

RESEARCH PAPER

Photosynthesis of C_3 , C_3 – C_4 , and C_4 grasses at glacial CO_2

Harshini Pinto, Robert E. Sharwood, David T. Tissue and Oula Ghannoum*

Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury campus, Locked Bag 1797, Penrith 2751, NSW, Australia

* To whom correspondence should be addressed. E-mail: o.ghannoum@uws.edu.au

Received 9 December 2013; Revised 2 March 2014; Accepted 5 March 2014

Abstract

Most physiology comparisons of C₃ and C₄ plants are made under current or elevated concentrations of atmospheric CO₂ which do not reflect the low CO₂ environment under which C₄ photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C₄ grasses with NAD-ME, PCK, and NADP-ME subtypes, one C₃ grass, and one C₃–C₄ grass grown under ambient (400 μl Γ¹) and glacial (180 μl Γ¹) CO₂. Glacial CO₂ caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C₄ relative to C₃ and C_3 - C_4 species. Panicum bisulcatum (C_3) acclimated to glacial [CO_2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C_3-C_4), possibly due to its high leaf N and Rubisco contents. Glacial CO₂ upregulated Rubisco and PEPC activities in concert for several C₄ grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C₄ metabolism. Despite having larger stomatal conductance at glacial CO₂, C₄ species maintained greater PWUE and PNUE relative to C₃-C₄ and C₃ species due to higher photosynthetic rates. Relative to other C₄ subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C_3 , the C_3 - C_4 grass had higher PWUE and similar PNUE at glacial CO₂. Biomass accumulation was reduced by glacial CO₂ in the C₃ grass relative to the C₃-C₄ grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO_2 , high resource use efficiency offers a key evolutionary advantage for the transition from C_3 to C_4 photosynthesis in water- and nutrient-limited environments.

Key words: C₃, C₃–C₄, and C₄ photosynthesis, glacial CO₂, NAD-ME, NADP-ME, PEPC, PEP-CK, Rubisco, water and nitrogen use efficiency.

Introduction

The decline in atmospheric CO_2 concentration ([CO_2]) in the late Oligocene (30 million years ago) is considered to be the primary driver for the evolution of the C₄ photosynthetic pathway (Christin *et al.*, 2008; Ehleringer *et al.*, 1997; Sage *et al.*, 2012). Geological fluctuations in atmospheric [CO_2] have shaped the Earth's vegetation, yet relatively little is known about the responses of C₄ plants to the low [CO_2] levels that dominated during their evolution, and that are close to the atmospheric [CO_2] of the recent glaciation (Pagani *et al.*, 2005). Low [CO_2] promotes high rates of photorespiration

and reduces the carboxylation efficiency of C_3 photosynthesis. The key feature of C_4 photosynthesis is the operation of a CO₂-concentrating mechanism (CCM) which suppresses photorespiration by raising [CO₂] around Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). During C_4 photosynthesis, phosphoenolpyruvate carboxylase (PEPC) catalyses the initial carboxylation of CO₂ into organic C₄ acids in the mesophyll. Decarboxylation of C₄ acids in the bundle sheath releases CO₂ for refixation by Rubisco (Hatch, 1987). The C₄ photosynthetic pathway is classified into three biochemical

[©] The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

subtypes based on the primary C_4 decarboxylase enzyme. These enzymes are NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PEP-CK, also known as PCK) (Gutierrez *et al.*, 1974; Kanai and Edwards, 1999). There are strong anatomical and biochemical variations associated with these biochemical subtypes (Prendergast *et al.*, 1987; Dengler *et al.*, 1994; Edwards and Voznesenskaya, 2011).

The operation of a CCM enhances the efficiency of C_4 relative to C_3 photosynthesis (Osmond, 1982). In particular, C₄ species attain higher photosynthetic water use efficiency (PWUE) because lower stomatal conductance (g_s) and intercellular $[CO_2]$ (C_i) are needed to saturate Rubisco carboxylation. C₄ plants achieve higher photosynthetic nitrogen use efficiency (PNUE) due to their lower leaf N requirement as a result of a higher Rubisco catalytic turnover rate (k_{cat}) (Long, 1999; Taylor et al., 2010; Ghannoum et al., 2011). Variations in resource use efficiency also occur among the C₄ subtypes (Ghannoum et al., 2011). For example, NADP-ME grasses tend to have lower leaf N content than their NAD-ME counterparts (Bowman, 1991; Knapp and Medina, 1999; Taub and Lerdau, 2000), as a result of faster Rubisco k_{cat} in NADP-ME species (Ghannoum et al., 2005). Furthermore, Ghannoum et al. (2002) showed that under water stress, NAD-ME grasses increased their whole-plant WUE to a greater extent than NADP-ME counterparts. These aforementioned studies were undertaken under current ambient [CO₂] which does not reflect the low CO₂ environment under which C₄ grasses have evolved. Hence, the main aim of the current study was to investigate whether previously reported physiological differences among the C_4 subtypes at ambient $[CO_2]$ are similarly observed at glacial [CO₂].

Growth at low [CO₂] reduces growth and photosynthesis of C₃ plants. C₃ plants respond to low $[CO_2]$ by increasing g_s to improve CO₂ supply and by up-regulating photosynthetic enzymes to improve CO₂ capture (Polley *et al.*, 1992; Dippery et al., 1995; Tissue et al., 1995; Gesch et al., 2000; Anderson et al., 2001). The occurrence of a CCM in C₄ leaves makes the C_4 pathway less limited by CO_2 supply and, hence, less likely to respond and acclimate to growth at low [CO₂] relative to C₃ photosynthesis (Hatch, 1987; Gerhart and Ward, 2010). Nevertheless, increased leaf N content and g_s have been observed under low [CO₂] in some C₄ species (Anderson et al., 2001; Maherali et al., 2002). To the authors' knowledge there are no published studies comparing the impact of low $[CO_2]$ on the photosynthetic gas exchange or biochemistry of C_4 grasses with different biochemical subtypes. The current study aims at addressing this knowledge gap.

A hypothezised intermediate stage during C_4 evolution, known as C_3-C_4 intermediate, restricts the activity of glycine decarboxylase to the bundle sheath (Sage *et al.*, 2012), thus improving Rubisco efficiency by facilitating the recapture of photorespired CO₂ (Monson and Moore, 1989; Monson and Rawsthorne, 2000). The operation of a photorespiratory pump in C_3-C_4 photosynthesis is expected to elicit a response to [CO₂] that is intermediate between C_3 and C_4 photosynthesis (Monson and Rawsthorne, 2000; Sage *et al.*, 2012). Under low [CO₂], C_3-C_4 plants have been reported to maintain greater photosynthetic rates, PWUE, and PNUE relative to C_3 species (Ku and Edwards, 1978; Bolton and Brown, 1980; Ku *et al.*, 1991; Monson and Rawsthorne, 2000; Vogan *et al.*, 2007; Pinto *et al.*, 2011; Vogan and Sage, 2012). The current study seeks to determine how C_3 - C_4 species perform relative to the various C_4 subtypes at low [CO₂].

Comparing the sensitivity to glacial [CO₂] of the different pathways of photosynthesis and subtypes of C₄ photosynthesis among closely related grass species may provide critical insight into the physiology of C₄ plants under conditions that led to their evolution. Consequently, this study compared the photosynthetic physiology (PWUE and PNUE) and biochemistry (activity of the photosynthetic carboxylase and decarboxylase enzymes) in C₄ grasses with different biochemical subtypes grown under ambient (400 µl l⁻¹) or glacial (180 µl l⁻¹) [CO₂]. Closely related C₃ and C₃–C₄ grass species were included for comparison.

Materials and methods

Plant culture

Two matched growth chambers (1.8 m³ each; BioChambers, Winnipeg, Manitoba, Canada) were used in this study. The chambers were maintained at either glacial (180 μ l l⁻¹) or ambient (400 μ l l⁻¹) [CO₂]. Low [CO₂] was achieved by passing incoming air over a CO₂ absorbent (Grace SodaSorb, WR Grace and Co.-Conn., Chicago, USA) and controlled by CO₂ gas analysers (LI-820, LI-COR, Lincoln, NE, USA). The average growth conditions during the experiment are shown in Table 1.

