salinity levels (Fig. 1D, Table 1). Plants exposed to shade underwent larger decreases in photosynthesis and g_s (Fig. 1C, D, Table 1). A common linear relationship related A_{sat} to g_s (r^2 =0.73) in all the maize plants regardless of the treatment (Fig. 2C).

 A/C_i curves were fitted using the C₄ photosynthesis model (von Caemmerer, 2000) to estimate *in vivo* V_{cmax} and V_{pmax} . Both parameters decreased in the shaded plants relative to the control, while there was a small but non-significant reduction in V_{cmax} in the higher salinity treatment. The ratio V_{pmax}/V_{cmax} (2.3–2.8) was similar for all the maize plants, regardless of the treatment (Fig. 3, Table 1).

Photosynthetic and dry-matter carbon isotope discrimination

Concurrent measurements of ${}^{13}\text{CO}_2/{}^{12}\text{CO}_2$ discrimination and leaf gas exchange showed that photosynthetic discrimination (Δ_p) varied linearly with p_i/p_a for plants in the control and

Fig. 1. Growth of maize plants exposed to salinity and shade. Total leaf area (A), plant dry mass (B), light-saturated photosynthetic rates in ambient air, A_{sat} (C), and stomatal conductance, g_s (D), of maize plants grown in full sunlight and irrigated with water (control), 50 mM NaCl (Salt-50), or 100 mM NaCl (Salt-100), or grown in 20% sunlight (shade).

Table 1. Summary of plant growth, leaf chemistry, leaf gas exchange and photosynthetic enzyme activity determined for maize plants grown in full sunlight and irrigated with normal water (control), 50 mM NaCl (Salt-50) or 100 mM NaCl (Salt-100)

Shade plants were grown in 20% sunlight and irrigated with normal water. Values are treatment means of three replicates±standard error. Statistical significance tests were conducted using one-way analysis of variance computed in a general linear model. Treatment means were ranked using a post-hoc Tukey test, and values followed by the same letter are not significantly different at the 5% level (*P*<0.05). ND, not determined

Parameter	Control	Shade	Salt-50	Salt-100	Model P value
Plant and leaf traits					
Total leaf area (cm ² plant ⁻¹)	512±61b	94±23a	418±47b	$397 \pm 4b$	0.0012
Plant dry mass (g plant ⁻¹)	28.2±4.6c	0.75±0.05a	18.5±4.3bc	14.0±2.7b	0.0031
Leaf mass per area (g m ⁻²)	$71 \pm 5b$	26±2a	69±6b	59±15b	0.0343
Leaf water potential, $\Psi_{ m L}$ (MPa)	0.32±0.07a	ND	0.53±0.10a	$1.08 \pm 0.09b$	0.0000
Leaf N content (mg g ⁻¹)	36±2b	38±0b	33±2ab	29±1 <i>a</i>	0.0054
Leaf N content (mmol m ⁻²)	184±10a	95±25a	132±24a	124±28a	0.1027
Leaf C isotope composition, $^{13}\delta$ (‰)	-14.68±0.24a	-14.38±0.19a	$-15.43 \pm 0.05b$	$-15.85 \pm 0.07b$	0.0006
Leaf gas exchange					
Photosynthesis, A_{sat} (µmol m ⁻² s ⁻¹)	$33.7 \pm 1.0c$	13.0±0.7a	32.6±1.1c	28.3±1.6b	0.0000
Stomatal conductance, g_s (mol m ⁻² s ⁻¹)	0.285±0.017c	0.088±0.007a	0.191±0.012b	0.172±0.020b	0.0000
<i>in vivo</i> V_{cmax} (µmol m ⁻² s ⁻¹)	40±10b	19±6a	40±1b	$33 \pm 1b$	0.0125
<i>in vivo</i> V _{pmax} (μmol m ⁻² s ⁻¹)	104±6b	45±5a	$94 \pm 1b$	$94 \pm 1b$	0.0012
V _{pmax} /V _{cmax}	2.6±0.2a	2.5±0.4a	2.3±0.1a	2.8±0.1a	0.4682
Photosynthetic Δ_p (‰)	3.66±0.13b	2.46±0.36a	$3.90 \pm 0.04b$	4.23±0.11b	0.0040
Leakiness, ϕ	0.26±0.02ab	0.13±0.04a	0.24±0.02ab	$0.31 \pm 0.01b$	0.0125
Photosynthetic enzymes					
Rubisco content (g m ⁻²)	0.31±0.04b	0.14±0.03a	0.23±0.01 <i>ab</i>	0.24±0.03ab	0.0141
Soluble proteins (g m ⁻²)	4.2±0.2b	2.5±0.2a	3.2±0.2ab	3.9±0.4b	0.0057
Rubisco activity (µmol m ⁻² s ⁻¹)	$27.5 \pm 1.4c$	11.5±2.0a	18.1±0.8b	19.5±2.1b	0.0034
PEPC activity (μ mol m ⁻² s ⁻¹)	107±7d	21±4a	$52\pm4b$	72±4c	0.0000
PEPC/Rubisco	3.9±0.10c	1.8±0.08a	2.9±0.13b	3.3±0.15b	0.0000
NADP-ME activity (μ mol m ⁻² s ⁻¹)	53±8b	32±5a	18±0.1a	19±3a	0.0073
PEP-CK activity (µmol m ⁻² s ⁻¹)	12.4±1.6c	3.0±0.4a	7.6±0.7b	8.2±1.2b	0.0021

