### **RESEARCH PAPER**



# Was low CO<sub>2</sub> a driving force of C<sub>4</sub> evolution: *Arabidopsis* responses to long-term low CO<sub>2</sub> stress

Yuanyuan Li<sup>1,2</sup>, Jiajia Xu<sup>1,2</sup>, Noor UI Haq<sup>2</sup>, Hui Zhang<sup>2,3</sup> and Xin-Guang Zhu<sup>1,2,\*</sup>

<sup>1</sup> State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

<sup>2</sup> Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China

<sup>3</sup> Shandong Normal University, Jinan, Shandong 250014, China

\* To whom correspondence should be addressed. E-mail: zhuxinguang@picb.ac.cn

Received 26 November 2013; Revised 25 March 2014; Accepted 2 April 2014

### Abstract

The responses of long-term growth of plants under elevated  $CO_2$  have been studied extensively. Comparatively, the responses of plants to subambient  $CO_2$  concentrations have not been well studied. This study aims to investigate the responses of the model  $C_3$  plant, *Arabidopsis thaliana*, to low  $CO_2$  at the molecular level. Results showed that low  $CO_2$  dramatically decreased biomass productivity, together with delayed flowering and increased stomatal density. Furthermore, alteration of thylakoid stacking in both bundle sheath and mesophyll cells, upregulation of PEPC and PEPC-K together with altered expression of a number of regulators known involved in photosynthesis development were observed. These responses to low  $CO_2$  are discussed with regard to the fitness of  $C_3$  plants under low  $CO_2$ . This work also briefly discusses the relevance of the data to  $C_4$  photosynthesis evolution.

Key words: Arabidopsis, C<sub>4</sub> photosynthesis, evolution, low CO<sub>2</sub>, photorespiration, stress responses.

# Introduction

The response of plants grown in lower  $CO_2$  concentrations has been much less studied than responses to elevated  $CO_2$ concentrations (Long *et al.*, 2004, 2006; Ainsworth and Long, 2005; Gerhart and Ward, 2010). Among these limited studies, some have demonstrated that a large genetic variation in response to low  $CO_2$  exists among *Arabidopsis* accessions. For example, Sharma *et al.* (1979) screened 33 *Arabidopsis* accessions for survival time under limiting  $CO_2$  when grown side by side with  $C_4$  plants (*Zea mays* L.) in an air-tight chamber where  $CO_2$  concentration was reduced to below the compensation point of  $C_3$  plants and found a 1–2-week difference in the survival time in different accessions and also found substantial genetic segregation among  $F_2$  parents, with extreme differences in survival time near the  $CO_2$  compensation point.

Arabidopsis genotypes from different elevations show significant variation in the response of seed number when grown at low  $CO_2$  (20 Pa) (Ward and Strain, 1997). Ward *et al.* (2000) performed an artificial selection experiment using *Arabidopsis* for high seed number over five generations at low CO<sub>2</sub> (20 Pa, or 200 ppm); the selected populations produced 25% more seeds and 35% more biomass on average than control populations which were randomly selected at the fifth generation when grown at low CO<sub>2</sub>. In addition, Ward and Kelly (2004) also observed a high level of genetic variation in survival, reproductive output, and total seed production among the *Arabidopsis* genotypes when grown at low CO<sub>2</sub> (200 ppm). All these studies suggest that *Arabidopsis* has adaptive phenotypic plasticity in response to low CO<sub>2</sub>.

In a carbon starvation experiment, 5-week-old *Arabidopsis* rosettes treated with ambient (350 ppm)  $CO_2$  or compensation point (<50 ppm)  $CO_2$  were collected in the light for 4 h to investigate responses to changing endogenous sugar concentrations in rosettes at the gene expression level using the GeneChip *Arabidopsis* ATH1 genome array (Bläsing *et al.*,

<sup>©</sup> The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

2005). However, these studies have not addressed the mechanism of long-term responses of plants to low  $CO_2$ .

This study conducted a survey of responses of  $C_3$  plants to long-term low CO<sub>2</sub> treatments at the molecular level. *Arabidopsis* was chosen as the model system because its genome has been fully sequenced and is still the best annotated plant genome to date (The Arabidopsis Genome Initiative, 2000); the well-annotated *Arabidopsis* genome facilitates analysis of global gene expression using RNA-Seq technology. This study sequenced the transcriptome of 6-week old *Arabidopsis* seedlings grown under ambient CO<sub>2</sub> (380 ppm) or low CO<sub>2</sub> (100 ppm). The results are discussed with particular reference to the significance of the altered gene expression to the fitness of C<sub>3</sub> plants under low CO<sub>2</sub>. The relevance of low CO<sub>2</sub> to C<sub>4</sub> evolution is also briefly discussed.

#### Materials and methods

#### Plant growth and harvest

Arabidopsis thaliana Columbia-0 (Col-0) seeds were imbibed in 0.1% (w/v) agar solution and incubated at 4 °C for 2 d to break dormancy. Imbibed seeds were germinated and grown in Pindstrup soil in a Percival incubator (NC-350HC-LC, Nihonika, Japan) in which CO<sub>2</sub> gas can be accurately and stably controlled in the range of 100-3000 ppm. CO<sub>2</sub> concentrations 100 and 380 ppm were applied in two separate chambers and maintained throughout this study. CO<sub>2</sub> concentrations were monitored and maintained throughout the experiments. Plants were grown under a 8/16h light/dark cycle (photo synthetic photon flux density 150  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>) at 21 °C and 70% relative humidity. After 4 weeks, the photoperiod was changed to a 16/8 h light/dark cycle for a further 2 weeks. On day 42, samples were taken during the middle of the light period and mature expanded rosette leaves from 10-15 individual plants were harvested, immediately frozen in liquid nitrogen, and stored at -80 °C until use. The samples were taken from 12 individual pots.

#### Morphological data collection

Scanning electron microscopy and transmission electron microscopy were used to observe the changes of ultrastructure by low  $CO_2$ . The number of stomata was counted in four fields of view from the fully expanded leaves of no less than eight individual plants for each treatment (Supplementary Fig. S1 available at *JXB* online).

#### RNA preparation and sequencing

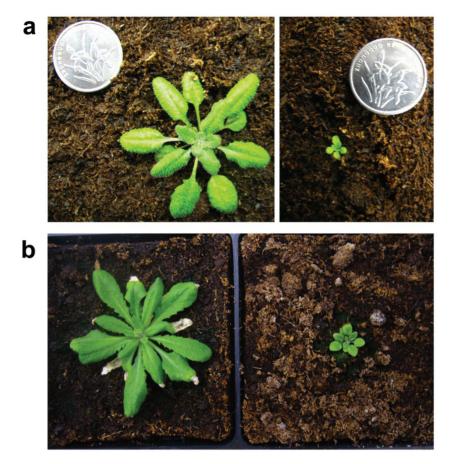
Total RNA was prepared with TRIzol (Invitrogen Life Technologies, Shanghai, China), according to the manufacturer's instructions. Following extraction, total RNA was purified using a RNeasy Mini Kit including on-column DNase digestion (Qiagen, Shanghai, China). Purified RNA was checked for integrity and quality using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The cDNA library was constructed for sequencing as described in Illumina TruSeqTM RNA sample preparation version 2 guide (catalog no. RS-930–1021). Sequencing was performed using a Illumina HiSeq 2000 (Illumina, San Diego, USA).