Locally collected soil (Ghannoum et al., 2010) was air-dried, coarsely sieved, and added (3.7kg) to 3.5 l cylindrical pots, which were watered to 100% capacity, then transferred to the two growth chambers. Seeds for the grass species used in this study (Table 2) were obtained from the Australian Plant Genetic Resources Information System (ACT, Australia) and Queensland Agricultural Seeds Pty. Ltd (Toowoomba, Australia). Seeds were sown in trays containing a common germination mix. Three to four weeks after germination, three seedlings were transplanted into each of the soil-filled pots. Within a week of transplanting, one healthy seedling was left in the pot while the other seedlings were removed; there were four pots per species and CO₂ treatment. Two environmentally controlled growth chambers were used to generate the CO₂ treatments. In order to minimize the impact of having a single growth chamber per CO2 treatment, pots and CO₂ treatments were switched between chambers on two occasions. In addition, pots were randomly rotated within each chamber on a weekly basis throughout the experiment. Plants were

Table 1. Average growth conditions in the glacial and ambient

 CO₂ growth chambers during the experimental period

Light intensity was measured at the pot level. The photoperiod was 12 h. Values are averages (± standard deviation) over the growing period.

	Glacial C	0 ₂	Ambient	CO2
	Day	Night	Day	Night
Light (µmol m ⁻² s ⁻¹)	900±2		900±3	
[CO ₂] (µl l ^{−1})	181 ± 4	182 ± 2	400 ± 2	400±2
Temperature (°C)	27 ± 1	17 ± 1	27 ± 1	17±1
Relative humidity (%)	70 ± 1	70 ± 1	70 ± 1	70±1

Table 2. List of grass species used in the current study

Species	Photosynthetic type
Panicum bisulcatum Thunb.	C ₃
Panicum milioides Nees	C ₃ –C ₄
Astrebla lappacea (Lindl.) Domin.	C ₄ , NAD-ME
Panicum coloratum L.	C4, NAD-ME
Heteropogon contortus (L) P. Beauv.	C ₄ , PCK
Ex Roem. & Schult.	
Panicum monticola Hook. F.	C ₄ , PCK
Panicum maximum Jacq.	C4, PCK
Chloris gayana Kunth.	C ₄ , PCK
Zea mays L.	C ₄ , NADP-ME
Echinochloa frumentaceae L.	C ₄ , NADP-ME

watered daily and a commercial fertilizer (General Purpose, Thrive Professional, Yates, Australia) was applied weekly $(0.2 \text{ g N } 1^{-1})$.

Leaf gas exchange measurements

Gas exchange measurements were made using a portable open gas exchange system (LI-6400XT, LI-COR). At 7–8 weeks after transplanting, gas exchange measurements were made at a photosynthetic photon flux density of 1800 µmol m⁻² s⁻¹ between 10:00 h and 14:00 h on attached, last fully expanded leaves (LFELs) of the main stems. Spot measurements of the light-saturated photosynthetic rate (A_{sal}) and g_s were made at target growth [CO₂] (180 µl l⁻¹ or 400 µl l⁻¹) and leaf temperature of 27 °C. Leaf-to-air vapour pressure deficit ranged between 1.7 kPa and 2.4 kPa during the measurements. Before each measurement, the leaf was allowed to stabilize for 10–20 min until it reached a steady state of CO₂ uptake.

The responses of CO₂ assimilation rates (*A*) to step increases of C_i were measured under conditions similar to spot measurements by raising the cuvette [CO₂] in 10 steps between 50 µl l⁻¹ and 1500 µl l⁻¹. There were 3–4 replicates per treatment. The *A*–*C*_i curves were fitted using the C₄ photosynthesis model (von Caemmerer, 2000) to estimate maximal PEPC (*in vivo* V_{pmax}) and Rubisco (*in vivo* V_{cmax}) activities. The biochemical model of C₃ photosynthesis was used to estimate V_{cmax} (apparent, maximal RuBP-carboxylation limited rate) for the C₃ grass (Farquhar *et al.*, 1980), using Rubisco catalytic parameters obtained for *Panicum bisulcatum* (RE Sharwood, O Ghannoum, and SM Whitney, unpublished).

Growth and nitrogen analyses

Plants were harvested 12–13 weeks after transplanting. At harvest, the area of the LFELs and total leaf area were measured using a leaf area meter (LI-3100A, LI-COR). Shoots were separated into stems and leaves. Roots were washed free of soil. Plant materials were oven-dried at 80 °C for 48 h before dry mass was measured. Leaf mass per area (LMA, g m⁻²) was calculated as total leaf dry mass/total leaf area. For each treatment, three dried LFELs of each species were milled to a fine powder. Tissue N was determined on the ground samples using a CHN analyser (LECO TruSpec, LECO Corporation, MI, USA).

Activity of Rubisco, PEPC, NADP-ME, and PEP-CK

Following gas exchange measurements made at growth [CO₂], replicate leaf discs $(1-2 \text{ cm}^2)$ were cut under high light and rapidly frozen in liquid nitrogen then stored at -80 °C for biochemical analysis. Each leaf disc was extracted in 1 ml of ice-cold extraction buffer [50 mM EPPS-NaOH pH 8.0, 5 mM dithiothreitol (DTT), 15 mM NaHCO₃, 20 mM MgCl₂, 2 mM EDTA, 4% (v/v) protease inhibitor cocktail (Sigma), and 1% (w/v) polyvinylpolypyrrolidone (PVPP)] using a 2 ml Potter–Elvehjem glass homogenizer kept on ice.

Subsamples (75 μ l) were taken from the total extract for SDS–PAGE analysis of total leaf protein. The remaining extract was centrifuged at 16 100 g for 1 min and the supernatant used for enzyme activity, Rubisco content, and soluble protein assays. Rubisco content was estimated by the irreversible binding of [14C]carboxyarabinitol bisphosphate (CABP) to the fully carbamylated enzyme (Ruuska et al., 1998). Rubisco activity (in vitro V_{cmax}) was estimated by multiplying the concentration of active sites determined using the [14C]CABP assay by the *in vitro* turnover rate (k_{cat} at 25 °C) of the various C₄ grasses (Supplementary Table S1 available at JXB online). Activities of PEPC and NADP-ME enzymes were determined at 25 °C using a UV-VIS spectrophotometer (model 8453, Agilent Technologies Australia, Mulgrave, Victoria) as previously described by Pengelly et al. (2012) and Ashton et al. (1990). Soluble proteins were measured using the Pierce Coomassie Plus (Bradford) protein assay kit (Thermo Scientific, Rockford, IL, USA).

PEP-CK activity was assayed at 25 °C in the carboxylase direction (Walker *et al.*, 2002). Each leaf disc was extracted in 1 ml of ice-cold extraction buffer [50 mM HEPES pH 7.2, 5 mM DTT, 2 mM EDTA, 2 mM MnCl₂, 0.05% Triton, 4% (v/v) protease inhibitor cocktail (Sigma), and 1% (w/v) PVPP] using a 2 ml Potter–Elvehjem glass homogenizer kept on ice. The extract was centrifuged at 16 100 g for 1 min and the supernatant was used. PEP-CK activity was measured in assay buffer containing 100 mM HEPES, pH 7.0, 4% mercaptoe-thanol (w/v), 100 mM KCl, 90 mM NaHCO₃, 1 mM ADP, 2 mM MnCl₂, 0.14 mM NADH, and malate dehydrogenase after the addition of phosphoenolpyruvate (PEP) to 5 mM. It was not possible to assay reliably for NAD-ME activity in this study.