salinity treatments, yielding a common bundle-sheath ϕ value of 0.25 according to the carbon discrimination model for C₄ plants (Farquhar, 1983). Thus, salinity changed p_i/p_a without affecting ϕ . In contrast, shaded plants had lower Δ_p , p_i/p_a , and ϕ relative to both control and salt-stressed plants (Fig. 2A).

Leaf dry-matter carbon isotope composition $(^{13}\delta)$ decreased (more negative) significantly in the salt-treated plants only, while shade plants had similar leaf $^{13}\delta$ to the control plants (Table 1). Photosynthetic Δ_p and leaf dry-matter $^{13}\delta$ changed proportionately for the control and salt-treated

Fig. 2. Leaf gas exchange and carbon isotope discrimination in maize plants exposed to salinity and shade. Photosynthetic carbon isotope discrimination, Δ_p measured during the gas exchange of maize leaves as a function of intercellular to ambient CO₂ ratio (A) or leaf dry matter carbon isotope composition, ¹³ δ (B). Photosynthetic rates as a function of stomatal conductance are also shown (C). In (A), the solid line is the solution for the C₄ discrimination model (Farquhar, 1983) using a leakiness (ϕ) value of 0.25. Leaf gas exchange was measured at high light (1800 µmol m⁻² s⁻¹), ambient CO₂ (400 µl l⁻¹) and 26 °C. In (B), the solid line is the linear regression of all data points excluding the shade treatment. In (C), the solid line is the linear regression of all data points. Maize plants were grown in full sunlight and irrigated with water (control, filled circle), 50 mM NaCl (Salt-50, half-filled triangle), or 100 mM NaCl (Salt-100, filled triangle), or grown in 20% sunlight (shade, open circle).

plants (Fig. 2B). In contrast, the shade plants fell outside the common relationship because their photosynthetic Δ_p decreased but not their leaf ¹³ δ relative to the control plants (Fig. 2B).

Fig. 3. A/C_i response curves for leaves of maize exposed to salinity and shade. Responses of assimilation rates to intercellular CO₂ (A/C_i curves) measured at a light intensity of 1800 µmol m⁻² s⁻¹ and a leaf temperature of 26 °C. Data points are the average of two replicates. Lines are the mathematical fits using the C₄ photosynthesis model (von Caemmerer, 2000). Maize plants were grown in full sunlight and irrigated with water (control, filled circle), 50 mM NaCl (Salt-50, half-filled triangle), or 100 mM NaCl (Salt-100, filled triangle), or grown in 20% sunlight (shade, open circle).

