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ABSTRACT

The formation of amyloid aggregates upon protein
misfolding is related to several devastating degen-
erative diseases. The propensities of different pro-
tein sequences to aggregate into amyloids, how they
are enhanced by pathogenic mutations, the presence
of aggregation hot spots stabilizing pathological in-
teractions, the establishing of cross-amyloid interac-
tions between co-aggregating proteins, all rely at the
molecular level on the stability of the amyloid cross-
beta structure. Our redesigned server, PASTA 2.0,
provides a versatile platform where all of these dif-
ferent features can be easily predicted on a genomic
scale given input sequences. The server provides
other pieces of information, such as intrinsic disor-
der and secondary structure predictions, that com-
plement the aggregation data. The PASTA 2.0 energy
function evaluates the stability of putative cross-beta
pairings between different sequence stretches. It was
re-derived on a larger dataset of globular protein do-
mains. The resulting algorithm was benchmarked on
comprehensive peptide and protein test sets, lead-
ing to improved, state-of-the-art results with more
amyloid forming regions correctly detected at high
specificity. The PASTA 2.0 server can be accessed at
http://protein.bio.unipd.it/pasta2/.

INTRODUCTION

A broad range of human diseases arise from the failure of a
specific peptide or protein to adopt, or remain in, its native
functional conformational state. These pathological condi-
tions are generally referred to as protein misfolding diseases
(1). In many cases, misfolding of the wild type protein is as-
sociated with a late disease onset, whereas pathogenic fa-
milial variants, often single mutants, cause an early onset
and more severe symptoms. The largest group of misfold-
ing disease is associated with the conversion from a solu-
ble functional form to highly organized fibrillar aggregates,

generally described as amyloid fibrils. One hallmark of the
amyloid structure is a specific supramolecular architecture
called cross-beta structure, held together by hydrogen bonds
extending repeatedly along the fibril axis. In recent years,
it has been increasingly recognized that transient prefib-
rillar oligomeric species are in most cases responsible for
cell toxicity (2). Toxic oligomers, however, often exhibit a
cross-beta structure as well. Cross-amyloid interactions at
a molecular level may also play a critical role in protein
misfolding diseases, as evidenced by the co-aggregation of
different disease-related proteins into heteromeric oligomer
structures (3). Similarly, the inability of two homologous
proteins to oligomerize together was hypothesized to be the
molecular basis of the species barrier phenomenon, in the
context of both mammals and yeast prions (4).

Amyloid and toxic oligomer formation is not restricted
to those polypeptide chains that have recognized links to
diseases. Several other proteins have been found to form
both fibrillar and toxic oligomeric aggregates (5). This find-
ing has led to the idea that the ability to form the cross-
beta structure is an inherent property of polypeptide chains
(6). The algorithm PASTA exploited this observation by as-
suming that the same universal mechanism is responsible
for beta-sheet formation both in globular proteins and in
cross-beta aggregates (7). PASTA predicts which interact-
ing portions of a given protein are stabilizing the cross-beta
structure by using an energy function. This is based on the
propensities of two residues to be found within a beta-sheet
facing one another on neighboring strands, as determined
from a dataset of globular proteins of known native struc-
ture. Further proof of the effectiveness of this energy-based
approach was shown in Cossio et al. and Sarti et al. (8,9),
where a generalization of the PASTA energy function was
used in the context of protein structure prediction to suc-
cessfully discriminate native conformations among sets of
alternative decoys. For PASTA, the predicted aggregation
propensities rely on the assumption that the soluble form is
natively unstructured. Predictions therefore need to be care-
fully gauged in the case of natively folded globular proteins.
PASTA can discriminate the orientation between �-strands,
either parallel or antiparallel. This distinction is rare among
other methods, with (10) an early exception. Moreover, the
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algorithm can be quite easily extended to the case of two dif-
ferent co-aggregating sequences. The original PASTA server
has been running since March 2007 and has received over
21 700 hits from over 60 different countries. In 2013 the web
server has been used over 3500 times by over 520 different
IP addresses. PASTA has become a milestone for bench-
marking newer aggregation methods and has been sold to
pharmaceutical companies. The new version PASTA 2.0 we
present here extends the previous predictor in several ways.
First of all, the underlying statistical potentials have been
re-derived on a larger dataset of globular protein domains
to improve accuracy, allowing a finer estimation of the ex-
pected true and false positive rate. Benchmarking was per-
formed on a comprehensive dataset of 424 peptides with
experimental information about their aggregating behavior
(11–14) and on a second set of 33 proteins with experimen-
tal information about the location of aggregation hot spots
(15). PASTA 2.0 improves performance over the previous
version and compares very well with other state-of-the-art
methods. For peptide discrimination, at a false positive rate
of <5% it has a sensitivity of 40%, making it more specific
than all other tested methods. When detecting the location
of aggregating regions, at a false positive rate <10% it can
recover regions with 30% sensitivity. Adjusting the energy
threshold can increase sensitivity at the expense of speci-
ficity. The web server has also undergone a re-design, en-
hancing the output information with new graphs and stats
(e.g. intrinsic disorder, secondary structure) and allowing
the simultaneous execution of entire genomes in a single
job. The energy cut-off for detection of cross-beta stretches
and the resulting sensitivity and specificity can be directly
manipulated by the user. Finally, it is now possible to cal-
culate the difference in aggregation propensity after point-
mutations and between different protein pairs, allowing the
analysis of pathogenic mutations and of cross-amyloid in-
teractions between protein heterodimers, as suggested e.g.
by (16) and (17), respectively. To assess the effect of point-
mutations on the aggregation profile, a free energy profile is
now present in output, together with the probability profile
already present in the old server.