#### Mapping and quantification of sequence reads

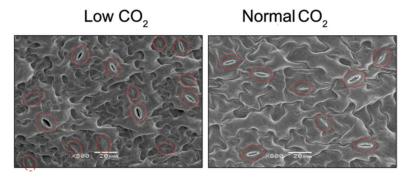
Clean reads were mapped onto the latest *A. thaliana* Col-0 genome assembly (TAIR 10) or a minimal set of coding sequences of the TAIR 9 genome release (Gowik *et al.*, 2011) using the bowtie version 0.12.7 (Langmead *et al.*, 2009). The best hit of each read with a maximum of three nucleotide mismatches was used (-v 3 --best).

The raw digital gene expression counts were normalized using the RPKM (reads/kb/million) method (Mortazavi *et al.*, 2008; Nagalakshmi *et al.*, 2008; Supplementary Tables S1 and S2 available at *JXB* online).

To identify differentially expressed genes, an expression profile matrix was built which integrated the digital gene expression count for each gene in each library, total gene count for each condition were used as background to check if a gene is significantly differentially expressed in low and CO<sub>2</sub> normal conditions by applying the chi-squares test. A FDR-corrected *P*-value was calculated using the formula  $q(i) = \frac{p(i)N}{i}C(N)$  where *i* represents the ascending order of *P*-values, p(i) represents the *i*th *P*-value, *C* represents a chosen constant, and *N* represents the size of dataset (Benjamini and Hochberg, 1995). Significantly differentially expressed genes were picked following the criteria *P*<0.001, FDR<0.025,  $|\log_2 Ratio| \ge 1.2$ .


### Results

# Effects of long-term low CO<sub>2</sub> on biomass growth, stomata density, and chloroplast ultrastructure


 $CO_2$  is the major source of carbon for photosynthesis and plays a vital role in plant growth. High  $CO_2$  often increases the growth and reproduction of  $C_3$  annuals, whereas low  $CO_2$ decreases growth (Ward *et al.*, 2000; Ward, 2005). Previous studies showed that minimum  $CO_2$  concentrations between 180 and 200 ppm during the Last Glacial Maximum were already stressful on modern  $C_3$  plants (Dippery *et al.*, 1995; Ward, 2005); therefore, this work set low  $CO_2$  concentration as 100 ppm. *Arabidopsis* plants grown at 100 ppm for 6 weeks were much smaller than those grown under normal  $CO_2$  (380 ppm) (Fig. 1). In addition, low  $CO_2$  led to a slight delay in flowering time (data not shown). The results showed that low  $CO_2$  (100 ppm) had a dramatic impact on the growth of the  $C_3$  plant *Arabidopsis*.

Stomata control the entry of  $CO_2$  into the leaves of plants for photosynthesis. There is a strong inverse correlation between atmospheric  $CO_2$  and stomatal density (the number of stomata per unit area) (Franks *et al.*, 2012). This work examined the stomatal density of abaxial (lower) leaf blade epidermis of *Arabidopsis* plants grown at either low  $CO_2$  or normal  $CO_2$ for 6 weeks (Supplementary Fig. S1). As expected, stomatal density was significantly higher (mean $\pm$ SE 509 $\pm$ 59mm<sup>-2</sup>) in plants grown at low  $CO_2$  compared to plants at normal  $CO_2$ (297 $\pm$ 54mm<sup>-2</sup>) (Fig. 2).

In plants, photosynthesis occurs exclusively in the chloroplast, and the photosystems (PSI and PSII) exist on the thylakoid membrane inside a chloroplast. PSII is limited to granal thylakoids, while PSI exists exclusively in the thylakoids exposed to the stroma (Albertsson, 1995; Dekker and Boekema, 2005; Sakamoto *et al.*, 2008). The ultrastructure of mature leaves under low CO<sub>2</sub> were examined using transmission electron microscopy, and the size and the arrangement of bundle sheath cells and mesophyll cells was not changed, while *Arabidopsis* grown under low CO<sub>2</sub> showed decreased stacking in chloroplast grana in both mesophyll and bundle sheath cells under low CO<sub>2</sub> compared to normal CO<sub>2</sub> (Fig. 3).



**Fig. 1.** Arabidopsis thaliana Col-0 grown under normal CO<sub>2</sub> (380 ppm) and low CO<sub>2</sub> (100 ppm) for 4 weeks (A; 8/16h light/dark cycle (photosynthetic photon flux density 150 μmol m<sup>-2</sup> s<sup>-1</sup>, 21 °C, 70% relative humidity) and for 6 weeks (B; 4 weeks under conditions as for A plus 2 weeks under a 16/8h light/dark cycle).



**Fig. 2.** Effect of low atmospheric CO<sub>2</sub> on stomatal density. Representative scanning electron micrographs of abaxial (lower) leaf blade epidermis of *Arabidopsis* grown under low CO<sub>2</sub> (100 ppm) or normal CO<sub>2</sub> (380 ppm) for 6 weeks. Dashed lines indicate stomata. Bars, 20 μm.

# Some $C_4$ -cycle genes were upregulated under low $CO_2$

The mRNA-seq analysis to compare transcriptomes between closely related  $C_4$  and  $C_3$  species within the genus *Flaveria* and *Cleome* using *Arabidopsis* as the reference genome defined a list of enzymes, transporters, and regulatory proteins required for the core  $C_4$  cycle (Bräutigam *et al.*, 2011; Gowik *et al.*, 2011). It has been reported that *Arabidopsis* shows the characteristics of  $C_4$  photosynthesis in midveins (Brown *et al.*, 2010), but nothing is known about the plasticity of these characteristics.

In order to check whether  $C_4$ -related characteristics can be regulated by low CO<sub>2</sub> stress, the transcript abundances of putative C<sub>4</sub>-related genes were examined. The transcript encoding the enzyme phosphoenolpyruvate carboxylase (PEPC, At2g42600) showed 2.10-fold higher transcript abundance, followed by PEPC kinase (PEPC-K, At1g08650) with a 1.99-fold increase in abundance (Table 1 and Supplementary Table S3 available at *JXB* online). In addition, the transcript abundances for the genes encoding alanine aminotransferase (At1g17290), chloroplast NAD-dependent malate dehydrogenase (At3g47520), pyruvate orthophosphate dikinase regulatory protein (At4g21210), inorganic pyrophosphatase

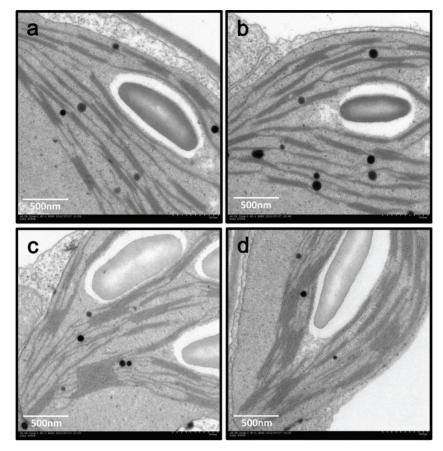



Fig. 3. Effect of low CO<sub>2</sub> on chloroplast ultrastructure. Representative transmission electron micrographs of ultrastructure of *Arabidopsis* grown under low CO<sub>2</sub> (A, B) or normal CO<sub>2</sub> (C, D) for 6 weeks: (A and C) mesophyll cell; (B and D) bundle sheath cell. Bars, 500 nm.