Activity of photosynthetic enzymes

Leaf Rubisco content and Rubisco activity calculated from $k_{\rm cat}$ and the irreversible binding of the transition state analogue [¹⁴C]CABP decreased by 25 and 50% in the salt-treated and shaded plants, respectively. As expected for C₄ leaves, Rubisco activity was equivalent to A_{sat} for the control and shade leaves; this was not the case for the salt-treated leaves (Fig. 4A, Table 1). Leaf soluble proteins changed together with Rubisco such that Rubisco constituted a constant fraction of soluble proteins under all treatments (Table 1). PEPC activity measured in leaf extracts was reduced by 80% in the shaded plants and by 30-50% in the salt-treated plants relative to the control treatment (Fig. 4B, Table 1). Generally, changes in Rubisco and PEPC activities were reflected by the immunoblots probed with antibodies raised against each of the carboxylase enzymes (Fig. 5). Shading reduced PEPC activity to a greater extent than Rubisco activity, and consequently halved the PEPC/Rubisco activity ratio relative to the control treatment. The PEPC/Rubisco ratio was not significantly affected by salinity in the maize plants (Table 1). It is worth noting that in vivo and in vitro estimates of Rubisco (V_{cmax}) and PEPC (V_{pmax}) activities did not closely correlate in this study. Reconciling these parameters requires more detailed parameterization of C₄ photosynthesis model (von Caemmerer, 2000).

The activity of the primary decarboxylase NADP-ME and its relative content determined by immunoblot analysis showed 35% reductions across both salinity treatments. NADP-ME activity declined by 60% in the shaded relative to the control plants (Figs 4C and 5, Table 1). Activity and protein expression of the secondary decarboxylase, PEP-CK, was detected in the leaf extracts of all maize plants (Figs 4D

Fig. 4. Activity of carboxylases and decarboxylases in maize plants exposed to salinity and shade. Activity of Rubisco (A), PEPC (B), NADP-ME (C), and PEP-CK (D) for maize plants grown in full sunlight and irrigated with water (control), 50 mM NaCl (Salt-50), or 100 mM NaCl (Salt-100), or grown in 20% sunlight (shade).

and 5). In the control treatment, PEP-CK accounted for 20% of the total C_4 acid decarboxylation activity measured in maize leaves. This proportion increased to 30% in salt-treated plants and declined to 10% in the shaded plants (Table 1). In absolute terms, PEP-CK activity decreased by 40% in salt-treated plants and by 75% in shaded plants (Figs 4D and 5, Table 1).

Discussion

Contrasting impacts of salinity and shade on maize

The main objective of this study was to investigate the regulation of C_4 photosynthesis subjected to environmental manipulations that are known to have contrasting impacts on the processes of CO_2 assimilation and diffusion. One of the main acclimation responses to shade is the downregulation of leaf photosynthetic capacity (Boardman, 1977). In contrast, mild to moderate salinity will primarily reduce stomatal conductance by negatively impacting on soil, and hence on leaf water potential. Compared with water stress, salinity has the added advantage of providing a steady stress while avoiding the complications associated with controlling soil water supply (Neumann *et al.*, 1988; Chaves *et al.*, 2009). To this end, both treatments used in this study achieved their goals. While shade markedly reduced plant growth and photosynthetic capacity, salinity reduced stomatal conductance with small effects on photosynthetic rates of the maize plants. Salinity inhibited plant growth to a lesser extent than shade (Table 1).

The evolution of a CCM in higher plants represents a key step to improving photosynthesis under environmental conditions favouring photorespiration by circumventing the inefficiency of Rubisco. The efficient operation of C₄ photosynthesis requires close coordination between the C₄ and C₃ cycles, which is achieved through the distinct cellular compartmentalization of the initial and final carboxylases PEPC (in MCs) and Rubisco (in BSCs), respectively, as well as the localization of the decarboxylases (NADP-ME and PEP-CK for maize) within the BSC. In addition, the maintenance of a high PEPC/Rubisco activity ratio is critical for the build-up of CO₂ within the BSCs. Importantly, regulating the balance between Rubisco, PEPC, NADP-ME, and other enzymes of the C_3 and C_4 cycles allows the dynamic regulation of C_4 efficiency that other features such as BSC wall conductance or CO₂ diffusion path length cannot offer in the short to medium term (Hatch, 1987; von Caemmerer and Furbank. 2003). Perturbation of the PEPC/Rubisco ratio by genetically suppressing PEPC results in C₄ plants unable to grow effectively in air (Dever et al., 1997; Cousins et al., 2007). Leakiness of CO₂ from the BSCs as determined from measurements of ¹³C/¹²C carbon isotope discrimination represents a key surrogate indicator of the coordination between the C_3 and C_4 cycles (Farguhar, 1983). Combining measurements of leakiness with activities of the key enzymes in the C₃ and C₄ cycles can elucidate the regulation and efficiency of C₄ photosynthesis under different environments (Evans et al., 1986; Henderson et al., 1992). Below, we demonstrate that shade, but not salinity, can perturb CCM efficiency as evidenced by changed leakiness.