MATERIALS AND METHODS

PASTA 2.0 predicts amyloid fibril regions from protein se-
quences using a pairwise energy potential at its core. In this
version of the server we included methods for secondary
structure and intrinsic disorder, which provide additional
reinforcement to the fibril assignment. Briefly, a new ma-
chine learning algorithm was constructed to detect sec-
ondary structure while our previously developed disorder
predictor ESpritz (18) was also included.

Energy pairing potential

The previous version of PASTA derived an energy func-
tion from the hydrogen bonding statistics on �-strands (7).
Briefly, given a pair of residues i and j, whether they formed
a parallel or antiparallel �-bridge within the DSSP algo-
rithm (19), modified with a stricter threshold for hydro-
gen bond detection, was used to define potentials for pair
(i,j). Thus, the aggregation potential of (i,j) can be related

to its energy. The energy parameters were re-calibrated for
PASTA 2.0 on a larger dataset derived from TESE (20) (see
Supplementary Material for details).

Segment energy

Given two sequences, a segment can be allocated an en-
ergy by sliding two sequential regions of length L along the
corresponding sequences. All possible pairings can be ob-
tained by varying the region length L and relative orien-
tations (antiparallel or parallel). The corresponding pair-
ing aggregation scores are obtained by summing contribu-
tions for each of the L pairwise interactions using the energy
pairing potential. Pairing aggregation scores are then com-
bined together to compute aggregation probability profiles
and aggregation free energy profiles, as a function of residue
position along the protein chain. We also compute pairing
probabilities and pairing free energies, as a function of the
sequence positions of the paired residues. A more detailed
mathematical formulation is given in Trovato et al. (7,21),
and shortly recapitulated in the Supplementary Material.
The sensitivity and specificity was calculated as a function
of this newly tuned segment energy and implemented as a
server option (see ‘Input’ and ‘Cut-off energy/top energies’
in Server description and Performance sections).

Secondary structure and intrinsic disorder

Sequence-based features may complement prediction
of aggregation toward a better understanding of the
sequence–structure relationship. Both intrinsic disorder
and secondary structure predictors were trained using
Bi-directional Recursive Neural Networks (BRNNs) (22).
The only information supplied to the BRNNs was the
amino acid sequence which proved accurate (see (18)
for disorder and Supplementary Table S1 for secondary
structure) while having an added speed advantage. Our
speed/accuracy trade-off was in contrast to slightly more
accurate predictors that used computationally challenging
multiple sequence alignment calculations. While other
sequence-based features may be envisaged, we chose to
use secondary structure and intrinsic disorder as server
output because they provide an easy way to interpret struc-
tural information that is orthogonal to the aggregation
prediction. In fact, the presence of native structure plays
a protective role against aggregation (23). Within this
context, an intermediate partially disordered or flexible
state was previously hypothesized in an aggregation model
(24). Contradictory to this, highly disordered proteins
were shown to be much lower in aggregation propensity
than globular ones (25). Therefore, investigation is still
needed to understand these conflicting views and offering
aggregation, secondary structure and disorder in one web
server should help.

