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ABSTRACT

CFM-ID is a web server supporting three tasks asso-
ciated with the interpretation of tandem mass spec-
tra (MS/MS) for the purpose of automated metabolite
identification: annotation of the peaks in a spectrum
for a known chemical structure; prediction of spectra
for a given chemical structure and putative metabo-
lite identification—a predicted ranking of possible
candidate structures for a target spectrum. The algo-
rithms used for these tasks are based on Competi-
tive Fragmentation Modeling (CFM), a recently intro-
duced probabilistic generative model for the MS/MS
fragmentation process that uses machine learning
techniques to learn its parameters from data. These
algorithms have been extensively tested on multiple
datasets and have been shown to out-perform exist-
ing methods such as MetFrag and Fingerld. This web
server provides a simple interface for using these
algorithms and a graphical display of the resulting
annotations, spectra and structures. CFM-ID is made
freely available at http://cfmid.wishartlab.com.

INTRODUCTION

Metabolomics is a field of omics science that characterizes
metabolites using high throughput technologies. Metabo-
lites are all the low molecular weight (<1500 Da) chemi-
cals found in cells, tissues and biofluids (1,2). Electrospray
tandem mass spectrometry (ESI-MS/MS) is a widely used
technique in untargeted metabolomics experiments (3-6).
Manual interpretation of MS/MS spectra to aid metabolite
identification is known to be both time-consuming and te-
dious. Automating this process promises to offer substantial
time and cost benefits.

To this end, we have released CFM-ID, a web server that
provides three utilities that address important subtasks of
the metabolite identification problem: MS/MS spectrum
prediction, MS/MS peak annotation and putative metabo-

lite identification (7). These utilities, which will be further
described below, present web-based front-ends to the func-
tionality provided by the Single Energy Competitive Frag-
mentation Modeling (SE-CFM) technique introduced in
(8).

We envision that this functionality could be particularly
useful to experimentalists, as it will help them perform
some of the more time-consuming tasks in the interpreta-
tion of mass spectrometry data. For example, one possible
use is to help analyze an MS/MS spectrum for an unknown
compound. Users would first produce a list of candidate
molecules, e.g. by querying a public chemical repository for
molecules of the correct mass. They might also be able to
refine that list by incorporating other analytical informa-
tion (e.g. information from NMR spectra), or knowledge
about where the molecule was found (e.g. in human blood
serum). Once they have a suitable list, they could then use
our Compound Identification tool to rank those candidates
to produce a shorter list. They might also use our Spectrum
Prediction tool to examine the predicted spectrum for each
of those candidates to manually verify the match, or use our
Peak Assignment tool to investigate how the peaks in the
measured spectrum could have formed from each candidate.
This might help them to direct their subsequent experimen-
tation to further verify the identity of the metabolite of in-
terest.

WEB SERVER

The CFM-ID web server consists of three separate utilities
as described in the following sections and summarized in
Figure 1. All three make use of the same two SE-CFM mod-
els, trained using metabolite data from the Metlin database
(9), as described in (8). The first model is used for all positive
ionization mode computations and employs the metabolite
data described in (8). This encompasses spectra for more
than 1200 molecules, measured in positive ionization mode
on an Agilent 6510 Q-TOF device at each of 10V (low),
20V (medium) and 40V (high) collision energies. The sec-
ond model is used for all negative ionization mode compu-
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Figure 1. Summary of the three tasks provided by the CFM-ID web server: Spectrum Prediction, Peak Assignment and Compound Identification. Exam-
ples of possible inputs and the corresponding graphical output are shown for each.

tations, and has been trained using spectra for more than
800 metabolites from Metlin, also measured on an Agilent
6510 Q-TOF device at the above collision energies, but us-
ing negative ionization mode. Both models enumerate possi-
ble MS/MS fragmentations for a given molecule and assign
probabilities to competing fragmentations according to the
trained model parameters. The models are trained on gen-
eral metabolite data, and are not specific to any particular
class of compounds. Note that the peptide models described
in (8) are not accessible via this server.

CFM-ID’s web interface back-end was developed us-
ing the latest version of the Ruby on Rails framework.
It uses MySQL and Redis for data storage, along with
ChemAxon’s JChem Web Services (http://www.chemaxon.
com) for generating structure images. The front end uses

standard HTML and Javascript technologies to input
queries and display results, with the D3.js library for data
visualization. When a query is submitted, it is put in a job
queue, and the user is directed to a results page that updates
automatically to notify the user of the running status. Jobs
are run in the background using Sidekiq, which can process
multiple jobs at once.

The server does not require a login to access; instead the
user’s results page is assigned a unique and private random
ID, allowing the user to bookmark the results and access
them later. These results are available for one month, after
which they are removed from the server.