Mild to moderate salinity impacts on carbon isotope discrimination through stomatal conductance without affecting leakiness

In maize, mild salinity (50 mM NaCl) reduced leaf g_s but not A_{sat}, while moderate salinity (100 mM NaCl) reduced both g_s and A_{sat} . Hence, reduced photosynthetic rates were largely caused by increased resistance to CO₂ diffusion under both salinity treatments, and this was born out in the lower p_i/p_a ratio and more negative dry-matter ¹³ δ observed in the leaves of salt-treated maize plants (Fig. 2). Reduced stomatal conductance and leaf ${}^{13}\delta$ in response to salinity is commonly reported in C₃ (Seemann and Critchley, 1985; Brugnoli and Lauteri, 1991) and C₄ (Bowman et al., 1989; Meinzer et al., 1994; Meinzer and Zhu, 1999) plants. In maize, reduced photosynthetic rates, especially at the highest salinity treatment was also caused by the lower Rubisco and PEPC activities. This reduction was observed in the spectrophotometric assays and the immunodetection of the expressed proteins. Reduced expression of Rubisco under salinity was part of a general reduction in soluble proteins and leaf N. Leaf N is known to decline under salinity due to Cl⁻ interference with nitrate uptake by roots (Munns and Termaat, 1986).

Fig. 5. Immunoblots of carboxylases and decarboxylases in maize plants exposed to salinity and shade. Immunoblots of total leaf proteins probed with antisera raised against the four photosynthetic enzymes Rubisco large subunit, PEPC, NADP-ME, and PEP-CK, as described in Materials and methods. The analysis was undertaken separately for the salinity-treated (A) and shade-treated (B) maize plants. Changes in immunoblot densitometry were calculated relative to the control treatment (C).

The activity of both carboxylases declined to the same extent under salinity conditions such that the PEPC/Rubisco ratio was indistinguishable from that of the control leaves. This may explain why leakiness was unaffected by salinity in maize leaves despite the changes in photosynthetic Δ_p and leaf ¹³ δ , which were caused by reduced p_i/p_a (Fig. 2). In line with these results, when the C₄ shrub Atriplex lentiformis was exposed for 4 weeks to salinity levels equivalent to those used in the current study, photosynthesis and stomatal conductance decreased, while the PEPC/Rubisco ratio remained unchanged until the salinity increased above 120 mM. The same study also reported that leakiness, estimated from leaf ¹³ δ rather than from photosynthetic Δ_p , correlated positively with the PEPC/Rubisco ratio (Meinzer and Zhu, 1999). Similarly to Atriplex, salinity reduced photosynthesis and increased p_i/p_a and ϕ values in sugarcane genotypes. Changes in ϕ derived from leaf ¹³ δ were also related to the PEPC/ Rubisco ratio in sugarcane (Meinzer et al., 1994).

The discrepancy between the studies using *Atriplex* and sugarcane with the current study using maize may be related to a number of factors, the main ones being the salinity level and the basis for leakiness calculation. Meinzer and Zhu (1999) found that mild salinity mainly affected g_s and had little impacts on ϕ (a similar scenario to the current maize study), and that ϕ and the PEPC/Rubisco ratio were affected at high salinity, indicating profound damage of the photosynthetic apparatus by the accumulating salt, unlike the treatments used in the current maize study. In addition, the difference between leaf ¹³ δ and photosynthetic Δ_p have not been reconciled yet for C₄ plants. Post-photosynthetic fractionation of ¹³C/¹²C may be important in C₄ leaves, thus representing a source of uncertainty in leakiness calculations based on leaf ¹³ δ (Henderson *et al.*, 1992).