Immunoblot analysis

To confirm the presence or absence of assayed enzyme activities, especially the decarboxylases in the C₄ species and PEPC in C₃ and C_3 - C_4 species, immunoblot analysis of the proteins in question was carried out. Subsamples of total leaf extracts (used for enzyme assays) were mixed with 0.25 vol of $4 \times LDS$ buffer (Invitrogen) containing 100 mM DTT, snap-frozen in liquid nitrogen, and stored at -20 °C until analysed. Protein samples were separated by SDS-PAGE at 200V using TGX Any kD (Bio-Rad Laboratories, Hercules, CA, USA) pre-cast polyacrylamide gels in the Mini-Protean apparatus buffered with TRIS-glycine SDS buffer (Bio-Rad). Separated proteins were transferred at 4 °C to nitrocellulose membranes (0.45 µm; Bio-Rad) using the Xcell Surelock western transfer module (Invitrogen) buffered with $1 \times$ Transfer buffer [20×; 25 mM Bicine, 25 mM Bis-Tris, 1 mM EDTA, 20% (v/v) methanol]. After 1h of transfer at 30V, the membrane was placed in blocking solution [3% (w/v) skim milk powder in TRIS-buffered saline (TBS); 50 mM TRIS-HCl pH 8, 150 mM NaCl] for 1 h at room temperature with gentle agitation.

For immunoblot analysis, primary antisera raised in rabbit against tobacco Rubisco (prepared by SM Whitney) were diluted 1:4000 in TBS before incubation at 1h with membranes at room temperature with gentle agitation. Antiserum raised against PEPC (Cat. AS09 458) was obtained from Agrisera (Agrisera AB, Vännäs, Sweden) and diluted 1:2000 with TBS. For immunoblot analysis of NADP-ME and PEP-CK, synthetic peptides based on monocot amino acid sequences for each were synthesized by GL Biochem [GL Biochem (Shanghai) Ltd., Shanghai, China] and antiserum was raised to each peptide in rabbits. The reactive antisera were antigen purified and used for immunoblots (GL Biochem). The NADP-ME (Product ID A-003198) and PEP-CK (Product ID A-003200) antisera were diluted in TBS 1:1000 and 1:500, respectively. All primary antisera were incubated with membranes at room temperature for 1h with gentle agitation before washing three times with TBS. Secondary goat anti-rabbit antisera conjugated to horseradish peroxidase (HRP; Cat. NEF 812001EA, Perkin Elmer) were diluted 1:3000 in TBS and incubated with the membranes for 1h at room temperature followed by three washes with TBS. Immunoreactive peptides were detected using the Immun-Star Western C kit (Cat.

170–5070, Bio-Rad) and imaged using the VersaDoc imaging system (Bio-Rad).

Statistical and data analysis

PWUE was calculated as A_{sat} (µmol m⁻² s⁻¹)/ g_s (mol m⁻² s⁻¹). PNUE was calculated as A_{sat} (µmol m⁻² s⁻¹)/leaf [N]_{area} (mmol m⁻²). The proportion of leaf N invested in Rubisco (Rubisco-N) was calculated by assuming that Rubisco contained 16% N on a mass basis (Evans and Seemann, 1989).

There were four replicates per treatment for growth, gas exchange, and enzyme assay measurements. There were three replicate measurements for the leaf N analysis and the $A-C_i$ curves. The relationship between the various response variables and the main effects (species, photosynthetic type, and CO₂ treatment) and their interactions were fitted using a linear model in R (V. 3.0.2; R Foundation for statistical computing, Vienna, Austria). Analysis of variance (ANOVA; summarized in Table 2) was conducted for each fitted model. Multiple comparisons (shown in Table 4 and Supplementary Table S1 at JXB online) of species means were made using the Tukey test.

Results

Photosynthetic rates and WUE

Under both [CO₂] treatments, photosynthetic rates measured at high light and growth [CO₂] (A_{sat}) were higher in the C₄ species relative to the C₃–C₄ and C₃ species. Amongst the C₄ species, variation in A_{sat} was unrelated to their subtype. Relative to ambient [CO₂], glacial [CO₂] decreased A_{sat} to a greater extent in the C₃–C₄ (65%) and C₃ (60%) species relative to the C₄ species (26%) (Figs 1A, 2A; Table 3; Supplementary Table S1 at JXB online).

Fig. 1. Gas exchange and growth parameters. Light-saturated photosynthesis, A_{sat} (A), stomatal conductance, g_s (B), photosynthetic water use efficiency, PWUE (C), leaf N per unit dry mass, $[N]_{mass}$ (D), photosynthetic nitrogen use efficiency, PNUE (E), and plant dry mass, PDM (F) of 10 grass species belonging to C_3 , C_3 - C_4 , and C_4 (NAD-ME, PCK, NADP-ME) photosynthetic types grown at glacial (180 μ I Γ^1 , open columns) or ambient (400 μ I L^{-1} , filled columns) [CO₂]. Values are means ±SE of species within each photosynthetic type.

At ambient [CO₂], variation in g_s was unrelated to the photosynthetic type or subtype of the grasses. At glacial [CO₂], the C₄ species had higher g_s relative to the C₃ and C₃–C₄ counterparts. Glacial [CO₂] increased g_s to a greater extent in the C₄ relative to the C₃ (1.1-fold) and C₃–C₄ (1.3-fold) species, with NADP-ME (1.5-fold) grasses showing the greatest increase in g_s relative to the other C₄ species (1.35-fold) (Figs 1B, 2B; Table 3; Supplementary Table S1 at JXB online).

At ambient [CO₂], PWUE was higher in the C₄ relative to the two C₃–C₄ and C₃ species. At glacial [CO₂], PWUE was highest in NAD-ME and PCK species, intermediate in NADP-ME and C₃–C₄, and lowest in C₃ species. Amongst the C₄ species, the two NAD-ME grasses had higher PWUE relative to their PCK and NADP-ME counterparts. Glacial [CO₂] decreased PWUE in all species by an average of 55% (Figs 1C, 2C; Table 3; Supplementary Table S1 at *JXB* online).

Leaf N use efficiency and plant dry mass

Under both [CO₂] treatments, leaf $[N]_{mass}$ was highest in *P. mil-ioides* (C₃-C₄) and lowest in *Heteropogon contortus* (PCK). Glacial [CO₂] enhanced leaf $[N]_{mass}$ in all grasses except for *Panicum monticola* and *Chloris gayana* (PCK). The largest enhancement was observed in the C₃ (51%) and NADP-ME (29%) species (Figs 1D, 2D; Table 3; Supplementary Table S1 at *JXB* online).

Fig. 2. CO_2 sensitivity of photosynthetic and growth parameters. Glacial to ambient CO_2 ratios of light-saturated photosynthesis, A_{sat} (A), stomatal conductance, g_s (B), photosynthetic water use efficiency, PWUE (C), leaf N per unit dry mass, [N]_{mass} (D), photosynthetic nitrogen use efficiency, PNUE (E), Rubisco activity (F), plant dry mass, PDM (G), and PEPC activity (H). Original data are shown in Supplementary Table S1 at *JXB* online.

3674 | Pinto *et al*.

Table 3. Statistical summary

Summary of statistical analysis using three-way ANOVA for the effects of $[CO_2]$, species, and the photosynthetic type on various parameters collected for 10 grass species grown at glacial (180 μ l Γ^1) and ambient (400 μ l Γ^1) $[CO_2]$.