Runtime is dependent on the size and complexity of
the user’s input. For average-sized molecules (50 atoms or
less), spectra prediction and peak assignment take under a
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minute, while larger input molecules may take a couple of
minutes to process. Compound identification takes several
minutes or more, depending on the number and size of the
candidate compounds.

Task 1: Spectrum Prediction

This task predicts a low (10V), medium (20V) and high
(40V) collision energy MS/MS spectrum for a given chemi-
cal structure. The input chemical structure can be provided
in SMILES (10) or InChl format (11), and should be a neu-
tral molecule. A proton will then be added or removed by
the program to form a [M+H]+ or [M—H]— precursor ion,
according to whether the user has specified positive or neg-
ative mode ionization. The output provides the predicted
spectra, and is both displayed graphically and made avail-
able in peak list format for easy download. The user can
also mouse-over each of the predicted peaks to see an an-
notation of the fragment that is predicted to have generated
that peak.

The algorithm enumerates the fragmentation possibilities
in a breadth-first manner, computing the probability of each
fragmentation as it goes, using the learned SE-CFM model.
It then only recurs on fragments with sufficiently high prob-
ability of occurring, to produce further derivatives. Once the
possibilities have been generated, the algorithm computes
the predicted spectrum; it uses the marginal peak probabil-
ities to determine the peak intensities, and presents only the
top 80% of the total intensity sum, within the limits of 5
and 30 peaks, as described in a more detailed manuscript
covering the CFM algorithm (8).

Common positive and negative mode adducts are also
supported. The selection of an adduct other than M+H
or M—H results in the addition of an extra peak to each
spectrum at the precursor adduct mass. It is assumed that
adducts will only be present for the precursor ion and not
for any of the daughter ions. Although this is not always
true, it is often the case and is an approach that has been
taken elsewhere, e.g. in (12,13). We cannot use the CFM
model to predict intensity values for these peaks, so they
are displayed with the same intensity as the [M+H]+ (or
[M—H]—) precursor ion.

Task 2: Peak Assignment

Given one or more input spectra in peak list format and a
chemical structure in SMILES or InChl format, this util-
ity assigns putative fragment annotations to the peaks in
each input MS/MS spectrum. To accomplish this, CFM-1D
enumerates all possible fragments for the input structure, as
described elsewhere (8), and assigns all fragments within a
specified mass tolerance of each peak. Multiple fragments
may be assigned to each peak, in which case they are or-
dered from most to least likely according to the probabili-
ties given by the trained SE-CFM model. The input spectra
are intended to be three spectra for the same compound,
measured at low (10V), medium (20V) and high (40V) colli-
sion energies. However if only a subset of those spectra are
available, the system will still accept the input, and anno-
tate those spectra. Common adducts can also be assigned,
however as in Task 1 these are assumed to only apply for the

precursor ion and not for any of the other fragments. The
other fragments are always [M+H]+ or [M—H]— according
to the selected ionization mode.

A graphical depiction of each spectrum is provided in the
results, with the most likely assigned fragment appearing
when the user hovers his/her mouse over each peak. An ex-
ample of this functionality is shown in Figure 1. For peaks
with more than one possible fragment, an additional note
appears stating the number of possible fragments. Clicking
on the peak then displays the possibilities. A score is pro-
vided for each possibility, indicating the part of the peak in-
tensity that is explained by that fragment. The annotations
are also provided in a text file for download, with assigned
fragment IDs listed after each peak in the input spectra. The
fragments corresponding to those IDs are then listed under-
neath in SMILES format.

This utility also produces a pruned version of the de-
duced fragmentation graph. This comprises all fragments
that form possible peak annotations, presented as a list of
transitions between fragments, showing the IDs of the par-
ent and child fragments and the neutral loss required to pro-
duce the child from the parent. This list is included in the
text file, and printed on the results screen.

Task 3: Compound Identification

This task allows users to perform putative metabolite iden-
tification for one or more input MS/MS spectra (in peak
list format). The query MS/MS spectra can either be scored
against a user-selected set of candidate structures, which
could be input as a file from the user, or the user could se-
lect the MS/MS spectra calculated for the complete Hu-
man Metabolome Database (14) (120 000 MS/MS spec-
tra calculated from the 40 000 compounds), or equivalently
for compounds in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (15). For the database searches, the user
must specify the mass of the precursor peak, the tolerance
on this precursor mass and the adducts to include in the
search. The list of resulting candidate structures is filtered
to contain only those within the specified mass range, allow-
ing for the specified adducts.

For customized queries, the user must supply the can-
didate structures in a line-separated list containing refer-
ence IDs and SMILES strings. This allows the user to re-
fine the list using any prior knowledge about the compound.
A maximum of 100 candidates are allowed in the list. For
longer candidate lists, it is recommended that the user run
the command line utilities available at http://sourceforge.
net/projects/cfm-id/ on his/her local machine.