In maize, both salinity treatments reduced the activity of the primary (NADP-ME) and secondary (PEP-CK) decarboxylases. These observations, together with reduced PEPC activity, suggest that the CCM was down regulated in response to salinity. Results obtained with enzyme activity and immunoblot analysis indicated that the decarboxylases were inhibited more than the carboxylases under salinity. Evidence from transgenic *Flaveria* plants with reduced amounts of NADP-ME have indicated that this decarboxylase is in excess, as photosynthesis was not impacted until activity was reduced to less than 40% of that of wild type (Pengelly *et al.*, 2012). In summary, salinity treatments reduced photosynthesis primarily by reducing g_s and secondarily by reducing Rubisco and PEPC activities. The balance between the C₃ and C₄ cycles was unaffected, as indicated by a similar leakiness between the salt-treated and control maize plants.

Shade profoundly reduces photosynthetic capacity and leakiness, thus perturbing the coordination between the C_3 and C_4 cycles

The shade treatment used in this study had profound impacts on the growth and photosynthesis of the maize plants (Table 1). In particular, shade reduced the photosynthetic capacity measured in terms of *in vivo* V_{cmax} and V_{pmax} estimated from the A/C_i curves and in terms of enzyme activity of the carboxylases and decarboxylases. In contrast to salinity, shade had two significantly distinct effects on leaf photosynthesis. Firstly, decreased photosynthetic capacity was mediated by a general downregulation of the activity and protein expression of all measured photosynthetic enzymes. Secondly, the PEPC/Rubisco ratio, photosynthetic Δ_p , and its derived leakiness decreased relative to those of the control plants, while leaf ¹³ δ was not significantly affected (Fig. 2).

The responses of C_4 photosynthesis to low light vary depending on whether the condition is transient or a shortterm acclimation. Under low light (<200 µmol quanta m⁻² s⁻¹), ϕ may increase, possibly as a result of decreased Rubisco activation or increased Rubisco oxygenation due to the low BSC CO₂ concentration. These factors decrease CO₂ fixation by Rubisco more than by PEPC, thus maintaining a higher supply of CO₂ to the BSCs than Rubisco can fix (Henderson *et al.*, 1992; Kromdijk *et al.*, 2008, 2010; Tazoe *et al.*, 2008). However, ϕ in maize leaves was unaffected under conditions of short-term acclimation to low light (Bellasio and Griffiths, 2013a, b).

In contrast to these studies, leakiness decreased in our study as a result of reduced Δ_p with little impact on p_i/p_a , suggesting two main conclusions. Firstly, reduced leakiness in our maize study was accompanied by a reduced PEPC/ Rubisco ratio, highlighting the role of this ratio in particular, and the balance between the activity of the C₃ and C₄ cycle enzymes in general, for optimizing the efficiency of C₄ photosynthesis. Our results in maize make it clear that acclimation to low light reduced PEPC activity and protein expression to a greater extent than those of Rubisco. High light dependence of PEPC gene expression is well documented in C₄ plants (Chollet *et al.*, 1996). Secondly, leaf ${}^{13}\delta$ and photosynthetic $\Delta_{\rm p}$ in our maize study did not change together under low light, mainly because the former decreased while the latter was only marginally and not significantly affected by shade (Fig. 2). This is in contrast to a large survey of C_4 grasses, showing that leaf ${}^{13}\delta$ decreased under shade conditions (Buchmann et al., 1996). On the one hand, our results highlight the problems of using leaf ${}^{13}\delta$ as a proxy for photosynthetic Δ_p , especially when inferring leakiness and C₄ regulation. On the other hand, our results point to a stronger dependence of leaf ${}^{13}\delta$ on the diffusive components (salinity effects) within the $\Delta_{\rm p}$ equation as opposed to the metabolic factors for which light can have complex effects (Farquhar, 1983; Henderson et al., 1992; von Caemmerer et al., 1997a; Ubierna *et al.*, 2011). Solving the link between leaf ${}^{13}\delta$ and photosynthetic $\Delta_{\rm p}$ remains a key challenge for elucidating the underpinnings of carbon isotope discrimination in C₄ leaves.