Parameter	Main effects (I	P)		Interactions (P)	
	Species	Туре	[CO ₂]	[CO ₂]×species	[CO ₂]×type
Photosynthesis, A_{sat} (µmol m ⁻² s ⁻¹)	0.000	0.000	0.000	0.016	0.000
Conductance, g _s (mol m ⁻² s ⁻¹)	0.000	0.000	0.000	0.110	0.000
Intercellular [CO₂], C _i (µl l⁻¹)	0.000	0.000	0.000	0.028	0.005
PWUE [μ mol (mol H ₂ O) ⁻¹]	0.000	0.000	0.000	0.694	0.083
LMA (g m ⁻²)	0.000	0.028	0.000	0.692	0.378
Leaf [N] _{mass} (mg g ⁻¹)	0.000	0.000	0.000	0.000	0.001
Leaf [N] _{area} (mmol m ⁻²)	0.000	0.000	0.036	0.039	0.516
PNUE [mmol (mol N) ⁻¹ s ⁻¹]	0.000	0.000	0.000	0.460	0.001
Plant dry mass, PDM (g per plant)	0.000	0.000	0.000	0.000	0.000
Soluble protein (g m ⁻²)	0.004	0.000	0.000	0.710	0.044
Rubisco sites (nmol m ⁻²)	0.594	0.000	0.000	0.158	0.000
Rubisco/soluble protein	0.001	0.000	0.448	0.009	0.463
Rubisco-N (% leaf N)	0.006	0.000	0.407	0.230	0.000
Rubisco activity (µmol m ⁻² s ⁻¹)	0.000	0.000	0.000	0.004	0.000
PEPC activity (µmol m ⁻² s ⁻¹)	0.000	0.000	0.000	0.000	0.140
NADP-ME activity (μ mol m ⁻² s ⁻¹)	0.000	0.000	0.340	0.048	0.461
PEP-CK activity (μ mol m ⁻² s ⁻¹)	0.000	0.000	0.133	0.319	0.960
PEPC/Rubisco	0.000	0.000	0.003	0.068	0.579
<i>In vivo</i> V _{cmax} (μmol m ⁻² s ⁻¹)	0.000	0.010	0.000	0.004	0.000
<i>In vivo</i> V _{pmax} (μmol m ⁻² s ⁻¹)	0.000	0.000	0.000	0.000	0.004
In vivo V _p /V _c	0.000	0.010	0.000	0.000	0.001

At ambient [CO₂], PNUE varied 3-fold amongst the species in a manner unrelated to their photosynthetic type. Glacial [CO₂] reduced PNUE to a lesser extent in the C₄ (30%) relative to the C₃ (58%) and C₃–C₄ (79%) species. At glacial [CO₂], PNUE was highest in C₄ plants (PCK >NADP-ME and NAD-ME) and lowest in C₃ and C₃–C₄ plants (Figs 1E, 2E; Table 3; Supplementary Table S1 at JXB online).

At ambient [CO₂], plant dry mass (PDM) was lower in the C_3-C_4 and NAD-ME species relative to the C_3 and other C_4 species. At glacial [CO₂], the C_4 species accumulated more biomass than their C_3 and C_3-C_4 counterparts, which had similar PDM. Glacial [CO₂] reduced PDM to a greater extent in the C_3 (70%) and C_3-C_4 (42%) species relative to the C_4 (25%) species. Amongst the C_4 species, PDM was least and most inhibited by glacial [CO₂] in the NAD-ME and NADP-ME grasses, respectively (Figs 1F, 2H; Table 3; Supplementary Table S1 at *JXB* online).

Rubisco and soluble protein content

Under both $[CO_2]$ treatments, leaf Rubisco content was higher in *Panicum milioides* (C₃–C₄) relative to the other species, and in the two NAD-ME species relative to the other C₄ grasses. At ambient $[CO_2]$, *P. bisulcatum* (C₃) and NAD-ME grasses had similar Rubisco contents. Glacial $[CO_2]$ increased Rubisco content in *P. bisulcatum* (2.3-fold) and in three (*Astrebla lappacea, Panicum coloratum*, and *H. contortus*; 1.2to 1.7-fold) of the eight C₄ species (Tables 3, 4).

The ratio of Rubisco to soluble proteins and the proportion of leaf N invested in Rubisco (Rubisco-N) were higher in the C_3 and C_3 – C_4 species relative to the C_4 species. Amongst the C_4 species, the NADP-ME grasses tended to have the lowest leaf N or soluble protein investment in Rubisco. Glacial [CO₂] increased Rubisco-N in the C_3 species, reduced it in the C_3 – C_4 species, and had little effect in the C_4 species (Tables 3, 4).

The C₃, C₃–C₄, and NAD-ME species had similar Rubisco activities, which were higher relative to the PCK and NADP-ME species. Glacial [CO₂] significantly up-regulated Rubisco activity in the C₃ and NAD-ME grasses only (Figs 2F, 3A, Table 3; Supplementary Table S1 at *JXB* online).

Activity of C_4 cycle enzymes in C_4 grasses

At ambient [CO₂], PEPC activity was highest in *A. lappacea* (NAD-ME) and *C. gayana* (PCK), and lowest in *P. maximum* (PCK). At glacial [CO₂], PEPC activity was highest in *A. lappacea* and lowest in *P. monticola* (PCK). Glacial [CO₂] stimulated PEPC activity in five out of the eight C₄ species (Figs 2H, 3B; Table 3; Supplementary Table S1 at *JXB* online). Variations in the ratio of PEPC to Rubisco activity reflected changes in PEPC activity (Fig. 3H; Table 3; Supplementary Table S1).

In this study, only the activities of the decarboxylases NADP-ME and PEP-CK were measured. Significant activity of NADP-ME was measured in the two NADP-ME species, while marginal NADP-ME activity was detected in the two NAD-ME species and in one of the PCK species (Fig. 3C). In contrast, PEP-CK activity was ubiquitous among the C_4 species used, with *C. gayana* showing the highest PEP-CK

contents
d Rubisco
anc
protein,
soluble
leaf N
of
Summary
4
Table ,

Ten grass species were grown at glacial (180 μl Γ¹) or ambient (400 μl Γ¹) [CO₂]. Values are means (n=3-4) ±SE. Lower case letters indicate the ranking of species within each row using a multiple comparison, Tukey test. Values followed by the same letter are not significantly different at the 5% level.

Parameter	[co ₂]	ပ်	C₃−C₄	C ₄ , NAD-ME		C4, PCK				C ₄ , NADP-ME	
	(µl L ⁻¹)	P. bisulcatum	P. milioides	A. lappacea	P. coloratum	H. contortus	P. monticola	P. maximum	C. gayana	Z. mays	E. frumentaceae
LMA (g m ⁻²)	180	23±9 a	21±8a	36±13 a	46±16 a	46±22 a	48±2 a	40±14 a	16±6a	140±11 b	
	400	61±10 a,b,c,d	1 25±3a	58±3 b,c,d	51±5a,b,c,d	76±5 d	57 ±5 c,d	56±4 a,b,c,d	27±8a,b	62±3 c,d	
Leaf [N] _{area} (mmol m ⁻²)	180	118±32 a,b	132±25 a,b	150±16 a,b	251±40 b	131 ±40 a,b	141 ±8 a,b	192±28 a,b	74±4a	492±50 c	145±11 a,b
	400	98±18 a	89±15 a	154±10 a,b	170±27 a,b	144±17 a,b	190±3 b	97±11 a	91±26 a	151±2 a,b	122±17 a,b
Rubisco sites (nmol m ⁻²)	180	$21 \pm 6.0 b$	19±6.0 b	13±0.5 a,b	15±1.0 a,b	7±0.4 a	4±0.5 a	6±0.3 a	5±0.4 a	7±0.6 a	4±0.6a
	400	9±0.6 a,b	20±5.0 c	11 ±0.4 b	9±0.6 b	4±0.1 a	5±0.3 a,b	5±0.5 a	6±0.6 a,b	6±0.4 a,b	4±0.4 a
Soluble proteins (g m ⁻²)	180	4.4±0.5 a,b,c	4.6±0.2 a,b,c	6.2±0.6 c	6.6±1.0 c	3.9±0.3 a,b,c	3.2±0.3 a,b	2.8±0.5 a	3.4±0.2 a,b	5.3±0.5 b,c	4.2±0.1 a,b,c
	400	2.5±0.2 a	4.0±0.3 a-d	5.0±0.5 d	4.8±0.3 c,d	2.7±0.2 a,b	3.0±0.2 a,b	3.0±0.3 a,b,c	3.2±0.3 a,b	4.1 ±0.2 b,c,d	3.6±0.1 a–d
Rubisco/Soluble protein	180	0.32 ± 0.04	0.29±0.05 b,c	0.14±0.03 a,b,c	0.17±0.04 a,b,c	0.14±0.03 a,b,c	0.10±0.04 a,b	0.30±0.04c	0.10±0.04a	0.09±0.04a	0.04±0.05 a
	400	0.25±0.02 b,c	0.34±0.02 c	0.15±0.01 a	0.16±0.02 a,b	0.09±0.01 a	0.10±0.02 a	0.12±0.02 a	0.14±0.02 a	0.09±0.01 a	0.08±0.02 a
Rubisco-N (% leaf N)	180	9.8±2 a,b	14.0±2 b	5.0±1 a,b	4.2±2 a	4.8±2 a,b	2.7±1a	2.5±2 a	5.6±2 a,b	2.9±2a	2.1±2 a
	400	5.5±2 a	26.3±2 b	5.6±2 a	5.4±2 a	2.2±2a	2.3±2 a	4.0±2 a	6.6±2a	3.3±2a	2.5±2 a

activity. Overall, growth [CO₂] had no significant effect on the activity of either decarboxylase (Fig. 3C–D, Table 3; Supplementary Table S1 at *JXB* online).