As in Task 2, the input spectra are intended to be three
MS/MS spectra for the same compound measured at low
(10V), medium (20V) and high (40V) collision energies, us-
ing either positive or negative ionization mode. If only a
subset of the input spectra are available, the scores will be
produced using only the provided spectra. The default score
is the Jaccard score averaged over collision energies as used
elsewhere (8).

The mass tolerances used in peak matching can also be
set, according to the known mass accuracy of the MS in-
strument used to measure the target spectrum.
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Our system returns a list of candidates in ranked order,
along with their respective scores, IDs and SMILES strings.
This is displayed graphically as shown in Figure 1 and is also
provided as a list for download. The user can also configure
the number of top-scoring results that are reported.

RELATED WORK

The Human Metabalome Database (14), Metlin (4) and
MassBank (16) all have search functionality that query
these databases for likely molecules matching an input
MS/MS spectrum. The key differences between these
searches and the functionality we provide (Task 3) is that
they only compare the input spectrum against stored ref-
erence spectra for each compound. This restricts the pos-
sible results to the small subset of molecules whose spec-
tra appear in these databases. In contrast, we predict the
MS/MS spectra for the candidate compounds computa-
tionally, which allows us to match against any compound
in a queried database, even if that database does not con-
tain the spectrum.

A number of web servers are available that allow MS/MS
spectrum searches against computationally predicted spec-
tra for molecules from specific chemical classes, e.g. proteins
(17-19) and lipids (20). However, unlike our server, these
servers are not capable of predicting spectra for more gen-
eral classes of metabolites.

Programs directed towards MS/MS-based identification
of such metabolites include MetFrag (13) and Fingerld (21),
both of which have web server interfaces to their meth-
ods. Similar to our Compound Identification Utility, these
servers provide utilities for putative metabolite identifica-
tion using predictive algorithms. The main difference be-
tween our utility and theirs is the underlying algorithms
used to perform the identification and the overall perfor-
mance (see (8) and below). Both MetFrag and Fingerld
search for database entries within a provided mass range
in public chemical databases, e.g. PubChem (22) or KEGG
(15). MetFrag then uses a combinatorial enumeration of
possible fragments combined with several peak scoring
heuristics to determine likely candidates for a given input
spectrum. Fingerld uses support vector machines to predict
a chemical fingerprint for a given input spectrum, and then
ranks candidates by how closely they match that predicted
fingerprint. In contrast, our method uses a trained, prob-
abilistic generative model of the fragmentation process to
generate predicted spectra for an input list of candidates.
It then ranks the candidates in terms of how closely the
predicted spectra match the provided input spectrum. Re-
sults of experimental comparisons between our method and
these two methods are described in the ‘Experimental Vali-
dation’ section below.

Metlin provides a visual display of fragment annotations
for the peaks in its MS/MS spectra. Unlike our Peak As-
signment utility, it does not allow users to provide their own
spectra for annotation. FiD (23) produces fragment anno-
tations for a user-provided spectrum using a fragment enu-
meration method similar to ours, but an alternative means
for determining which fragments are more likely. MetFrag
provides a spectrum and annotation viewer, but the user
must provide the annotations.
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EXPERIMENTAL VALIDATION

As described elsewhere (8), we performed ten-fold cross val-
idation for the positive mode spectrum prediction and com-
pound identification tasks, using 1491 non-peptide metabo-
lites from Metlin.

In the spectrum prediction task, our methods predicted
the peak locations with greater than 44% recall and 25%
precision for non-peptide metabolites. Weighting by peak
intensity, this increases to 60% recall (The sum of the inten-
sities of the measured peaks whose corresponding predicted
peak was 60% of the total sum of measured intensities) and
49% precision (The sum of the intensities of the predicted
peaks whose corresponding measured peak was 49% of the
total sum of predicted intensities). These values are aver-
aged across energy levels, however the lower energy levels
are generally better predicted with 77% and 68% intensity-
weighted recall and precision, respectively. The testing also
showed that the intensity values of matched pairs of peaks
in the predicted and measured spectra had a Pearson cor-
relation coefficient of 0.7, 0.6 and 0.45 for the low, medium
and high energy spectra, respectively, indicating a positive
though imperfect correlation in the intensity values.