In another contrast with the salinity treatments, shade reduced the activity of the primary decarboxylase NADP-ME less, while strongly suppressing the activity of the secondary decarboxylase PEP-CK. Taken together, these results constitute rare evidence for decarboxylase flexibility in response to environmental conditions, with salinity and shade having opposite effects on the ratio of PEP-CK to NADP-ME activity in maize. It is unlikely that the observed changes in NADP-ME and PEP-CK were due to anaplerotic activities due to their low contribution relative to that of the photosynthetic isoforms (Drincovich et al., 2001). The differential engagement of the decarboxylation pathways enables C_4 plants to acclimate to varying conditions of light (Furbank, 2011). For example, it has been shown that the flexible operation of NADP-ME and PEP-CK decarboxylases in maize allows the bundle sheath to regulate NADPH supply under variable light conditions (Bellasio and Griffiths, 2013b). In the current study, we demonstrated the differential engagement of the primary and secondary decarboxylases under long-term acclimation to low light through the significant reductions of PEP-CK activity and protein content (Figs 4 and 5).

In summary, we demonstrated that long-term acclimation to low light in maize causes a reduction in BSC leakiness. This reduction was underpinned by a greater downregulation of PEPC activity and content relative to those of Rubisco, and by a flexible partitioning of C_4 acid decarboxylation activity between NADP-ME and PEP-CK.

Acknowledgements

We thank Hilary Stuart-Williams from the Australian National University for assistance with the analysis of leaf dry-matter carbon isotope composition and N content. We thank Anthony Newton for help with plant culture. This research was partially funded by the Hawkesbury Institute for the Environment at University of Western Sydney through the award of a research fellowship to RES. This research was also supported by a Discovery Project awarded to OG by the Australian Research Council (DP120101603).

References

Andrews TJ, Lorimer GH, Tolbert NE. 1973. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. *Biochemistry* **12**, 11–18.

Ashton AR, Burnell JN, Furbank RT, Jenkins CLD, Hatch MD. 1990. The enzymes in C₄ photosynthesis. In: Lea PJ, ed. *Enzymes of primary metabolism*. London: Academic Press, 39–72.

Bellasio C, Griffiths H. 2013*a*. Acclimation to low light by C₄ maize: implications for bundle sheath leakiness. *Plant Cell, & Environment*, 10.1111/pce.12194.

Bellasio C, Griffiths H. 2013*b*. The operation of two decarboxylases (NADP-ME and PEP-CK), transamination and partitioning of C_4 metabolic processes between mesophylll and bundle sheath cells allows light capture to be balanced for the maize C_4 pathway. *Plant Physiology* doi: http://dx.doi.org/10.1104/pp.113.228221 [Epub ahead of print].

Boardman NK. 1977. Comparative photosynthesis of sun and shade plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **28**, 355–377.

Bowman WD, Hubick KT, von caemmerer S, Farquhar GD. 1989. Short-term changes in leaf carbon isotope discrimination in salt-stressed and water-stressed C₄ grasses. *Plant Physiology* **90,** 162–166.

Brugnoli E, Lauteri M. 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (*Gossypium hirsutum L*) and salt-sensitive (*Phaseolus vulgaris L*) C₃ non-halophytes. *Plant Physiology* **95**, 628–635.

Buchmann N, Brooks JR, Rapp KD, Ehleringer JR. 1996. Carbon isotope composition of C_4 grasses is influenced by light and water supply. *Plant,Cell & Environment* **19**, 392–402.

Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. *Annals of Botany* **103**, 551–560.

Chen ZH, Walker RP, Acheson RM, Leegood RC. 2002. Phosphoenolpyruvate carboxykinase assayed at physiological concentrations of metal ions has a high affinity for CO₂. *Plant Physiology* **128,** 160–164.

Chollet R, Vidal J, O'Leary MH. 1996. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **47**, 273–298.

Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH. 1998. Mechanism of Rubisco: the carbamate as general base. *Chemical Reviews* **98**, 549–562.

Cousins AB, Badger MR, von Caemmerer S. 2006. Carbonic anhydrase and its influence on carbon isotope discrimination during C₄ photosynthesis. Insights from antisense RNA in *Flaveria bidentis*. *Plant Physiology* **141**, 232–242.

Cousins AB, Badger MR, von Caemmerer S. 2008. C₄ photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. *Journal of Experimental Botany* **59**, 1695–1703.

Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, von Caemmerer S. 2007. The role of phosphoenolpyruvate carboxylase during C₄ photosynthetic isotope exchange and stomatal conductance. *Plant Physiology* **145,** 1006–1017.