#### Table 1. Transcription abundance of C<sub>4</sub>-cycle genes and C<sub>4</sub>-related transporters

Reads were mapped onto the latest *Arabidopsis thaliana* Col-0 genome assembly (gene mapping) or a minimal set of coding sequences of the TAIR 9 genome release (core set mapping) using bowtie. Low: low CO<sub>2</sub>, 100 ppm; Nor: normal CO<sub>2</sub>, 380 ppm; rpkm, reads per kilobase per million mapped reads. AlaAT, alanine aminotransferase; AspAT, aspartate amino transferase; cpNAD-MDH, chloroplast NAD-dependent malate dehydrogenase; Dit, chloroplast dicarboxylate transporter; PEPC, phosphoenolpyruvate carboxylase; PEPC-K, PEPC kinase; PEP-CK, PEP carboxykinase; PPA2, inorganic pyrophosphatase 2; PPDK-RP, pyruvate orthophosphate dikinase regulatory protein; PPT1, phosphoenolpyruvate/phosphate translocator 1; TPT, triose phosphate transporter; –, no expression detected.

| Gene ID   | Protein   | Gene mapping |            |             | Core set mapping |            |             |  |
|-----------|-----------|--------------|------------|-------------|------------------|------------|-------------|--|
|           |           | Low (rpkm)   | Nor (rpkm) | Fold change | Low (rpkm)       | Nor (rpkm) | Fold change |  |
| At1g08650 | PEPC-K    | 26.220       | 13.206     | 1.985       | 30.156           | 15.230     | 1.980       |  |
| At1g17290 | AlaAT     | 56.839       | 48.904     | 1.162       | 65.884           | 57.025     | 1.155       |  |
| At1g62800 | AspAT     | 0.707        | 2.388      | 0.296       | 0.916            | 2.701      | 0.339       |  |
| At2g18230 | PPA2      | 10.288       | 6.468      | 1.591       | 11.812           | 7.459      | 1.584       |  |
| At2g42600 | PEPC      | 197.604      | 93.979     | 2.103       | 227.099          | 108.523    | 2.093       |  |
| At3g47520 | cpNAD-MDH | 74.044       | 64.394     | 1.150       | 85.015           | 74.261     | 1.145       |  |
| At4g21210 | PPDK-RP   | 213.075      | 191.911    | 1.110       | 244.822          | 221.204    | 1.107       |  |
| At4g37870 | PEP-CK    | 26.606       | 43.413     | 0.613       | 30.589           | 50.065     | 0.611       |  |
| At5g12860 | Dit1      | 356.959      | 275.153    | 1.297       | 409.991          | 317.354    | 1.292       |  |
| At5g33320 | PPT1      | _            | -          | _           | 44.181           | 50.558     | 0.874       |  |
| At5g46110 | TPT       | 508.799      | 533.917    | 0.953       | 584.330          | 615.779    | 0.949       |  |
| At5g64280 | Dit2      | 27.003       | 20.059     | 1.346       | _                | -          | _           |  |

2 (At2g18230), chloroplast dicarboxylate transporter 1 (At5g12860) and 2 (At5g64280) showed trends of upregulation but their fold changes were less than 2.

# Photorespiratory genes showed trends of upregulation under low $CO_2$

Low atmospheric CO<sub>2</sub> concentration would increase photorespiration, so this work also examined the transcript abundances of photorespiration genes. Nearly all genes showed trends of upregulation in plants grown under low CO<sub>2</sub> compared with those under normal CO<sub>2</sub> (Table 2 and Supplementary Table S4 available at *JXB* online), except for the gene encoding glycine decarboxylase L-protein (*mtLPD1*; At1g48030); however, the fold changes were all less than 2. The differential responses of genes involved in the photosynthetic light reactions, Calvin Benson cycle, and ABA and IAA metabolisms were shown in Supplementary Tables S8–11 available at *JXB* online.

# Chloroplast biogenesis- and maintenance-related genes showed differential expression in low CO<sub>2</sub>

Given the differential expression of genes involved in chloroplast biogenesis and maintenance between the  $C_3$  and  $C_4$  *Flaveria* species (Gowik *et al.*, 2011) and the altered chloroplast ultrastructure between low CO<sub>2</sub> and normal CO<sub>2</sub> (Fig. 3), this work examined the transcript abundances of genes involved in chloroplast biogenesis and maintenance under low CO<sub>2</sub> and compared them with previously identified genes differentially expressed between  $C_3$  and  $C_4$  species (Gowik *et al.*, 2011) (Table 3 and Supplementary Table S5 available at *JXB* online). All the chloroplast biogenesis- and maintenance-related genes upregulated by low CO<sub>2</sub> shown in Table 3 were also upregulated in  $C_4$  *Flaveria* species, and five genes down-regulated by low CO<sub>2</sub> (At5g52540, At1g52290, At5g20720, At2g32180, and At3g19820) were also downregulated in  $C_4$ 

#### Table 2. Transcription abundance of photorespiration genes

*Flaveria* species (Gowik *et al.*, 2011); however, only At44446, At5g52540, At3g17040, and At1g52290 showed a ratio of expression abundance greater than 2.

Of the genes showing a fold change more than 2, three (At1g44446, At3g17040, and At5g52540) were enriched in C<sub>4</sub> Flaveria species compared to C<sub>3</sub> species. PSII concentrations are well correlated with chlorophyll b synthesis (Bailey et al., 2001), and chlorophyllide a oxygenase (At1g44446) is considered a critical enzyme responsible for chlorophyll b synthesis (Yamasato et al., 2005). HCF107 (At3g17040) is a sequence-specific RNA-binding protein and remodels local RNA structure in a manner that accounts for its ability to enhance translation (Sane et al., 2005; Hammani et al., 2012). The hcf107 mutation in Arabidopsis leads to a defective PSII (Felder et al., 2001). Although many chloroplasttargeted DnaJ proteins have not been characterized, it has been hypothesized that chloroplast-targeted DnaJ proteins participate in protein folding, unfolding, and assembly processes, and some DnaJ proteins are involved in the stabilization of thylakoid membrane complexes such as photosystem II (Chen et al., 2010). Therefore, these three downregulated genes were related to reduced PSII and this is in agreement with the ultrastructural analysis (Fig. 3).

#### Differentially expressed transcription factors

Ten differentially expressed transcription factors were identified ( $|\log_2 Ratio| \ge 1.2$ ) (Table 4). Of these, *GOLDEN2-LIKE2* (*GLK2*, At5g44190), of the GLK family which is involved in chloroplast development (Langdale, 2011), was significantly downregulated under low CO<sub>2</sub>. The *GLK2* counterpart *GLK1* (At2g20570) was also downregulated in low CO<sub>2</sub> but to a lesser extent.

Waters *et al.* (2009) identified 20 most upregulated genes by *GLK1* and *GLK2* induction using inducible gene expression combined with transcriptome analysis. The current

The genes in bold represent these that plays a major function in photorespiration and the knockout results in a low CO<sub>2</sub>-sensitive phenotype (Bauwe, 2011). Reads were mapped onto the latest *Arabidopsis thaliana* Col-0 genome assembly (gene mapping) or a minimal set of coding sequences of the TAIR 9 genome release (core set mapping) using bowtie. Low: low CO<sub>2</sub>, 100 ppm; Nor: normal CO<sub>2</sub>, 380 ppm; rpkm, reads per kilobase per million mapped reads.

