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ABSTRACT

Cancer genome and other sequencing initiatives are
generating extensive data on non-synonymous sin-
gle nucleotide polymorphisms (nsSNPs) in human
and other genomes. In order to understand the im-
pacts of nsSNPs on the structure and function of
the proteome, as well as to guide protein engineer-
ing, accurate in silicomethodologies are required
to study and predict their effects on protein stabil-
ity. Despite the diversity of available computational
methods in the literature, none has proven accu-
rate and dependable on its own under all scenarios
where mutation analysis is required. Here we present
DUET, a web server for an integrated computational
approach to study missense mutations in proteins.
DUET consolidates two complementary approaches
(mCSM and SDM) in a consensus prediction, ob-
tained by combining the results of the separate meth-
ods in an optimized predictor using Support Vector
Machines (SVM). We demonstrate that the proposed
method improves overall accuracy of the predictions
in comparison with either method individually and
performs as well as or better than similar methods.
The DUET web server is freely and openly available
at http://structure.bioc.cam.ac.uk/duet.

INTRODUCTION

In this era of high-throughput data generation, the ability
to predict accurately the impacts of non-synonymous sin-
gle nucleotide polymorphisms (nsSNPs) on protein stabil-
ity is an essential tool for understanding the effects of hu-
man genome variation (1), particularly with respect to per-
sonalized medicine and the mechanisms of variable drug re-
sponse in humans (2). The enormous amount of data being

generated from cancer genome and other sequencing initia-
tives (3,4) requires an accurate and scalable computational
approach to understanding structural effects of mutations
and correlating them with disease on the scale of the whole
proteome (5). Such a computational approach should also
be useful in the development of engineered proteins with
improved, modified or optimized functions (6).

Over the past fifteen years, several different in silico meth-
ods for predicting the influence of mutations on protein
stability have been proposed based on various evolution-
ary and physical chemical hypotheses (7–15), but none has
proven on its own to be accurate in all situations where mu-
tational analysis is required. For this reason, one may expect
to obtain a more accurate prediction by combining methods
that are based on different paradigms and that exploit dif-
ferent protein structural properties (16), in order to reach a
consensus on the understanding of mutation effects by an
integrated computational approach. As highlighted in (15),
the methods mCSM and SDM (7,14) are complementary
since they measure different properties and are built upon
different perspectives; a combined predictor should there-
fore improve overall performance.

Here, we present DUET, an integrated computational ap-
proach for predicting effects of missense mutations on pro-
tein stability. DUET combines mCSM and SDM in a con-
sensus prediction, by consolidating the results of the sepa-
rate methods in an optimized predictor using Support Vec-
tor Machines (SVMs) trained with Sequential Minimal Op-
timization (17).

DUET was trained on a low-redundancy data set of mu-
tations with available experimental thermodynamic data
derived from the ProTherm database (18) and validated
with blind test sets, achieving a Pearsons correlation coef-
ficient of up to 0.74 during training and 0.71 in the test set
(0.82 and 0.79 after 10% outlier removal, respectively). We
demonstrate that DUET improves overall accuracy of the
predictions in comparison with either method on its own.
We also show that DUET, by selectively combining two
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methods, significantly outperforms another integrated ap-
proach that combines seven methods (16). A web server for
DUET is available at http://bleoberis.bioc.cam.ac.uk/duet.