Dever LV, Bailey KJ, Leegood RC, Lea PJ. 1997. Control of photosynthesis in *Amaranthus edulis* mutants with reduced amounts of PEP carboxylase. *Functional Plant Biology* **24,** 469–476.

Drincovich MaF, Casati P, Andreo CS. 2001. NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. *FEBS Letters* **490**, 1–6.

3724 | Sharwood et al.

Edwards GE, Nakamoto H, Burnell JN, Hatch MD. 1985. Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C₄ photosynthesis: properties and mechanism of light/dark regulation. *Annual Review of Plant Physiology* **36**, 255–286.

Evans JR, Sharkey TD, Berry JA, Farquhar GD. 1986. Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO₂ diffusion in leaves of higher-plants. *Australian Journal of Plant Physiology* **13**, 281–292.

Farquhar GD. 1983. On the nature of carbon isotope discrimination in C_4 species. *Australian Journal of Plant Physiology* **10**, 205–226.

Farquhar GD, Cernusak LA. 2012. Ternary effects on the gas exchange of isotopologues of carbon dioxide. *Plant, Cell & Environment* **35**, 1221–1231.

Fravolinil A, Williams DG, Thompson TL. 2002. Carbon isotope discrimination and bundle sheath leakiness in three C_4 subtypes grown under variable nitrogen, water and atmospheric CO_2 supply. *Journal of Experimental Botany* **53**, 2261–2269.

Furbank RT. 2011. Evolution of the C_4 photosynthetic mechanism: are there really three C_4 acid decarboxylation types? *Journal of Experimental Botany* **62**, 3103–3108.

Furbank RT, Jenkins CLD, Hatch MD. 1990. C_4 photosynthesis quantum requirement, C_4 acid overcycling and Q-cycle involvement. *Australian Journal of Plant Physiology* **17**, 1–7.

Ghannoum O, Evans JR, Caemmerer S. 2011. Nitrogen and water use efficiency of C_4 plants. In: Raghavendra AS, Sage RF, eds. C_4 photosynthesis and related CO_2 concentrating mechanisms, vol. **32**. The Netherlands: Springer, 129–146.

Ghannoum O, Evans JR, Wah Soon C, Andrews TJ, Conroy JP, Susanne von C. 2005. Faster Rubisco is the key to superior nitrogen use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C_4 grasses. *Plant Physiology* **137**, 638–650.

Gutierrez M, Gracen VE, Edwards GE. 1974. Biochemical and cytological relationships in C_4 plants. *Planta* **119,** 279–300.

Hatch MD. 1987. C₄ photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochemica et Biophysica Acta* **895,** 81–106.

Henderson S, Caemmerer S, Farquhar G. 1992. Short-term measurements of carbon isotope discrimination in several C₄ species. *Functional Plant Biology* **19**, 263–285.

Jenkins CL, Burnell JN, Hatch MD. 1987. Form of inorganic carbon involved as a product and as an inhibitor of C_4 acid decarboxylases operating in C_4 photosynthesis. *Plant Physiology* **85**, 952–957.

Kanai R, Edwards GE. 1999. The biochemistry of C_4 photosynthesis. In: Rowan FS, Russell KM, eds. C_4 plant biology. San Diego: Academic Press, 49–87.

Kromdijk J, Griffiths H, Schepers HE. 2010. Can the progressive increase of C_4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? *Plant, Cell & Environment* **33**, 1935–1948.

Kromdijk J, Schepers HE, Albanito F, Fitton N, Carroll F, Jones MB, Finnan J, Lanigan GJ, Griffiths H. 2008. Bundle sheath leakiness and light limitation during C_4 leaf and canopy CO_2 uptake. *Plant Physiology* **148**, 2144–2155.

Kubasek J, Setlik J, Dwyer S, Santrucek J. 2007. Light and growth temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C_4 grasses and dicots. *Photosynthesis Research* **91**, 47–58.

Langdale JA. 2011. C_4 cycles: past, present, and future research on C_4 photosynthesis. *Plant Cell* 23, 3879–3892.

Leegood RC, Walker RP. 2003. Regulation and roles of phosphoenolpyruvate carboxykinase in plants. *Archives Biochemistry and Biophysics* **414**, 204–210.