The detectability of the activity of both carboxylases and decarboxylases was corroborated by immunodetection of the corresponding protein (Fig. 6). PEPC activity and protein were lacking from the C_3 and C_3 – C_4 species and present in all C_4 grasses. NADP-ME activity and protein were found in two C_4 species only. PEP-CK activity was measured in all C_4 grasses, and the protein was readily detected in six grasses, with *A. lappacea* and *H. contortus* exhibiting weak immuno-reaction with the available antibody, possibly due to divergent amino acid sequences of PEP-CK in these two species (Fig. 6).

In vivo estimates of maximal Rubisco (N_{cmax}) and PEPC activity (N_{pmax}) in C₄ grasses

In vivo estimates of V_{cmax} and V_{pmax} were calculated using the C₄ photosynthesis model (von Caemmerer, 2000) from $A-C_i$ curves measured at high light and 27 °C (Fig. 5). The variation of gas exchange-derived V_{cmax} between the C₄ species was unrelated to their biochemical subtype. In contrast to its effect on *in vitro* V_{cmax} (Rubisco activity), glacial [CO₂] reduced gas exchange V_{cmax} in two out of the eight C₄ species (Fig. 3E; Table 3; Supplementary Table S1 at JXB online). Consequently, *in vivo* and *in vitro* estimates of V_{cmax} were unrelated among the C₄ grasses (Fig. 6B). In contrast, PEPC activity was positively correlated with that of Rubisco across the C₄ species and [CO₂] treatments (Fig. 6A).

On average, NAD-ME species tended to have higher V_{pmax} and V_{pmax}/V_{cmax} relative to the other C₄ grasses, especially at glacial [CO₂]. Glacial [CO₂] increased V_{pmax} and the V_{pmax}/V_{cmax} ratio in all C₄ species, except for *C. gayana*, by an average of 25% and 19%, respectively (Fig. 3F, G; Table 3; Supplementary Table S1 at *JXB* online). Within the C₄ species, V_{pmax} showed significant positive correlations with *in vitro* PEPC and Rubisco activities (Fig. 6C, D).

Discussion

Photosynthetic efficiency under glacial CO₂: C₃, C₃–C₄, and C₄ pathways

In accordance with theoretical understanding, the current study revealed that photosynthetic rates (A_{sat}) were most responsive to decreased [CO₂] from ambient to glacial levels in C₃ followed by C₃–C₄ and then C₄ species. In addition, the C₄ grasses had higher photosynthesis under ambient and glacial [CO₂] relative to their C₃ and C₃–C₄ counterparts (Figs 1A, 2A). Similar responses were observed for other C₃, C₃–C₄, and C₄ species exposed to 180 µl CO₂ l⁻¹ and 380 µl CO₂ l⁻¹ (Ward *et al.*, 1999; Cunniff *et al.*, 2010; Pinto *et al.*, 2011; Vogan and Sage, 2012).

Stomatal conductance was greater at glacial [CO₂] compared with ambient [CO₂] in all species, but in particular was higher in C₄ species relative to the C₃ and C₃–C₄ species (Figs 1B, 2B). Huxman and Monson (2003) found that g_s was more sensitive to changing C_i in C₄ relative to C₃ and C₃–C₄

Fig. 3. Activity of photosynthetic enzymes. Activities of Rubisco (A), PEPC (B), NADP-ME (C), PEP-CK (D), *in vivo* V_{cmax} (E), *in vivo* V_{pmax} (F), V_{pmax}/V_{cmax} ratio (G), and PEPC/Rubisco activity ratio (H) of eight C₄ grass species (NAD-ME, PCK, NADP-ME) grown at glacial (180 μ I Γ^1 , open columns) or ambient (400 μ I Γ^1 , filled columns) [CO₂]. Values are means (*n*=3–4) ±SE.

Flaveria species. Recently, Vogan and Sage (2011) presented evidence of changed C_i sensitivity for g_s in *Flaveria* species during their evolutionary transition from C₃ to C₄ photosynthesis. In contrast, Morison and Gifford (1983) observed little difference in stomatal sensitivity to short-term changes of [CO₂] or vapour pressure deficit between two C₃ and two C₄ grasses. Growth at low [CO₂] may cause acclimation of the stomatal response that is not necessarily captured during short-term gas exchange measurements. However, a number of studies found no evidence of differential stomatal acclimation between C_3 and C_4 plants (Cunniff *et al.*, 2010; Vogan and Sage, 2012). Hence, there does not seem to be a consensus regarding the relative stomatal sensitivity to short- or long-term changes in [CO₂] between C_3 and C_4 plants, which remains an area worthy of further investigation.

Despite having larger g_s at glacial [CO₂], C₄ species maintained greater PWUE than C₃–C₄ and C₃ species as a result of higher photosynthetic rates in C₄ plants (Fig. 1). Improved

Fig. 4. Immunoblot analyses of photosynthetic enzymes. Examples of immunoblot analysis for the photosynthetic proteins Rubisco (A), PEPC (B), NADP-ME (C), and PEP-CK (D) extracted from leaves of selected grass species grown at glacial (180 μl Γ¹, G) or ambient (400 μl Γ¹, A) [CO₂].

PWUE is one of the most consistently reported advantages of C_4 species (Long, 1999; Taylor *et al.*, 2010). Higher PWUE in the C_3 - C_4 species relative to the C_3 species under both growth [CO₂] confirmed that the photorespiratory pump of the intermediate pathway confers greater water use efficiency relative to the C_3 pathway (Pinto *et al.*, 2011; Vogan and Sage, 2011), thereby achieving PWUE similar to the C_4 , NADP-ME pathway under glacial [CO₂] (Fig. 1C).

Higher PNUE in C_4 relative to C_3 plants under ambient $[CO_2]$ is well established (Brown, 1978; Long, 1999; Taylor *et al.*, 2010). In this study, these differences were maintained under glacial $[CO_2]$ as a result of higher photosynthetic rates and lower leaf [N] in the C_4 relative to the C_3 and C_3-C_4 species (Fig. 1). The C_3-C_4 species had no PNUE advantage over the C_3 species, mainly due to the higher leaf [N] and Rubisco-N of the intermediate species (Table 4). In contrast, intermediate *Flaveria* species maintained higher photosynthesis and PNUE relative to C_3 congeners at ambient and glacial [CO₂] (Vogan and Sage, 2012).

Growth of *P. bisulcatum* (C₃) at glacial [CO₂] increased Rubisco activity and g_s to improve photosynthetic capacity and CO₂ supply, respectively (Tissue *et al.*, 1995; Gesch *et al.*, 2000; Anderson *et al.*, 2001). These commonly reported responses represent significant N and water costs for C₃ plants at glacial [CO₂], thus reducing their PWUE and PNUE. The additional resource requirements at low [CO₂] may have contributed to the more pronounced reduction in plant biomass in C₃ relative to C₄ plants observed in this study (Fig. 2F) as in others (Ward *et al.*, 1999; Cunniff *et al.*, 2010; Ripley *et al.*, 2013). Consequently, low WUE and NUE of C₃ photosynthesis at low [CO₂] may have favoured the evolution of C₄ phototosynthesis.