| Gene ID   | Enzyme                                | Gene   | Gene mapping |            |             | Core set mapping |            |             |
|-----------|---------------------------------------|--------|--------------|------------|-------------|------------------|------------|-------------|
|           |                                       |        | Low (rpkm)   | Nor (rpkm) | Fold change | Low (rpkm)       | Nor (rpkm) | Fold change |
| At1g11860 | Glycine decarboxylase T-protein       | GLDT1  | 909.564      | 789.090    | 1.153       | 1044.524         | 909.989    | 1.148       |
| At1g23310 | Glutamate:glyoxylate aminotransferase | GGT1   | 461.752      | 399.672    | 1.155       | 538.428          | 465.798    | 1.156       |
| At1g48030 | Glycine decarboxylase L-protein       | mtLPD1 | 250.934      | 270.703    | 0.927       | _                | _          | _           |
| At1g68010 | Hydroxypyruvate reductases            | HPR1   | 302.977      | 286.059    | 1.059       | 347.873          | 329.958    | 1.054       |
| At1g70580 | Glutamate:glyoxylate aminotransferase | GGT2   | 39.407       | 23.536     | 1.674       | -                | -          | -           |
| At1g80380 | ∟-Glycerate 3-kinase                  | GLYK   | 130.215      | 118.051    | 1.103       | 149.539          | 136.138    | 1.098       |
| At2g13360 | Alanine:glyoxylate aminotransferase   | AGT1   | 1069.682     | 953.983    | 1.121       | 1228.446         | 1100.193   | 1.117       |
| At2g26080 | Glycine decarboxylase P-protein       | GLDP2  | 87.272       | 75.611     | 1.154       | 216.751          | 173.881    | 1.247       |
| At3g14415 | Glycolate oxidase                     | GOX2   | 497.994      | 473.499    | 1.052       | 571.960          | 546.046    | 1.047       |
| At3g14420 | Glycolate oxidase                     | GOX1   | 698.380      | 617.984    | 1.130       | 801.954          | 712.742    | 1.125       |
| At4g33010 | Glycine decarboxylase P-protein       | GLDP1  | 800.116      | 599.088    | 1.336       | -                | -          | _           |
| At4g37930 | Serine hydroxymethyltransferase       | SHM1   | 1188.138     | 842.873    | 1.410       | 1364.293         | 972.136    | 1.403       |

#### Table 3. Transcript abundance of genes related to chloroplast biogenesis and maintenance

Reads were mapped onto the latest *Arabidopsis thaliana* Col-0 genome assembly (gene mapping) or a minimal set of coding sequences of the TAIR 9 genome release (core set mapping) using bowtie. Low: low CO<sub>2</sub>, 100 ppm; Nor: normal CO<sub>2</sub>, 380 ppm; rpkm, reads per kilobase per million mapped reads.

| Gene ID   | Protein                                                                               | Gene mapping |            |             | Core set mapping |            |             |
|-----------|---------------------------------------------------------------------------------------|--------------|------------|-------------|------------------|------------|-------------|
|           |                                                                                       | Low (rpkm)   | Nor (rpkm) | Fold change | Low (rpkm)       | Nor (rpkm) | Fold change |
| At1g02560 | CLPP5 (nuclear-encoded CLP protease 5), protease subunit                              | 177.486      | 153.738    | 1.154       | 203.821          | 177.293    | 1.150       |
| At1g06430 | FTSH8 (cell-division protease ftsH-8)                                                 | 46.648       | 33.676     | 1.385       | 53.561           | 38.836     | 1.379       |
| At1g09340 | CRB (chloroplast RNA binding)                                                         | 477.334      | 377.221    | 1.265       | 548.065          | 435.050    | 1.260       |
| At1g10350 | Putative DnaJ<br>heat-shock protein                                                   | 5.668        | 8.818      | 0.643       | 6.507            | 10.169     | 0.640       |
| At1g32080 | Putative membrane protein                                                             | 277.058      | 238.279    | 1.163       | 318.113          | 274.786    | 1.158       |
| At1g44446 | Chlorophyllide a oxygenase                                                            | 16.090       | 45.126     | 0.357       | 18.475           | 52.075     | 0.355       |
| At1g52290 | Protein kinase-like protein                                                           | 6.746        | 13.767     | 0.490       | _                | -          | _           |
| At1g55490 | CPN60B (chaperonin 60 beta);<br>RuBisCO large subunit-binding<br>protein subunit beta | 294.626      | 236.862    | 1.244       | 346.733          | 285.802    | 1.213       |
| At1g62750 | SCO1(SNOWY COTYLEDON1);<br>elongation factor EF-G                                     | 369.741      | 244.662    | 1.511       | 443.343          | 295.894    | 1.498       |
| At1g74730 | Unknown protein                                                                       | 233.905      | 183.326    | 1.276       | 268.981          | 211.675    | 1.271       |
| At2g03390 | uvrB/uvrC motif-containing protein                                                    | 43.955       | 31.538     | 1.394       | 50.468           | 36.370     | 1.388       |
| At2g30950 | VAR2 (VARIEGATED 2);<br>cell-division protease ftsH-2                                 | 621.194      | 440.354    | 1.411       | 713.485          | 507.890    | 1.405       |
| At2g32180 | PTAC18 (plastid<br>transcriptionally active 18)                                       | 19.442       | 27.606     | 0.704       | 22.323           | 31.836     | 0.701       |
| At2g35490 | Putative plastid-lipid-<br>associated protein 3                                       | 108.463      | 88.003     | 1.232       | 124.626          | 101.487    | 1.228       |
| At2g46100 | Nuclear transport factor<br>2 (NTF2) family protein                                   | 63.534       | 49.599     | 1.281       | 72.948           | 57.419     | 1.270       |
| At3g17040 | HCF107 (high chlorophyll<br>fluorescent 107)                                          | 9.314        | 21.102     | 0.441       | 10.694           | 24.335     | 0.439       |
| At3g19820 | DWF1 (DWARF 1)                                                                        | 77.847       | 87.660     | 0.888       | 89.382           | 101.091    | 0.884       |
| At3g24430 | HCF101 (high chlorophyll fluorescence 101)                                            | 65.051       | 49.942     | 1.303       | 74.690           | 57.594     | 1.297       |
| At4g24190 | SHD (SHEPHERD)/HEAT<br>SHOCK PROTEIN 90–7                                             | 73.310       | 64.708     | 1.133       | 84.173           | 74.623     | 1.128       |
| At5g12470 | Unknown protein                                                                       | 52.805       | 35.339     | 1.494       | 60.629           | 40.753     | 1.488       |
| At5g20720 | CPN20 (chaperonin 20)                                                                 | 247.229      | 356.642    | 0.693       | 283.940          | 411.333    | 0.690       |
| At5g42270 | VAR1 (VARIEGATED 1);<br>cell-division protease ftsH-5                                 | 413.651      | 316.477    | 1.307       | 475.001          | 364.966    | 1.301       |
| At5g52540 | Unknown protein                                                                       | 16.931       | 45.877     | 0.369       | 19.307           | 52.863     | 0.365       |

work assessed the alteration of these 20 primary targets of GLK gene action and found nearly that all of them, except COR15a (At2g42540) were downregulated (Table 5 and Supplementary Table S6 available at JXB online). COR15a was significantly induced under low CO<sub>2</sub> instead, possibly because COR15a is an indirect, secondary target of GLK2 (Waters *et al.*, 2009).

# Stress-induced mutagenesis pathway was changed under low $CO_2$

It has been shown that DNA double-strand break-dependent stress-induced mutagenesis is important to evolution, through producing more mutations under stress in *Escherichia coli*  (Cirz et al., 2005; Shee et al., 2011; Al Mamun et al., 2012). As a severe stress, can low CO<sub>2</sub> induce more mutagenesis in natural populations? This work examined the transcriptional changes in genes encoding products related to human DNA repair proteins and found that genes involved in damage sensing (At5g40450, At2g26980, At4g04720), photoreactivation (At3g15620), homologous recombination (At3g48190), nucleotide excision repair (At2g36490, At3g02060, At5g04560, At1g52500, At3g28030, At5g45400), and DNA polymerases (At4g32700, At1g67500) were upregulated by low CO<sub>2</sub> (Table 6 and Supplementary Table S7 available at JXB online). These results suggest that low  $CO_2$  might induce a similar mechanism of DNA double-strand break-dependent stress-induced mutagenesis to promote evolution.