Ludwig M. 2013. Evolution of the C_4 photosynthetic pathway: events at the cellular and molecular levels. *Photosynthesis Research* **117**, 147–161.

Meinzer FC, Plaut Z, Saliendra NZ. 1994. Carbon isotope discrimination, gas exchange, and growth of sugarcane cultivars under salinity. *Plant Physiology* **104**, 521–526.

Meinzer FC, Zhu J. 1999. Efficiency of C₄ photosynthesis in *Atriplex lentiformis* under salinity stress. *Functional Plant Biology* **26**, 79–86.

Munns R, Termaat A. 1986. Whole-plant responses to salinity. *Australian Journal of Plant Physiology* **13**, 143–160.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. *Annual Review of Plant Biology* **59**, 651–681.

Neumann PM, Van Volkenburgh E, Cleland RE. 1988. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility. *Plant Physiology* **88**, 233–237.

Omoto E, Taniguchi M, Miyake H. 2012. Adaptation responses in C_4 photosynthesis of maize under salinity. *Journal of Plant Physiology* **169**, 469–477.

Pengelly JJ, Sirault XR, Tazoe Y, Evans JR, Furbank RT, von Caemmerer S. 2010. Growth of the C_4 dicot *Flaveria bidentis*: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. *Journal of Experimental Botany* **61**, 4109–4122.

Pengelly JJ, Tan J, Furbank RT, von Caemmerer S. 2012. Antisense reduction of NADP-malic enzyme in *Flaveria bidentis* reduces flow of CO_2 through the C_4 cycle. *Plant Physiology* **160**, 1070–1080.

Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C_4 photosynthesis. *Annual Review of Plant Biology* **63**, 19–47.

Saliendra NZ, Meinzer FC, Perry M, Thom M. 1996. Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO₂, carbon isotope discrimination, photosynthesis, and growth in sugarcane. *Journal of Experimental Botany* **47**, 907–914.

Seemann J, Critchley C. 1985. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, *Phaseolus vulgaris* L. *Planta* **164**, 151–162.

Shabala S, Munns R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In: *Plant Stress Physiology*. Wallingford, UK: CAB International, 59–93.

Sharwood RE, von Caemmerer S, Maliga P, Whitney SM. 2008. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. *Plant Physiology* **146**, 83–96.

Tazoe Y, Hanba YT, Furumoto T, Noguchi K, Terashima I. 2008. Relationships between quantum yield for CO_2 assimilation, activity of key enzymes and CO_2 leakiness in *Amaranthus cruentus*, a C_4 dicot, grown in high or low light. *Plant and Cell Physiology* **49**, 19–29.

Ubierna N, Sun W, Cousins AB. 2011. The efficiency of C_4 photosynthesis under low light conditions: assumptions and calculations with CO_2 isotope discrimination. *Journal of Experimental Botany* **62**, 3119–3134.

Ubierna N, Sun W, Kramer DM, Cousins AB. 2013. The efficiency of C_4 photosynthesis under low light conditions in *Zea mays, Miscanthus x giganteus* and *Flaveria bidentis. Plant, Cell & Environment* **36**, 365–381.

von Caemmerer S. 2000. *Biochemical models of leaf photosynthesis*. Melbourne: CSIRO Publishing.

von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. *Planta* **153**, 376–387.

von Caemmerer S, Furbank RT. 2003. The C₄ pathway: an efficient CO₂ pump. *Photosynthesis Research* **77**, 191–207.

von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price GD, Badger M, Furbank RT. 1997*a*. Carbon isotope discrimination during C₄ photosynthesis: insights from transgenic plants. *Australian Journal of Plant Physiology* **24**, 487–494.

von Caemmerer S, Millgate A, Farquhar GD, Furbank RT. 1997*b*. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by antisense RNA in the C₄ plant *Flaveria bidentis* leads to reduced assimilation rates and increased carbon isotope discrimination. *Plant Physiology* **113**, 469–477.

Walker RP, Chen ZH, Acheson RM, Leegood RC. 2002. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C_4 plant Guinea grass. *Plant Physiology* **128**, 165–172.

Wingler A, Walker RP, Chen ZH, Leegood RC. 1999. Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. *Plant Physiology* **120**, 539–546.