Photosynthetic efficiency under glacial CO_2 : the C_4 subtypes

Results obtained in this study at glacial [CO₂] largely confirmed previously reported differences in photosynthetic efficiency among the C_4 subtypes at ambient [CO₂], and revealed a number of insights into the physiology of C_4 sub-types, as discussed below.

First, there were no subtype differences in photosynthetic rates or their sensitivity to decreased growth $[CO_2]$. These results constitute new evidence that there are no discernible differences in the efficiency of the CCM operating in the three C₄ subtypes, despite their diverse leaf biochemistry and anatomy. This conclusion is supported by the findings that CO₂ leakiness out of the bundle sheath (a surrogate measure of CCM efficiency) is similar among C₄ grasses with different subtypes (Henderson *et al.*, 1992; Cousins *et al.*, 2008).

Secondly, NAD-ME species had lower g_s and higher PWUE relative to NADP-ME and PCK counterparts at glacial [CO₂]. Moreover, g_s was less affected by glacial [CO₂] in NAD-ME than in NADP-ME and PCK grasses (Fig. 2). Previous studies demonstrated that photosynthetic activity was less sensitive to water deficit, and leaf traits were better suited for arid habitats in an NAD-ME relative to an NADP-ME and a PCK grass (Carmo-Silva *et al.*, 2007, 2009). In another study, Ghannoum *et al.* (2002) showed that NAD-ME grasses increased their whole-plant WUE to a greater extent than their NADP-ME counterparts under water stress. Taken together, these findings are consistent with the observation that grasses with the NAD-ME subtype predominate in more arid regions relative to the other two C₄ subtypes (Hattersley, 1992; Taub, 2000).

Thirdly, NADP-ME grasses showed the greatest increase of leaf $[N]_{mass}$, which may be linked to their stomatal response in that the correlation between N uptake (proxy leaf [N]) and mass flow of soil water through the transpiration stream (proxy g_s) is commonly reported in plants grown under different atmospheric $[CO_2]$ (Conroy and Hocking, 1993; McDonald *et al.*, 2002; Sherwin *et al.*, 2013).

Fourthly, NAD-ME grasses showed the lowest biomass reduction in response to decreased growth [CO₂] relative

Fig. 5. Responses of CO₂ assimilation rate to increasing intercellular [CO₂]. Examples of $A-C_1$ curves measured in C₃, C₃-C₄, and C₄ species grown at glacial (180 μ l \vdash^1 , inverted open triangles) or ambient (400 μ l \vdash^1 , filled triangles) [CO₂]. Values represent the means ±SE of three replicates.

to the PCK and NADP-ME species. NAD-ME grasses also had lower plant biomass relative to the other C_4 species at both growth [CO₂]. Studies conducted at elevated [CO₂] have shown that growth response to high [CO₂] decreases with decreasing growth potential (Poorter, 1993; Ziska and Bunce, 1997). Extrapolating these findings to low [CO₂] suggests that the lower growth response to glacial [CO₂] in NAD-ME plants may be related to their smaller biomass accumulation relative to the other, larger C_4 species.

Photosynthetic enzymes under glacial CO_2

Generally, growth at low $[CO_2]$ leads to increased photosynthetic capacity, g_s , and leaf [N] in C₃ plants (Dippery *et al.*, 1995; Ward *et al.*, 1999; Anderson *et al.*, 2001; Cunniff *et al.*, 2010; Gerhart and Ward, 2010; Ripley *et al.*, 2013). Accordingly, *P. bisulcatum* (C₃) exhibited increased leaf proteins, including Rubisco at glacial $[CO_2]$ (Fig. 2; Table 4). *Panicum milioides* (C₃-C₄) did not up-regulate Rubisco content at glacial $[CO_2]$, possibly due to the high leaf [N] and Rubisco-N in this species; a consequence of the high N costs of operating two Calvin cycles in the mesophyll and bundle sheath cells (Monson, 1989; Monson and Rawsthorne, 2000).

The operation of Rubisco under elevated $[CO_2]$ in the bundle sheath, the multiplicity of metabolic cycles and cells involved in C₄ photosynthesis, and the complexity of its regulation thwart the task of predicting how C₄ photosynthesis will acclimate to growth at low [CO₂]. Measurements of photosynthetic rates under growth $[CO_2](A_{sat})$ indicated that photosynthesis in the C₄ grasses was CO₂ limited at glacial [CO₂], albeit to a lesser extent than C₃ and C₃-C₄ counterparts (Fig. 2A). This may explain the significant up-regulation of the two carboxylases, Rubisco and PEPC, which was observed in a number of the C_4 grasses (Figs 3–6). Generally, the activities of Rubisco and PEPC changed in concert, a reflection of the fine balance operating between these two enzymes which modulate the pace of the C_3 and C_4 cycles during C₄ photosynthesis, respectively (von Caemmerer and Furbank, 2003). There is strong evidence showing that CO_2 delivery into the bundle sheath and fixation in the mesophyll are tightly regulated, as indicated by the constancy of leakiness (a measure of CO₂ fixed by PEPC but not Rubisco, subsequently leaking back from the bundle sheath) under a wide range of environmental conditions (Henderson et al., 1992; Cousins et al., 2008). Nevertheless, the PEPC/Rubisco ratio increased at glacial $[CO_2]$ in two C_4 species (Fig. 3H). Increasing PEPC/Rubisco via transgenic transformation in Flaveria bidentis led to increased leakiness, an indication of reduced efficiency of the C4 mechanism (von Caemmerer et al., 1997b). In the current study, V_{pmax} and PEPC activity were linearly correlated, while V_{cmax} and Rubisco activity showed no correlation (Fig. 5). Reconciling the in vivo and in vitro estimates of Rubisco and PEPC activity will require greater knowledge about bundle sheath cell wall conductance and [CO₂] than is currently available (von Caemmerer et al., 1997a; von Caemmerer and Furbank, 2003).

The activities of the two measured decarboxylases were not affected by growth $[CO_2]$, possibly reflecting the low control that decarboxylases exert on the photosynthetic flux. Pengelly *et al.* (2012) reported that NADP-ME activity in transgenic *F. bidentis* can be halved without affecting photosynthetic rates or growth. Accordingly, the rate of the decarboxylases measured at ambient $[CO_2]$ may be sufficient under glacial $[CO_2]$, where Rubisco and PEPC activities were up-regulated in a number of C₄ species. Although PEPC and NADP-ME have significant effects on the efficiency of the C₄ pathway as evidenced by changes in leakiness, Rubisco retains a high

Fig. 6. Relationships between the *in vitro* and *in vivo* estimates of Rubisco and PEPC activities in eight C₄ grass species. Values are means for each species grown at glacial (180 μ l Γ^1 , inverted open triangles) or ambient (400 μ l Γ^1 , filled triangles) [CO₂]. Solid lines represent linear regressions of all data points. Original data are shown in Supplementary Table S1 at *JXB* online.

control of metabolic flux in C₄ leaves (Furbank *et al.*, 1997; von Caemmerer *et al.*, 1997b; Pengelly *et al.*, 2012).

It is worth noting that PEP-CK activity and, to a lesser extent, PEP-CK protein were ubiquitously detected in the C₄ species used in this study. Significant PEP-CK activity in C₄ grasses and eudicots of the NADP-ME and NAD-ME subtypes has been previously reported (Walker et al., 1997; Wingler et al., 1999; Carmo-Silva et al., 2008; Muhaidat and McKown, 2013). These findings challenge the classical view of the C₄ subtypes, where a single decarboxylase dominates (Hatch, 1987; Furbank, 2011). Recent studies have postulated a role for PEP-CK as a second decarboxylase in maize that serves to match ATP and NADPH demand in bundle sheath and mesophyll cells under different light environments (Bellasio and Griffiths, 2013). The full physiological significance of PEP-CK in a wider range of C₄ grasses and environments is yet to be elucidated.