#### **Table 4.** Differentially expressed transcription factors using Deseg software

AP2-EREBP, Apetala 2 ethylene-responsive-element-binding proteins; C2H2, C2H2 zinc finger domain; G2-like, golden2-like; SBP, SQUAMOSA promoter-binding proteins. *P*<0.001, FDR<0.025, |log<sub>2</sub>Ratio|≥1.2.

| TF family name                            | TF locus ID | Gene name                       | Gene description                                                                                 |
|-------------------------------------------|-------------|---------------------------------|--------------------------------------------------------------------------------------------------|
| Upregulated under low CO                  | 02          |                                 |                                                                                                  |
| AP2-EREBP                                 | At1g74930   | ORA47 (Octadecanoid derivative- | ORA47 is a regulator of jasmonate                                                                |
|                                           |             | responsive AP2/ERF-domain       | biosynthesis (Pauwels and Goossens, 2008)                                                        |
|                                           |             | transcription factor 47)        |                                                                                                  |
| C2C2-GATA                                 | At4g26150   | CGA1 (CYTOKININ-RESPONSIVE      | CGA1 was regulated by light, nitrogen,                                                           |
|                                           |             | GATA FACTOR1)                   | cytokinin, and gibberellic acid, and                                                             |
|                                           |             |                                 | modulated nitrogen assimilation, chloroplast                                                     |
|                                           |             |                                 | development, and starch production<br>(Bi <i>et al.</i> , 2005; Naito <i>et al.</i> , 2007; Mara |
|                                           |             |                                 | and Irish, 2008; Richter <i>et al.</i> , 2010;                                                   |
|                                           |             |                                 | Hudson <i>et al.</i> , 2011); CGA1 play a key role                                               |
|                                           |             |                                 | in chloroplast development, growth, and                                                          |
|                                           |             |                                 | divison in Arabidopsis (Chiang et al., 2012)                                                     |
| AP2-EREBP                                 | At4g34410   | RRTF1 (redox-responsive         | RTF1 is involved in redox homeostasis under                                                      |
|                                           |             | transcription factor 1)         | high light stress (Khandelwal et al., 2008)                                                      |
| AP2-EREBP                                 | At5g05410   | DREB2A (dehydration-responsive  | DREB2A is involved in dehydration-                                                               |
|                                           | 0           | element-binding protein 2A)     | responsive gene expression and                                                                   |
|                                           |             |                                 | overexpression of an active form of DREB2A                                                       |
|                                           |             |                                 | results in significant stress tolerance                                                          |
|                                           |             |                                 | to dehydration and significant growth                                                            |
|                                           |             |                                 | retardation (Sakuma et al., 2006)                                                                |
| C2H2                                      | At5g59820   | ZAT12                           | Zat12 plays a central role in reactive oxygen                                                    |
|                                           |             |                                 | and abiotic stress signalling in Arabidopsis                                                     |
|                                           |             |                                 | and overexpression of Zat12 in Arabidopsis                                                       |
|                                           |             |                                 | results in the enhanced expression of                                                            |
|                                           |             |                                 | oxidative- and light stress-response                                                             |
|                                           | 00          |                                 | transcripts (Davletova et al., 2005)                                                             |
| Downregulated under low (<br>C2C2-CO-like | At1g49130   | COL8 (CONSTANS-LIKE 8)          | Zinc finger (B-box type) family protein                                                          |
| SBP                                       | At2g33810   | SPL3 (SQUAMOSA PROMOTER         | SPL3 is involved in regulation of flowering                                                      |
|                                           | ALZGOOTO    | BINDING PROTEIN-LIKE 3)         | and vegetative phase change (Cardon <i>et al.</i> ,                                              |
|                                           |             | BINDING PHOTEIN LIKE 0          | 1997; Wu and Poethig, 2006; Yamaguchi                                                            |
|                                           |             |                                 | et al., 2009)                                                                                    |
| C2C2-CO-like                              | At4q27310   | BBX28                           | Zinc finger (B-box type) family protein                                                          |
| G2-like                                   | At5g44190   | GLK2 (Golden2-like 2)           | GLK2 is required for normal chloroplast                                                          |
|                                           | -           |                                 | development (Fitter et al., 2002); GLK2                                                          |
|                                           |             |                                 | together with GLK1 optimize photosynthetic                                                       |
|                                           |             |                                 | capacity by integrating responses to variable                                                    |
|                                           |             |                                 | enironmental and endogenous cues (Waters                                                         |
|                                           |             |                                 | <i>et al.</i> , 2009)                                                                            |
| MADS                                      | At5g62165   | AGL42 (AGAMOUS-LIKE 42)         | AGL42 is involved in the floral transition and                                                   |
|                                           |             |                                 | RNAi-directed downregulation of AGL24                                                            |
|                                           |             |                                 | results in late flowering (Yu et al., 2002)                                                      |

# Discussion

This study, as far as is known for the first time, investigated responses to low  $CO_2$  at the transcriptome level in model plant *Arabidopsis*. Here, the observed changes of transcriptomics under low  $CO_2$  are briefly discussed, with particular reference to their potential significance for fitness of  $C_3$  plants under low  $CO_2$  and potential linkage to  $C_4$  photosynthesis evolution.

#### Low CO<sub>2</sub> reduced productivity

Arabidopsis plants grown under low  $CO_2$  had extremely small stature compared with plants grown under normal  $CO_2$  (Fig. 1). This result is in accordance with previous studies on the effect of low  $CO_2$  on plant growth (Ward, 2005). Arabidopsis grown under low  $CO_2$  has about a 7-day delay in flowering time. This has also been observed earlier (Ward and Strain, 1997) and could be interpreted as

#### Table 5. Transcript abundance of GLK-regulated genes

Reads were mapped onto the latest *Arabidopsis thaliana* Col-0 genome assembly (gene mapping) or a minimal set of coding sequences of the TAIR 9 genome release (core set mapping) using bowtie. The most upregulated genes by *GLK1* and *GLK2* induction identified by Waters *et al.* (2009) were examined and nearly all of them were downregulated by low CO<sub>2</sub>, except *COR15a* (At2g42540). Low: low CO<sub>2</sub>, 100 ppm; Nor: normal CO<sub>2</sub>, 380 ppm; rpkm, reads per kilobase per million mapped reads. CAO, chlorophyllide a oxygenase; CHLH, magnesium chelatase; COR15a, COLD-REGULATED 15A; GCN5 related, ornithine N-delta-acetyltransferase; GLK1, Golden2-like 1; GLK2, Golden2-like 2; Lhcb, light harvesting complex subunit; MRU1, mto responding up 1; PORB, NADPH:protochlorophyllide oxidoreductase B.