Benchmark sets

Assessing the performance of aggregation is tricky, mainly
due to the lack of experimental data. Despite this, over
the last decade, small amounts of experimental data have
been released in the literature. This allows performance to
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Table 1. Performance on detecting aggregating residues from the Reg33 set

Method Sensitivity Specificity Q2 MCC

Aggrescan 35.37 79.26 57.32 0.13
AMYLPRED2 39.27 84.48 61.88 0.22
FoldAmyloid (contacts) 20.71 86.97 76.17 0.08
FoldAmyloid (triple
hybrid)

19.21 86.22 75.30 0.06

Tango 13.67 95.57 54.62 0.14
MetAmyl (high specificity) 39.05 83.14 77.24 0.19
MetAmyl (global
accuracy)

52.46 70.73 68.29 0.17

FishAmyloid 13.73 93.68 82.98 0.10
PASTA 2.0 (90%
specificity)

30.24 90.00 80.23 0.22

PASTA 2.0 (85%
specificity)

40.87 84.95 77.77 0.24

Default thresholds used for FoldAmyloid, FishAmyloid and MetAmyl. Results for AMYLPRED2, Aggrescan and Tango are taken directly from (15).

be assessed in two scenarios: (i) aggregation assignment to
small peptides and (ii) aggregation assignment to a sequen-
tial stretch in a larger protein. Thus the server performance
was measured on two sets.

Peptide detection (Pep424): this set collects all the avail-
able peptides annotated with experimental information. It
contained 179 peptides from (11), 17 peptides from (12),
158 hexa-peptides from (13) and 70 peptides from human
prion protein, human lysozyme, �2-microglobulin used in
(14). In total, there were 424 peptides with 149 aggregating
and 275 not. Thus, we measured the binary classification of
each peptide as a whole.

Region detection (Reg33): this set annotates specific pro-
tein regions that are thought to aggregate; we took advan-
tage of a dataset already constructed in (15). It contains 33
proteins with 1260 aggregating and 6472 regular residues
annotated from the literature. For simplicity, the perfor-
mance was measured on each residue in the 33 proteins.

PERFORMANCE

A comparison with other groups was only possible if their
server allowed as input multiple sequences, or an easy to
install stand-alone executable was available. This was par-
ticularly true for Pep424, as manually retrieving predictions
became cumbersome. First, performance was assessed on
small peptides classified as aggregating or not. Then, the
ability of predictors to recover residues that are known ag-
gregating hot spots was measured. Performance was as-
sessed, in a leave-one-out validation, using sensitivity, speci-
ficity, Q2, Matthews correlation coefficient (MCC) and re-
ceiver operator characteristic curves (ROCs). For a more
precise mathematical description of the performance mea-
sures, see Supplementary Material.

Peptide classification

Figure 1 shows the ROC curve that plots the true positive
rate (sensitivity) versus the false positive rate (1-specificity)
for PASTA 2.0 and other methods (11,14,26,27). PASTA
2.0 was well above random achieving a total area under the
ROC (AUC) of 85.73 (random AUC is 0.5). In contrast,
the next best curve FoldAmyloid (14) had AUC 2.42 worse.

Figure 1. Receiver Operating Characteristic (ROC) curve for PASTA 2.0
and four other methods. Marked on the x-axis is an important area of the
curve, the low false positive rate or high specificity zone. ROC calculated on
Pep424 set. PASTA 2.0 is improved over all other comparisons in general.
In the high specificity zone the area under the ROC (AUC) is measured
and given in the legend. Tango stops at 12% FPR because all energies are
0 after this point and therefore no variation can be performed.

However, it is mostly the case that low false positive rate
(high specificity) is desirable. PASTA 2.0 has a sensitivity of
42.95 and a high specificity of 94.85 when we select a strict
energy threshold. Putting this into perspective, a hypotheti-
cal situation with 100 peptides and 90 known experimen-
tally not to aggregate, PASTA 2.0 would return 9 candi-
date peptides. It would correctly predict 4 out of 10 posi-
tive and would incorrectly determine 5 out of the 90 neg-
ative peptides. With no a priori knowledge and using the
web server to guide experiments, a laboratory test of these 9
peptides would reveal 4/9 were aggregating, a favorable sce-
nario for most experimentalists. On the contrary, evaluating
candidate peptides of low specificity algorithms would be
rather time consuming for the experimentalist. Given this,
Figure 1 also shows the AUC in the 0.0–0.1 false positive
rate zone (i.e. >90% specificity). PASTA 2.0 clearly outper-
formed all other tested software (AUC 3.91) in this high
specificity zone with the TANGO (11) method second to
it (AUC 3.55). The two FoldAmyloid variants contact (26)
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and triple hybrid FoldAmyloid (14) and AGGRESCAN
(27) were substantially lower with AUCs 1.18, 2.31 and 2.65
respectively.