Conclusions

Various photosynthetic responses, including increased leaf Rubisco, nitrogen, and g_s , were observed in response to growth at glacial [CO₂]. Nevertheless, the operation of a CCM ensured that PWUE and PNUE remained higher in C_4 species relative to C_3 and $C_3\mathchar`-C_4$ species, while the photorespiration pump ensured higher PWUE in the C₃- C_4 relative to the C_3 species. Greater resource use efficiency promotes cheaper biomass construction costs, and hence reduces productivity losses at low [CO₂]. Accordingly, high resource use efficiency may have constituted a key evolutionary advantage for the transition from C₃ to C₄ photosynthesis under low [CO₂] (Cerling *et al.*, 1998; Sage, 2004). Results obtained in this study support the notion that Rubisco and PEPC, rather than the decarboxylases, modulate the response to glacial [CO₂] for C₄ grasses with different biochemical subtypes.

Supplementary data

Supplementary data are available at JXB online

Table S1. Summary of leaf gas exchange, resource use efficiency, and activity of photosynthetic enzymes.

Acknowledgements

We thank Balasaheb Sonawane for assistance with biochemical analysis. This research was partially funded by the Hawkesbury Institute for the Environment at UWS through the award of a PhD scholarship to HP and a research fellowship to RES. This research was also supported by a Discovery Project awarded to OG from the Australian Research Council (DP120101603).

References

Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB.

2001. Gas exchange and photosynthetic acclimation over subambient to elevated CO_2 in a C_3 - C_4 grassland. *Global Change Biology* **7**, 693–707.

Ashton AR, Burnell JN, Furbank RT, Jenkins CLD, Hatch MD. 1990. The enzymes in C₄ photosynthesis. In: Lea PJ, ed. *Enzymes of primary metabolism*. London: Academic Press, 39–72.

Bellasio C, Griffiths H. 2013. The operation of two decarboxylases (NADPME and PEPCK), transamination and partitioning of C_4 metabolic processes between mesophylll and bundle sheath cells allows light capture to be balanced for the maize C_4 pathway. *Plant Physiology* (in press).

Bolton JK, Brown RH. 1980. Photosynthesis of grass species differing in carbon dioxide fixation pathways.V. Response of *Panicum maximum*, *Panicum milioides*, and tall fescue (*Festuca arundinacea*) to nitrogen nutrition. *Plant Physiology* **66**, 97–100.

Bowman WD. 1991. Effect of nitrogen nutrition on photosynthesis and growth in C₄ Panicum species. *Plant, Cell and Environment* **14**, 295–301.

Brown RH. 1978. Difference in N use efficiency in C_3 and C_4 plants and its implications in adaptation and evolution. *Crop Science* **18**, 93–98.

Carmo-Silva AE, Bernardes da Silva A, Keys AJ, Parry MA, Arrabaca MC. 2008. The activities of PEP carboxylase and the C_4 acid decarboxylases are little changed by drought stress in three C_4 grasses of different subtypes. *Photosynthesis Research* **97**, 223–233.

Carmo-Silva AE, Francisco A, Powers SJ, Keys AJ, Ascensao L, Parry MA, Arrabaca MC. 2009. Grasses of different C₄ subtypes reveal leaf traits related to drought tolerance in their natural habitats: changes in structure, water potential, and amino acid content. *American Journal of Botany* **96**, 1222–1235.

Carmo-Silva AE, Soares AS, Marques da Silva J, Bernardes da Silva A, Keys AJ, Arrabaça MC. 2007. Photosynthetic responses of three C_4 grasses of different metabolic subtypes to water deficit. *Functional Plant Biology* **34**, 204–213.

Cerling TE, Ehleringer JR, Harris J. 1998. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. *Philosophical Transactions of the Royal Society B: Biological Sciences* **353,** 159–171.

Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N. 2008. Oligocene CO_2 decline promoted C_4 photosynthesis in grasses. *Current Biology* **18**, 37–43.

Conroy J, Hocking P. 1993. Nitrogen nutrition of C₃ plants at elevated atmospheric CO₂ concentrations. *Physiologia Plantarum* **89**, 570–576.

Cousins AB, Badger MR, von Caemmerer S. 2008. C₄ photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. *Journal of Experimental Botany* **59**, 1695–1703.

Cunniff J, Charles M, Jones G, Osborne CP. 2010. Was low atmospheric CO_2 a limiting factor in the origin of agriculture? *Environmental Archaeology* **15**, 113–123.

Dengler NG, Dengler RE, Donnelly PM, Hattersley PW. 1994. Quantitative leaf anatomy of C_3 and C_4 grasses (Poaceae) – bundle sheath and mesophyll surface-area relationships. *Annals of Botany* **73**, 241–255. **Dippery J, Tissue D, Thomas R, Strain B.** 1995. Effects of low and elevated CO_2 on C_3 and C_4 annuals. *Oecologia* **101,** 13–20.

Edwards G, Voznesenskaya E. 2011. C₄ photosynthesis: Kranz forms and single-cell C₄ in terrestrial plants. In: Raghavendra AS, Sage RF, eds. *C4 photosynthesis and related CO2 concentrating mechanisms*. Dordrecht: Springer, 29–61.

Ehleringer JR, Cerling TE, Helliker BR. 1997. C₄ photosynthesis, atmospheric CO₂, and climate. *Oecologia* **112**, 285–299.

Evans JR, Seemann JR. 1989. The allocation of nitrogen in the photosynthetic apparatus: costs, consequences and control. In: Briggs WR, ed. *Photosynthesis*. New York: Alan R Liss, Inc., 183–205.

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO_2 assimilation in leaves of C_3 species. *Planta* **149**, 78–90.

Furbank RT. 2011. Evolution of the C_4 photosynthetic mechanism: are there really three C_4 acid decarboxylation types? *Journal of Experimental Botany* **62**, 3103–3108.

Furbank RT, Chitty JA, Jenkins CLD, Taylor WC, Trevanion SJ, von Caemmerer S, Ashton AR. 1997. Genetic manipulation of key photosynthetic enzymes in the C₄ plant *Flaveria bidentis*. *Functional Plant Biology* **24,** 477–485.

Gerhart LM, Ward JK. 2010. Plant responses to low [CO₂] of the past. *New Phytologist* **188**, 674–695.

Gesch RW, Vu JCV, Boote KJ, Hartwell Allen L Jr, Bowes G. 2000. Subambient growth CO_2 leads to increased Rubisco small subunit gene expression in developing rice leaves. *Journal of Plant Physiology* **157**, 235–238.

Ghannoum O, Caemmerer Sv, Conroy JP. 2002. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C₄ grasses. *Functional Plant Biology* **29**, 1337–1348.

Ghannoum O, Evans JR, Caemmerer S. 2011. Nitrogen and water use efficiency of C_4 plants. In: Raghavendra AS, Sage RF, eds. *C4 photosynthesis and related CO2 concentrating mechanisms*. Dordreccht: Springer, 129–146.

Ghannoum O, Evans JR, Wah Soon C, Andrews TJ, Conroy JP, von Caemmerer S. 2005. Faster Rubisco is the key to superior nitrogen use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C_4 grasses. *Plant Physiology* **137**, 638–650.

Ghannoum O, Phillips NG, Conroy JP, Smith RA, Attard RD, Woodfield R, Logan BA, Lewis JD, Tissue DT. 2010. Exposure to preindustrial, current and future atmospheric CO₂ and temperature differentially affects growth and photosynthesis in Eucalyptus. *Global Change Biology* **16**, 303–319.

Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB. 2002. Nonlinear grassland responses to past and future atmospheric CO₂. *Nature* **417**, 279–282.

Gutierrez M, Gracen VE, Edwards GE. 1974. Biochemical and cytological relationships in C_4 plants. *Planta* **119,** 279–300.

Hatch MD. 1987. C_4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochimica et Biophysica Acta* **895,** 81–106.

Hattersley P. 1992. C₄ photosynthetic pathway variation in grasses (Poaceae): its significance for arid and semi-arid lands. In: Chapman GP, ed. *Desertified grasslands—their biology and management*. London: Academic Press, 181-212.

Henderson S, Caemmerer S, Farquhar G. 1992. Short-term measurements of carbon isotope discrimination in several C_4 species. *Functional Plant Biology* **19**, 263–285.