In the compound identification tasks, we considered two
methods for obtaining candidate lists. The first were pro-
duced by querying KEGG (15) for molecules within 0.5 Da
of the known mass of the metabolite. In the second test case,
the candidate lists were produced by querying PubChem
(22) for molecules within 5 ppm of the metabolite mass.
The results are summarized in Table 1. The CFM-ID perfor-
mance is substantially higher than both MetFrag (13) and
Fingerld (21) for all data sets tested, when querying both
KEGG and PubChem. When querying against KEGG, it
ranked the correct metabolite first in over 75% of cases,
and ranked it in the top five in more than 95% of cases.
When querying against PubChem, which contains several
orders of magnitude more compounds, identifying the cor-
rect compound is more difficult. The correct structure was
ranked first in 10% of cases and ranked in the top 10 in
over 40% of cases. Although the exact structure was not of-
ten ranked highest, the top-ranked compound was found
to have the correct molecular formula in more than 88% of
cases.

Two additional datasets were also used to explore the per-
formance of our methods. Both were tested as described in
(8) using the SE-CFM trained model from the Metlin set,
as used on this server.

The first was a set of 192 metabolites from the Washing-
ton State University submission to MassBank (16). These
were measured on an Agilent Q-TOF device similar to the
one used to collect the Metlin data, but at a different lo-
cation. As reported in (8), results for the spectrum predic-
tion performance of this set showed only small degradation
when compared to those of the cross-fold set. The intensity
weighted recall was still over 60% and the intensity weighted
precision was over 55%. The metabolite identification per-
formance was fairly comparable. When querying KEGG,
the correct metabolite was ranked first in over 72% of cases,
and ranked in the top five in more than 97%.

The second set used 500 molecules from the Human
Metabalome database (14), randomly selected from those
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Table 1. Summary of Compound Identification results

Querying KEGG (# cand. ~ 22)

Querying PubChem (# cand. ~ 1025)

Data Set R=1 R<5 R=1 R<10 MF = 1
CFM-ID Metlin (+) 76.5% 96.2% 10.9% 40.7% 88.9%
MassBank 72.8% 97.5% 7.3% 46.9% 93.2%
HMDB 23.1% 58.1% 4.1% 24.9% 88.4%
Metlin (—) 72.1% 96.5% 13.4% 51.4% 93.8%
MetFrag Metlin (+) 51.9% 89.9% 5.7% 30.5% 82.6%
MassBank 48.1% 88.9% 4.7% 20.8% 85.4%
HMDB 13.3% 43.6% 2.6% 13.4% 88.0%
Metlin () 44.7% 80.7% 7.5% 28.8% 81.8%
FingerID Metlin (+) 8.7% 36.1% 1.3% 9.3% 67.7%
MassBank 14.8% 37.0% 0.5% 5.7% 71.9%

# cand. ~ N : the median number of molecules in the candidate list.
R : ranking of the correct molecule in the candidate list.
MEF : ranking of the correct molecular formula.

with MS/MS data available. However, in this case the spec-
tra were collected using a different mass spectrometer, a
Quattro QqQ that has much poorer mass accuracy and a
medium collision energy of 25V instead of 30V. Here the
performance dropped, ranking the correct structure first in
only 23.1% of cases when querying KEGG, and in the top
51n 58.1%. For PubChem, it was only able to rank the com-
pound in the top 10 in 24.5% of cases, however, it was still
able to identify the correct molecular formula in 88.4% of
cases; and still outperformed MetFrag, which ranked the
correct structure in the top 10 in only 14.5% of cases.

The negative ionization model was evaluated using 10-
fold cross validation on a set of 976 molecules from Metlin.
These molecules were selected randomly from the non-
peptide metabolites in Metlin for which negative-mode
spectra were available, discarding those with a molecu-
lar weight greater than 1000 Da. In the spectrum predic-
tion task, the recall results were lower than in the positive
mode testing, scoring 23% and 50% for the non-weighted
and weighted measures, respectively. However the precision
values were comparable at 30% and 50% (non-weighted,
weighted). The lowest energy level was again better pre-
dicted scoring 75% for both the intensity-weighted recall
and precision.

In the identification task (see Table 1), the performance
for the negative ionization model was comparable with that
of the positive model; and again outperformed MetFrag in
all tests. When querying against KEGG our method ranked
the correct metabolite first in over 72% of cases and in the
top 5 in over 96%.

Compound lists and full results for all tests are available
in the Data section of the CFM-ID website.

CONCLUSION

The CFM-ID web server provides a suite of tools intended
to assist experimentalists in the interpretation of tandem
mass spectrometry data. The server provides a user friendly
web interface to the functionality in the CFM-ID soft-
ware package, with graphical visualizations of molecules
and mass spectra. This functionality includes spectrum pre-
diction, peak assignment and putative compound identi-
fication. The performance has been benchmarked in cross
validation testing on a large molecule set, and further val-

idated using two additional datasets from other laborato-
ries. It outperforms existing state-of-the-art methods, and
has attained a level that could be useful to experimentalists
performing metabolomics experiments.
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