Region detection

A recent predictor, AMLYPRED2 (15), collected litera-
ture and annotated 33 proteins with aggregating hot spots.
Given that AMLYPRED2 is a meta-predictor that was
shown to improve over its 12 well-established constituent
parts (11,26–36), we decided to compare against it and five
other related methods (11,14,26,37,38). Table 1 shows the
per residue sensitivity, specificity, Q2 and MCC for PASTA
2.0, in a leave-one-out test, when selecting thresholds de-
fined for 90% and 85% specificity. The higher specificity op-
tion produced 90.00 specificity with 30.24% of the positive
residues recovered (sensitivity). This is a conservative pre-
diction, thus aggregation hot spots can be inferred with high
confidence when selecting this option. To achieve the same
specificity (∼85.0) as the other methods we needed to re-
lax the selection of the top pairings and the energy cut-off.
At this less stringent threshold, sensitivity increases (40.87)
and specificity decreases (84.95) as expected and the PASTA
MCC becomes superior to the other methods. The selection
of the top pairings and the energy cut-off is described in the
next section.

Cut-off energy/top energies

The server predicts aggregation in energy units where 1
PASTA Energy Unit (PEU) is equivalent to 2 KBT at room
temperature, that is 1.192 Kcal/mol (see Supplementary
Material). The selection of an energy cut-off allows the user
to alter the sensitivity and specificity of the server. In addi-
tion, the top X best energy pairings or combinations of en-
ergy cut-off and the top best can be chosen (see the Server
description section). We envisage three prediction types:
peptide discrimination, highly confident region detection
and less confident region detection. The performances in
Figure 1 and Table 1 allowed us to define optimal top X
and energy cut-offs for the three cases. For peptide discrim-
ination, only the best pairing is considered (top = 1) and an
energy cut-off of −5 was found to produce 95% specificity
(see Supplementary Figure S1 for sensitivity/specificity).
For highly confident region detection, top = 22 and energy
< −2.8 produced 90% specificity and 30% sensitivity. Fi-
nally, less confident regions were found with top = 44 and
energy < −1.4 producing 85% specificity and 40% sensitiv-
ity. Supplementary Figure S2 shows an example of the three
scenarios. These parameters are only recommendations and
are available in a dropdown menu in the input page, how-
ever users are free to alter them as they see fit.

SERVER DESCRIPTION

The PASTA2 website is free and open to all users and there
is no login requirement. The interface can process entire
genomes and the sensitivity and specificity of the predic-
tion can be suitably modified. In addition, version 2.0 of the
server has increased functionality and other sequence-based
predictions. Supplementary Table S2 shows what we believe

to be the improvements over the PASTA 1.0 server (39). In
the following, a description of the server, its improved func-
tionality and other predictions are given in more detail.

Input interface

Single or multiple sequences in FASTA format are the only
input required and can be either pasted or uploaded as
a file. User email address and a query title are optional
but recommended for user records on larger jobs. To facili-
tate navigation, help and example pages are available at the
top of the interface. There are three modes of usage: self-
aggregation (default), protein–protein aggregation and mu-
tate one protein. Self-aggregation computes the aggregation
by sliding each sequence over itself. The protein–protein op-
tion determines aggregation either on an all-against-all or
one-against-all basis thus allowing aggregation to be de-
termined between protein heterodimers. Finally, the mutate
option allows the examination of many point mutations and
their effects on the aggregation ability of one protein se-
quence. Large-scale processing is possible but it is recom-
mended to turn on the ‘large-scale’ option since this will
limit the protein–protein options and turn-off graph gen-
eration as both are computationally tough (recommended
limits: without large-scale option <500 sequences and with
it entire genome processing is possible). Importantly, the
over/under prediction capabilities of the algorithm can be
altered by a sliding bar that selects the energy cut-off and its
measured sensitivity and specificity. Related to the energy
selection the top best energy pairings can also be altered
in a text-box. There are three recommended defaults for the
top text-box and the energy cut-off (see ‘Cut-off energy/top
energies’ in the Performance section).