| Gene ID   | Protein                   | Gene mappi    | ng            |                | Core set mapping |               |                |
|-----------|---------------------------|---------------|---------------|----------------|------------------|---------------|----------------|
|           |                           | Low<br>(rpkm) | Nor<br>(rpkm) | Fold<br>change | Low<br>(rpkm)    | Nor<br>(rpkm) | Fold<br>change |
| At1g15820 | Lhcb6                     | 2153.237      | 3099.576      | 0.695          | 2472.919         | 3575.038      | 0.692          |
| At1g4446  | CAO                       | 16.090        | 45.126        | 0.357          | 18.475           | 52.075        | 0.355          |
| At1g76100 | Plastocyanin              | 132.858       | 261.423       | 0.508          | _                | -             | _              |
| At2g05070 | Lhcb2.2                   | 431.847       | 1425.637      | 0.303          | _                | -             | _              |
| At2g20570 | GLK1                      | 32.786        | 59.366        | 0.552          | 37.677           | 68.503        | 0.550          |
| At2g34430 | Lhcb1.4                   | 599.406       | 1663.045      | 0.360          | _                | _             | _              |
| At2g35260 | Expressed protein         | 74.776        | 98.821        | 0.757          | 85.888           | 114.002       | 0.753          |
| At2g39030 | GCN5 related              | 0.140         | 3.243         | 0.043          | -                | -             | -              |
| At2g42220 | Rhodanese-like            | 220.272       | 249.887       | 0.881          | 253.769          | 288.712       | 0.879          |
|           | domain-containing protein |               |               |                |                  |               |                |
| At2g42540 | COR15a                    | 193.204       | 31.607        | 6.113          | 268.502          | 47.764        | 5.621          |
| At3g08940 | Lhcb4.2                   | 326.811       | 1274.137      | 0.256          | -                | _             | -              |
| At3g27690 | Lhcb2.4                   | 136.883       | 414.191       | 0.330          | 157.608          | 478.391       | 0.329          |
| At3g56940 | Mg-Proto IX ME cyclase    | 428.161       | 770.890       | 0.555          | 491.646          | 889.102       | 0.553          |
| At4g27440 | PORB                      | 400.475       | 873.866       | 0.458          | -                | _             | _              |
| At5g13630 | CHLH                      | 456.682       | 432.350       | 1.056          | 524.401          | 498.633       | 1.052          |
| At5g35490 | MRU1                      | 7.921         | 28.980        | 0.273          | 9.095            | 33.420        | 0.272          |
| At5g44190 | GLK2                      | 5.722         | 26.922        | 0.213          | 6.570            | 31.047        | 0.212          |
| At5g54270 | Lhcb3                     | 2240.644      | 3734.380      | 0.600          | 2573.689         | 4307.756      | 0.597          |

a mechanism to allow for greater accumulation of stored reserves that could be allocated to reproduction, resulting in increased fitness under low  $CO_2$  (Sage and Coleman, 2001; Ward, 2005).

Many studies have shown that atmospheric CO<sub>2</sub> concentration negatively regulates stomatal density (Woodward, 1987; Beerling et al., 2001; Franks and Beerling, 2009; Doheny-Adams et al., 2012; Franks et al., 2012). Paleontological research has suggested that the long-term decreases in atmospheric throughout the entire evolutionary history of vascular plants led to the evolution of high densities of small stomata in order to attain the highest  $g_{cmax}$  values required to counter CO<sub>2</sub> 'starvation' (Franks and Beerling, 2009; Franks et al., 2012). Stomata also exhibit short-term adaptive responses to atmospheric CO<sub>2</sub> over much shorter timescales. For example, A. thaliana Col-0 grown at high  $CO_2$  (720 ppm) had reduced stomata density compared with those grown at ambient CO<sub>2</sub> (360 ppm) (Lake et al., 2001). In the current work, plants grown under low CO<sub>2</sub> developed leaves with higher stomatal density (over 60% increase compared to normal  $CO_2$ ; Fig. 2), suggesting that the plants developed a greater  $g_{cmax}$  to counteract the CO<sub>2</sub> limitation of photosynthesis. These results suggest that low CO<sub>2</sub> is a severe stress to  $C_3$  plants and may greatly reduce  $C_3$  plant productivity.

Responses of genes involved in  $C_4$  photosynthesis and photorespiration under low  $CO_2$ 

In  $C_4$  plants,  $CO_2$  is initially fixed by the enzyme PEPC into a C<sub>4</sub> acid and then transported to the site of Rubisco (Hatch, 1987). The only photosynthetic gene expression patterns common to all independently evolved C4 lineages are upregulation of PEPC and downregulation of Rubisco in mesophyll cells (Sinha and Kellogg, 1996; Langdale, 2011). Arabidopsis has four genes encoding PEPC, and AtPPC2 (At2g42600) is the only isoform expressed in leaves. Unlike the other three PEPCs, the expression of AtPPC2 is stable and has not been reported to be regulated by any stress (Sánchez et al., 2006; Doubnerová and Ryšlavá, 2011); however, the current work found that AtPPC2 was upregulated by low CO<sub>2</sub> (Table 1). The regulators of photosynthetic genes are also crucial to maintain C4 photosynthesis: e.g. plant PEPC activity is further regulated through reversible phosphorylation by PEPC-K (Nimmo, 2003). Transcripts encoding the  $C_4$ specific regulatory factors PEPC-K and pyruvate orthophosphate dikinase regulatory protein were upregulated as well (Table 1). However, changes in other C<sub>4</sub>-related genes were less, with fold changes of less than 2.

When grown in low  $CO_2$ , plants would experience relatively high levels of flux through the photorespiratory pathway because of the competitive reactions of Rubisco oxygenation. In this study, a trend of upregulation of the photorespiratory genes was observed in plants grown under low CO<sub>2</sub> (Table 2), although most of the genes showed a fold change of less than 2. The recent study of transcriptome analysis using C<sub>3</sub>, C<sub>3</sub>–C<sub>4</sub> intermediate, and C<sub>4</sub> species of *Flaveria* found that transcript abundances for most genes related to photorespiration in the C<sub>3</sub>–C<sub>4</sub> intermediate species *Flaveria ramosissima* were even higher than in the C<sub>3</sub> species *Flaveria robusta* (Gowik *et al.*, 2011), which is indicative of the importance of the photorespiratory pathway during the evolution of C<sub>4</sub> photosynthesis. The different subunits of glycine decarboxylase showed altered expression, although the fold changes of these subunits were about 0.9–1.3.

Overall, the data from this study suggest that expression of PEPC and PEPC-K is increased under low CO<sub>2</sub>, which most likely reflects their potential role for refixation of photorespired CO<sub>2</sub> under low CO<sub>2</sub> (Sage et al., 2012). For most of the other C<sub>4</sub> genes, although trends of upregulation were observed, the fold changes were less than 2. Although by using expression level changes of all genes under two conditions as background, this work obtained P-values much less than 0.01 for many C<sub>4</sub>-related genes, it is likely that lack of biological replicates could had potentially led to an overestimation of the reliability of statistical tests and caused problems in identifying significantly changed genes, especially when their fold changes were less than 2. Based on these, this work cannot state that low CO<sub>2</sub> induced upregulation of C<sub>4</sub> genes, except for those genes which showed fold changes over 2 (e.g. PEPC).

# Readjustment of balance between light absorption and $CO_2$ fixation under low $CO_2$

These data on chloroplast ultrastructure and transcript abundance of genes involved in chloroplast biogenesis and maintenance are consistent with the model for long-term photosynthetic regulation by GLK proteins (Waters and Langdale, 2009). When light is high and atmospheric  $CO_2$ is limiting, the rate of CO<sub>2</sub> fixation is insufficient to use all of the output of the light-harvesting reactions, resulting in an overly reduced photosynthetic electron transport. This triggers a decrease of GLK transcription (GLK1 and GLK2; Table 5). Since GLK transcription factors directly regulate a large suite of genes involved in light-harvesting and thylakoid protein complexes, especially those of PSII (Waters et al., 2009), the light-harvesting components in the thylakoid membrane LHCB2.2 (At2g05070), LHCB4.2 (At3g08940), Lhcb3 (At5g54270), Lhcb2.4 (At3g27690), and Lhcb1.4 (At2g34430) were downregulated under low CO<sub>2</sub>. In addition, the downregulation of the chlorophyllide a oxygenase gene led to the decrease of chlorophyll b synthesis. These results were consistent with the fewer and less-stacked grana observed and a higher proportion of nonstacked stromal lamellae, as observed in glk1 glk2 mutants (Fig. 3). Therefore, these observed expression changes in GLK and the genes regulated by GLK can be interpreted as reflecting the altered balance between  $\mathrm{CO}_2$  fixation and light absorption.