Huxman TE, Monson RK. 2003. Stomatal responses of C_3 , C_3 – C_4 and C_4 *Flaveria* species to light and intercellular CO_2 concentration: implications for the evolution of stomatal behaviour. *Plant, Cell and Environment* **26,** 313–322.

Kanai R, Edwards GE. 1999. The biochemistry of C_4 photosynthesis. In: Rowan FS, Russell KM, eds. *C4 plant biology*. San Diego: Academic Press, 49–87.

Knapp AK, Medina E. 1999. Success of C_4 photosynthesis in the field. In: Sage R, Monson RK, eds. *C4 plant biology*. San Diego: Academic Press, 251–283. Ku MSB, Wu J, Dai Z, Scott RA, Chu C, Edwards GE. 1991. Photosynthetic and photorespiratory characteristics of *Flaveria* species. *Plant Physiology* **96**, 518–528.

Ku SB, Edwards GE. 1978. Photosynthetic efficiency of *Panicum hians* and *Panicum milioides* in relation to C_3 and C_4 plants. *Plant and Cell Physiology* **19**, 665–675.

Long SP. 1999. Environmental responses. In: Rowan FS, Russell KM, eds. *C4 plant biology*. San Diego: Academic Press, 215–249.

Maherali H, Reid C, Polley H, Johnson H, Jackson R. 2002. Stomatal acclimation over a subambient to elevated CO_2 gradient in a C_3/C_4 grassland. *Plant, Cell and Environment* **25,** 557–566.

McDonald EP, Erickson JE, Kruger EL. 2002. Can decreased transpiration limit plant nitrogen acquisition in elevated CO₂? *Functional Plant Biology* **29**, 1115–1120.

Monson R. 1989. The relative contributions of reduced photorespiration, and improved water- and nitrogen-use efficiencies, to the advantages of C_3 - C_4 intermediate photosynthesis in *Flaveria*. *Oecologia* **80**, 215–221.

Monson R, Moore BD. 1989. On the significance of C_3 - C_4 intermediate photosynthesis to the evolution of C_4 photosynthesis. *Plant, Cell and Environment* **12**, 689–699.

Monson R, Rawsthorne S. 2000. CO_2 assimilation in C_3-C_4 intermediate plants. In: Leegood RC, Sharkey TD, von Caemmerer S, eds. *Photosynthesis: physiology, metabolism*. Dordrecht, The Netherlands: Kluwer, 533–550.

Morison JI, Gifford RM. 1983. Stomatal sensitivity to carbon dioxide and humidity a comparison of two C_3 and two C_4 grass species. *Plant Physiology* **71**, 789–796.

Muhaidat R, McKown AD. 2013. Significant involvement of PEP-CK in carbon assimilation of C_4 eudicots. *Annals of Botany* **111**, 577–589.

Osmond B. 1982. Functional significance of different pathways of CO₂ fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond B, Ziegler H, eds. *Physiological plant ecology II. Encylopedia of plant physiology New Series*. Berlin: Springer-Verlag, 479–549.

Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. *Science* **309**, 600–603.

Pengelly JJ, Tan J, Furbank RT, von Caemmerer S. 2012. Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO_2 through the C_4 cycle. *Plant Physiology* **160**, 1070–1080.

Pinto H, Tissue DT, Ghannoum O. 2011. *Panicum milioides* (C_3 – C_4) does not have improved water or nitrogen economies relative to C_3 and C_4 congeners exposed to industrial-age climate change. *Journal of Experimental Botany* **62**, 3223–3234.

Polley H, Johnson H, Mayeux H. 1992. Carbon dioxide and water fluxes of C_3 annuals and C_3 and C_4 perennials at subambient CO_2 concentrations. *Functional Ecology* **6**, 693–703.

Poorter H. 1993. Interspecific variation in the growth response of plants to an elevated ambient CO_2 concentration. *Vegetatio* **104–105**, 77–97.

Prendergast H, Hattersley P, Stone N. 1987. New structural/ biochemical associations in leaf blades of C₄ grasses (Poaceae). *Functional Plant Biology* **14**, 403–420.

Ripley BS, Cunniff J, Osborne CP. 2013. Photosynthetic acclimation and resource use by the C_3 and C_4 subspecies of *Alloteropsis semialata* in low CO₂ atmospheres. *Global Change Biology* **19**, 900–910.

Ruuska S, Andrews TJ, Badger MR, Hudson GS, Laisk A, Price GD, von Caemmerer S. 1998. The interplay between limiting processes in C₃ photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis. *Australian Journal of Plant Physiology* **25,** 859–870. Sage RF. 2004. The evolution of C_4 photosynthesis. New Phytologist **161**, 341–370.

Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C_4 photosynthesis. Annual Review of Plant Biology **63**, 19–47.

Sherwin GL, George L, Kannangara K, Tissue DT, Ghannoum O. 2013. Impact of industrial-age climate change on the relationship between water uptake and tissue nitrogen in eucalypt seedlings. *Functional Plant Biology* **40**, 201–212.

Taub DR. 2000. Climate and the U.S. distribution of C_4 grass subfamilies and decarboxylation variants of C_4 photosynthesis. *American Journal of Botany* **87**, 1211–1215.

Taub DR, Lerdau MT. 2000. Relationship between leaf nitrogen and photosynthetic rate for three NAD-ME and three NADP-ME C_4 grasses. *American Journal of Botany* **87**, 412–417.

Taylor SH, Hulme SP, Rees M, Ripley BS, Ian Woodward F, Osborne CP. 2010. Ecophysiological traits in C_3 and C_4 grasses: a phylogenetically controlled screening experiment. *New Phytologist* **185**, 780–791.

Tissue D, Griffin K, Thomas R, Strain B. 1995. Effects of low and elevated CO_2 on C_3 and C_4 annuals. *Oecologia* **101,** 21–28.

Vogan PJ, Frohlich MW, Sage RF. 2007. The functional significance of C_3 – C_4 intermediate traits in *Heliotropium* L. (Boraginaceae): gas exchange perspectives. *Plant, Cell and Environment* **30**, 1337–1345.

Vogan PJ, Sage RF. 2011. Water-use efficiency and nitrogen-use efficiency of C_3 - C_4 intermediate species of *Flaveria* Juss. (Asteraceae). *Plant, Cell and Environment* **34,** 1415–1430.

Vogan P, Sage R. 2012. Effects of low atmospheric CO₂ and elevated temperature during growth on the gas exchange responses of C₃, C₃–C₄ intermediate, and C₄ species from three evolutionary lineages of C₄ photosynthesis. *Oecologia* **169**, 341–352.

von Caemmerer S. 2000. *Biochemical models of leaf photosynthesis*. Melbourne: CSIRO Publishing.

von Caemmerer S, Furbank RT. 2003. The C₄ pathway: an efficient CO₂ pump. *Photosynthesis Research* **77**, 191–207.

von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price GD, Badger M, Furbank RT. 1997a. Carbon isotope discrimination during C₄ photosynthesis: insights from transgenic plants. *Australian Journal of Plant Physiology* **24**, 487–494.

von Caemmerer S, Millgate A, Farquhar GD, Furbank RT. 1997b. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by antisense RNA in the C₄ plant *Flaveria bidentis* leads to reduced assimilation rates and increased carbon isotope discrimination. *Plant Physiology* **113**, 469–477.

Walker RP, Acheson RM, Técsi LI, Leegood RC. 1997. Phosphoenolpyruvate carboxykinase in C_4 plants: its role and regulation. *Functional Plant Biology* **24**, 459–468.

Walker RP, Chen ZH, Acheson RM, Leegood RC. 2002. Effects of phosphorylation on phosphoenolpyruvate carboxykinase from the C_4 plant Guinea grass. *Plant Physiology* **128**, 165–172.

Ward J, Tissue DT, Thomas RB, Strain B. 1999. Comparative responses of model C_3 and C_4 plants to drought in low and elevated CO_2 . *Global Change Biology* **5**, 857–867.

Wingler A, Walker RP, Chen ZH, Leegood RC. 1999. Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. *Plant Physiology* **120**, 539–546.

Ziska L, Bunce J. 1997. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C_4 crops and weeds. *Photosynthesis Research* **54**, 199–208.