Output layout

The PASTA 2.0 output is presented in two main pages. The
first page, displays statistics, links to individual pages and
a downloadable archive for all user supplied proteins. For
self-aggregating sequences, the statistics include global in-
formation such as percentage �-helix, �-strand, coil, intrin-
sic disorder and most importantly the best aggregation pair-
ing energy. Each statistic can be sorted by user preference,
but by default all entries are sorted by lowest energy pair,
thus ranking the most aggregation prone sequences. If the
protein–protein option was selected, links to every possible
pairing are provided at the bottom of the page (see Supple-
mentary Figure S2 for a layout of the first output page).

The second output pages display all the annotations
at the residue level. In addition, graphical output of the
aggregation free energies, aggregation probabilities, sec-
ondary structure and disorder probabilities are plotted and
often combined. All of this information taken together
can be a useful source of structural annotation. For ex-
ample, using the web server we found nasopharyngeal
carcinoma-associated proline-rich protein 4 (UniProt ac-
cession: Q16378) to be interesting because it was the most
aggregation prone completely disordered protein in the hu-
man proteome. Figure 2 shows the output for this protein.
The output is split into three main sections: the first residue
assignment (Figure 2A) annotates each residue as disor-
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Figure 2. Sample output for nasopharyngeal carcinoma-associated proline-rich protein 4. (A) Residue assignment of disorder, �-helix, �-strand, coil and
a parallel aggregation region marked with an oval, along with the energy of the aggregation pairings and legend. (B) Pairing and linear probability profiles
as a function of the residue position. The probabilities show an interesting aggregation-prone region with large helix probability but also high strand
probability. In addition, the protein is predicted to be completely disordered but tends to be less so in the aggregating region. The diagonal line in the
pairing probability predicts a parallel in-register arrangement for the aggregation-prone stretch. (C) The free energy pairing matrix and the free energy
profiles. In mutation mode the free energy profile can be used to visualize the changes in aggregation potential for the mutants. In this case the mutants are
V8D and V8P, both decrease aggregation potential (higher energy) in green and blue, respectively.
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dered, helix, strand, coil and as parallel/antiparallel aggre-
gating. Residues are only defined as aggregating if the en-
ergy is above the cut-off and inside the top pairings selected
in the input page. In Figure 2A, all residues are predicted
as disordered and the sole parallel aggregating region was
predicted to be in a helix conformation with the rest of the
protein mainly predicted in a coil arrangement. The second
section shows the probability profiles and pairings (Figure
2B), in our example they reveal that both helix and strand
probabilities are high, suggesting perhaps a conformational
switch could be taking place in the aggregating region in
conjunction with intermediate disordered states. In short, a
global hypothesis can be made about this protein and more-
over this interesting case was only found by scanning the
human genome with the large-scale processing capabilities.
Figure 2C shows the third output section, the free energy
profiles and pairings. In Figure 2C, we mutated our exam-
ple protein, in the aggregating region, at position 8 using the
wildcard character (*) producing 19 mutants. The largest
mutational effects were found to be proline and aspartic
acid (V8P and V8D). All predictions and pairing matrices
shown in Figure 2 are provided for download; an extensive
description of each is available as part of the online help
page.

Implementation and server run-time

The PASTA algorithm was developed in ANSI C, an exe-
cutable is freely available for academic users on the server
main page. The server is built on a Linux Debian 44
CPU cluster with each node having 8 GB RAM. Apache
2.2.16, Tomcat 7.1. web servers and JavaServer Pages (JSP)
and Javascript scripting languages were used to build the
server. Parallel execution is achieved by splitting multiple se-
quences into eight jobs, thus eight sequences are executed in
the same time as one sequence without parallelization. The
parallelization, efficient C code and other designed charac-
teristics allow the processing of large amounts of data. To
estimate the execution time on a real problem, we down-
loaded the human proteome from the National Center for
Biotechnology Information FTP site, removed identical se-
quences, and found that PASTA 2.0 returned results in 28 h
for the 31 641 proteins.

CONCLUSION

We have described PASTA 2.0, a novel web server for
the prediction of protein aggregation from sequence. It al-
lows the batch prediction of many sequences simultane-
ously, providing a rich structural overview. Each sequence
is annotated not only with aggregation-prone regions but
also �-helix, �-strand, coil and intrinsic disordered regions.
All predictions concern structural characteristics of the se-
quence and we therefore believe their combination to be
intuitively appealing. In addition, enhanced functionality
such as protein dimer aggregation and mutational analysis
is possible. Future work will concentrate on improving the
functional description of the aggregating regions as well as
integration with the MobiDB (40) database of disorder an-
notations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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