### Evolutionary implications of plants of to low CO2

Growing evidence suggests that all of the basic elements of  $C_4$  photosynthesis already existed in  $C_3$  plants. For example, all of the enzymes involved in  $C_4$  photosynthesis exist in  $C_3$  plants and play different roles in  $C_3$  plant metabolism (Aubry *et al.*, 2011). Some elements controlling the cell specific expression of  $C_4$ -related enzymes have been found in  $C_3$  plants (Brown *et al.*, 2011). Moreover, typical  $C_3$  plants (e.g. tobacco and *Arabidopsis*) show the characteristics of  $C_4$  photosynthesis in midveins (Hibberd and Quick, 2002; Brown *et al.*, 2010).

Can some features related to  $C_4$  photosynthesis be enhanced under some conditions in a  $C_3$  plant? This work showed that under low atmospheric CO<sub>2</sub>, *A. thaliana* Col-0 adjusted a series of biological processes, especially the upregulation of PEPC and PEPC-K gene expression, and also the altered expression of some transcription factors related to photosynthesis development, and the downregulation of light-harvesting and thylakoid protein complexes. Although this study also observed that the majority of the other  $C_4$ cycle genes were upregulated under low CO<sub>2</sub> in *Arabidopsis*, their fold changes were less than 2 and therefore no firm statements regarding their changes can be made.

Experiments with more biological replicates and *Arabidopsis* accessions are still needed to firmly conclude whether low  $CO_2$  can induce upregulation of other  $C_4$ -related genes. Therefore, the results from this paper do not support a scenario where low  $CO_2$  acts as a signal to induce  $C_4$  biochemical features in  $C_3$  plants. It is most likely that the upregulation of PEPC and PEPC-K might be a mechanism that  $C_3$  plants used to refix photorespired and respired  $CO_2$  and also to recapture the released ammonium from photorespiration and hence increase the competitive advantages under low  $CO_2$  conditions.

# Supplementary material

Supplementary data are available at JXB online.

- Supplementary Fig. S1. Measurement of stomatal density. Supplementary Table S1. Gene mapping results.
- Supplementary Table S2. Core-set gene mapping results.

Supplementary Table S3. Transcript abundance of  $C_4$  cycle genes and  $C_4$ -related transporters.

Supplementary Table S4. Transcript abundance of photorespiration genes.

Supplementary Table S5. Transcript abundance of genes related to chloroplast biogenesis and maintenance.

Supplementary Table S6. The 20 most-upregulated genes following GLK2 induction.

Supplementary Table S7. Transcript abundance of DNA-repair genes.

Supplementary Table S8. Transcript abundance of photosynthesis genes.

Supplementary Table S9. Transcript abundance of Calvin Benson cycle genes.

Supplementary Table S10. Transcript abundance of ABA-metabolism genes.

Supplementary Table S11. Transcript abundance of auxinmetabolism genes.

#### Acknowledgements

The authors gratefully acknowledge Prof. Julian Hibberd and Paul Quick for his comments on earlier draft of this paper. The funding for the authors' research has been provided by the Bill and Melinda Gates Foundation (grant no. OPP1014417), the Ministry of Science and Technology of China (grant no. 2011DFA31070), the National Natural Science Foundation of China (grant no. 31200267), and the Young Talent Frontier Program of Shanghai Institutes for Biology Sciences/Chinese Academy of Sciences (grant no. 09Y1C11501).

### References

**Ainsworth EA, Long SP.** 2005. What have we learned from 15 years of free-air  $CO_2$  enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. *New Phytologist* **165**, 351–371.

**Albertsson P-Å.** 1995. The structure and function of the chloroplast photosynthetic membrane — a model for the domain organization. *Photosynthesis Research* **46**, 141–149.

**Al Mamun AAM, Lombardo M-J, Shee C, et al**. 2012. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. *Science* **338**, 1344–1348.

Aubry S, Brown NJ, Hibberd JM. 2011. The role of proteins in  $C_3$  plants prior to their recruitment into the  $C_4$  pathway. *Journal of Experimental Botany* **62**, 3049–3059.

**Bailey S, Walters RG, Jansson S, Horton P.** 2001. Acclimation of *Arabidopsis thaliana* to the light environment: the existence of separate low light and high light responses. *Planta* **213**, 794–801.

**Bauwe H** 2011. Photorespiration: the bridge to  $C_4$  photosynthesis. In: AS Raghavendra, RF Sage, eds,  $C_4$  photosynthesis and related CO2 concentrating mechanisms. Dordrecht, The Netherlands: Springer. pp 81–108.

Beerling DJ, Osborne CP, Chaloner WG. 2001. Evolution of leaf-form in land plants linked to atmospheric  $CO_2$  decline in the Late Palaeozoic era. *Nature* **410**, 352–354.

**Benjamini Y, Hochberg Y.** 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society* **57**, 289–300.

**Bi Y-M, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S.** 2005. Genetic analysis of *Arabidopsis* GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. *The Plant Journal* **44,** 680–692.

Bläsing OE, Gibon Y, Gunther M, et al. 2005. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in *Arabidopsis*. *The Plant Cell* **17**, 3257–3281.

**Bräutigam A, Kajala K, Wullenweber J, et al.** 2011. An mRNA blueprint for  $C_4$  photosynthesis derived from comparative transcriptomics of closely related  $C_3$  and  $C_4$  species. *Plant Physiology* **155,** 142–156.

Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM. 2011. Independent and parallel recruitment of preexisting mechanisms underlying  $C_4$  photosynthesis. *Science* **331**, 1436–1439.

**Brown NJ, Palmer BG, Stanley S, et al.** 2010.  $C_4$  acid decarboxylases required for  $C_4$  photosynthesis are active in the mid-vein of the  $C_3$  species *Arabidopsis thaliana*, and are important in sugar and amino acid metabolism. *The Plant Journal* **61,** 122–133.

**Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P.** 1997. Functional analysis of the *Arabidopsis thaliana* SBP-box gene *SPL3*, a novel gene involved in the floral transition. *The Plant Journal* **12**, 367–377. Chen K-M, Holmström M, Raksajit W, Suorsa M, Piippo M, Aro E-M. 2010. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in *Arabidopsis thaliana*. *BMC Plant Biology* **10**, 43.

Chiang Y-H, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. 2012. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in *Arabidopsis*. *Plant Physiology* **160**, 332–348.

**Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE.** 2005. Inhibition of mutation and combating the evolution of antibiotic resistance. *PLoS Biology* **3**, e176.

**Davletova S, Schlauch K, Coutu J, Mittler R.** 2005. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in *Arabidopsis*. *Plant Physiology* **139**, 847–856.

**Dekker JP, Boekema EJ.** 2005. Supramolecular organization of thylakoid membrane proteins in green plants. *Biochimica et Biophysica Acta* **1706**, 12–39.

**Dippery JK, Tissue DT, Thomas RB, Strain BR.** 1995. Effects of low and elevated  $CO_2$  on  $C_3$  and  $C_4$  annuals. I. Growth and biomass allocation. *Oecologia* **101,** 13–20.

**Doheny-Adams T, Hunt L, Franks PJ, Beerling DJ, Gray JE.** 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. *Philosophical Transactions of the Royal Society B* **367**, 547–555.

**Doubnerová V, Ryšlavá H.** 2011. What can enzymes of  $C_4$  photosynthesis do for  $C_3$  plants under stress? *Plant Science* **180**, 575–583.

Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plücken H, Klaff P, Stein B, Bechtold N, Westhoff P. 2001. The nucleusencoded *HCF107* gene of *Arabidopsis* provides a link between intercistronic RNA processing and the accumulation of translationcompetent *psbH* transcripts in chloroplasts. *The Plant Cell* **13**, 2127–2141.

**Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA.** 2002. *GLK* gene pairs regulate chloroplast development in diverse plant species. *The Plant Journal* **31,** 713–727.

**Franks PJ, Beerling DJ.** 2009. Maximum leaf conductance driven by CO<sub>2</sub> effects on stomatal size and density over geologic time. *Proceedings of the National Academy of Sciences, USA* **106,** 10343–10347.

**Franks PJ, Leitch IJ, Ruszala EM, Hetherington AM, Beerling DJ.** 2012. Physiological framework for adaptation of stomata to CO<sub>2</sub> from glacial to future concentrations. *Philosophical Transactions of the Royal Society B* **367**, 537–546.

**Gerhart LM, Ward JK.** 2010. Plant responses to low [CO<sub>2</sub>] of the past. *New Phytologist* **188**, 674–695.

**Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P.** 2011. Evolution of  $C_4$  photosynthesis in the genus *Flaveria*: how many and which genes does it take to make  $C_4$ ? *The Plant Cell* **23**, 2087–2105.

Hammani K, Cook WB, Barkan A. 2012. RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. *Proceedings of the National Academy of Sciences, USA* **109**, 5651–5656.

**Hatch MD.** 1987.  $C_4$  photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochimica et Biophysica Acta* **895,** 81–106.

**Hibberd JM, Quick WP.** 2002. Characteristics of  $C_4$  photosynthesis in stems and petioles of  $C_3$  flowering plants. *Nature* **415**, 451–454.

Hudson D, Guevara D, Yaish MW, Hannam C, Long N, Clarke JD, Bi Y-M, Rothstein SJ. 2011. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (*GLU1/Fd-GOGAT*) expression in *Arabidopsis*. *PLoS ONE* **6**, e26765.

Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS. 2008. *Arabidopsis* transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. *Plant Physiology* **148**, 2050–2058.

Lake JA, Quick WP, Beerling DJ, Woodward FI. 2001. Plant development: signals from mature to new leaves. *Nature* **411**, 154.

**Langdale JA** 2011.  $C_4$  cycles: past, present, and future research on  $C_4$  photosynthesis. *The Plant Cell* **23**, 3879–3892.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biology* **10**, R25.

**Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR.** 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO<sub>2</sub> concentrations. *Science* **312**, 1918–1921.

Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE their future. *Annual Review of Plant Biology* **55**, 591–628.

Mara CD, Irish VF. 2008. Two GATA transcription factors are downstream effectors of floral homeotic gene action in *Arabidopsis*. *Plant Physiology* **147**, 707–718.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods* **5**, 621–628.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. *Science* **320**, 1344–1349.

Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T. 2007. Characterization of a unique GATA family gene that responds to both light and cytokinin in *Arabidopsis thaliana*. *Bioscience, Biotechnology and Biochemistry* **71**, 1557–1560.

**Nimmo HG** 2003. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. *Archives of Biochemistry and Biophysics* **414**, 189–196.

**Pauwels L, Goossens A.** 2008. Fine-tuning of early events in the jasmonate response. *Plant Signaling and Behavior* **3**, 846–847.

**Richter R, Behringer C, Müller IK, Schwechheimer C.** 2010. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. *Genes and Development* **24**, 2093–2104.

**Sage RF, Coleman JR.** 2001. Effects of low atmospheric  $CO_2$  on plants: more than a thing of the past. *Trends in Plant Science* **6**, 18–24.

Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and evolution of C4 photosynthesis. *Annual Review of Plant Biologist* 63, 19–47.

**Sakamoto W, Miyagishima S-Y, Jarvis P.** 2008. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. *The Arabidopsis Book* **6**, e0110.

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Functional analysis of an *Arabidopsis* transcription tactor, DREB2A, involved in drought-responsive gene expression. *The Plant Cell* **18**, 1292–1309.

**Sánchez R, Flores A, Cejudo FJ.** 2006. *Arabidopsis* phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. *Planta* **223**, 901–909.

Sane AP, Stein B, Westhoff P. 2005. The nuclear gene *HCF107* encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing

protein involved in expression of the plastidial *psbH* gene in *Arabidopsis*. *The Plant Journal* **42**, 720–730.

**Sharma RK, Griffing B, Scholl RL.** 1979. Variations among races of *Arabidopsis thaliana* (L.) Heynh for survival in limited carbon dioxide. *Theoretical Applied Genetics* **54**, 11–15.

Shee C, Gibson JL, Darrow MC, Gonzalez C, Rosenberg SM. 2011. Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in *Escherichia coli*. *Proceedings of the National Academy of Sciences, USA* **108**, 13659–13664.

Sinha NR, Kellogg EA. 1996. Parallelism and diversity in multiple origins of  $C_4$  photosynthesis in the grass family. *American Journal of Botany* **83**, 1458–1470.

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. *Nature* **408**, 796–815.

**Ward, JK.** 2005. Evolution and growth of plants in a low  $CO_2$  world. In: JR Ehleringer, TE Cerling, MD Dearing, eds, *A history of atmospheric CO2 and its effects on plants, animals, and ecosystems*. New York: Springer. pp 232–257.

**Ward JK, Antonovics J, Thomas RB, Strain BR.** 2000. Is atmospheric CO<sub>2</sub> a selective agent on model C<sub>3</sub> annuals? *Oecologia* **123,** 330–341.

**Ward JK, Kelly JK.** 2004. Scaling up evolutionary responses to elevated CO<sub>2</sub> lessons from *Arabidopsis*. *Ecology Letters* **7**, 427–440.

**Ward JK, Strain BR.** 1997. Effects of low and elevated CO<sub>2</sub> partial pressure on growth and reproduction of *Arabidopsis thaliana* from different elevations. *Plant, Cell and Environment* **20**, 254–260.

Waters MT, Langdale JA. 2009. The making of a chloroplast. *EMBO Journal* 28, 2861–2873.

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA. 2009. GLK transcription factors coordinate expression of the photosynthetic apparatus in *Arabidopsis*. *The Plant Cell* **21**, 1109–1128.

**Woodward FI.** 1987. Stomatal numbers are sensitive to increases in CO<sub>2</sub> from pre-industrial levels. *Nature* **327**, 617–618.

**Wu G, Poethig RS.** 2006. Temporal regulation of shoot development in *Arabidopsis thaliana* by *miR156* and its target *SPL3*. *Development* **133**, 3539–3547.

Yamaguchi A, Wu M-F, Yang L, Wu G, Poethig RS, Wagner D. 2009. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of *LEAFY*, *FRUITFULL*, and *APETALA1*. *Developmental Cell* **17**, 268–278.

Yamasato A, Nagata N, Tanaka R, Tanaka A. 2005. The N-terminal domain of chlorophyllide *a* oxygenase confers protein instability in response to chlorophyll *b* accumulation in *Arabidopsis*. *The Plant Cell* **17**, 1585–1597.

Yu H, Xu Y, Tan EL, Kumar PP. 2002. AGAMOUS-LIKE 24, a dosagedependent mediator of the flowering signals. *Proceedings of the National Academy of Sciences, USA* **99**, 16336–16341.