MATERIALS AND METHODS

SDM

The method SDM, introduced in (7,14), relies on amino
acid propensities derived from environment-specific sub-
stitution tables for homologous protein families that feed
a statistical potential energy function and encompass an
evolutionary view of the constraints from the immediate
residue environment. The approach compares amino acid
propensities for the wild-type and mutant proteins in the
folded and unfolded states in order to estimate the free en-
ergy differences between wild type and mutant. The website
is at: http://www-cryst.bioc.cam.ac.uk/ sdm/sdm.php.

mCSM

mCSM is a machine learning method to predict the effects
of missense mutations based on structural signatures (15).
The mCSM signatures were derived from the graph-based
concept of Cutoff Scanning Matrix (CSM) (19), originally
proposed to represent network topology by distance pat-
terns in the study of biological systems. mCSM uses a graph
representation of the wild-type residue environment to ex-
tract geometric and physicochemical patterns (the last rep-
resented in terms of pharmacophores) that are then used to
represent the 3D chemical environment during supervised
learning. These signatures have been successfully applied in
a range of tasks including protein structural classification
and function prediction (20), as well as large-scale receptor-
based protein ligand prediction (21). The mCSM website is
available at: http://structure.bioc.cam.ac.uk/mcsm.

DUET-Integrated Computational Approach

Figure 1 shows the workflow of the developed methodology.
Given a single point mutation in a protein structure, DUET
calculates a combined/consensus prediction by combining
the predictions from two methods (mCSM and SDM) in a
non-linear way, using SVM regression with a Radial Basis
Function kernel (22).

In order to do so, complementary information regarding
the mutation, such as secondary structure (used by SDM)
and a pharmacophore vector that accounts for the changes
between wild-type and mutant residue (used by mCSM) are
also calculated and used by DUET. As described previously
(15), the pharmacophore vector is obtained by comparing
the frequency of eight possible atom characteristics between
wild-type and mutant residues (hydrophobic, positive, neg-
ative, hydrogen acceptor, hydrogen donor, aromatic, sul-
phur and neutral).

As a filtering step, residue relative solvent accessibility
(RSA) is used to optimize the standard SDM predictions
using a regression model tree before combining it with
mCSM. The M5P algorithm (23) was used to generate the
regression tree which improved the SDM performance on
the blind test from r = 0.56 to r = 0.62.

Finally, the mCSM and optimized SDM predictions, to-
gether with secondary structure from SDM and the phar-
macophore vector from mCSM are fed to the SVM al-
gorithm, generating a combined output from a supervised
learning scheme. The experimental thermodynamic data for
each mutation in training and test sets are used to evaluate
the accuracy of the combined method.

WEB SERVER

Input

In order to run a prediction on the DUET server, the
user submits a PDB structure or 4-letter code of the wild-
type protein of interest, as well as the mutation informa-
tion (residue position, wild-type and mutant residues codes
in one-letter format) and chain identifier. Users also have
the option to perform systematic mutations of a particular
residue to all 19 possible mutants. DUET supports nuclear
magnetic resonance structures but only the first model will
be taken into account. Users are encouraged to submit PDB
files with a single chain with the exception of cases of pro-
teins that fold upon binding (coupled folding and binding of
intrinsically disordered proteins (24)). A help page to assist
users on how to run and interpret the results of the predic-
tions is available on the top navigation bar.

Output

As shown in Figure 2, the server displays in the out-
put page the predictions from the individual methods, the
combined/consensus prediction obtained by DUET and
an interactive visualization of the uploaded PDB file via
GLMol. This interface allows the user to visualize the pro-
tein with molecules represented in several ways, such as
‘cartoon’, ‘ball and stick’ and ‘spheres’ as well as to take
snapshots. The predicted results are expressed as the varia-
tion in Gibbs Free Energy (��G) and negative values de-
note destabilizing mutations. Complementary information
such as residue relative solvent accessibility (RSA, calcu-
lated using the Richards method (25)), side-chain hydro-
gen bond satisfaction and secondary structure (programme
SSTRUC) are calculated and shown. The user also has the
option of downloading the structure of the mutant protein
generated by the programme ANDANTE (26), as required
for the method SDM.

VALIDATION

Mutation Data sets

DUET’s regression model was trained on data for muta-
tions derived from the ProTherm database (18) and used
in a previous study (15). The training set is formed by 2297
randomly selected mutations drawn from the S2848 data set
used by the PoPMuSiC method (13). To minimize the risk
of overfitting, two blind test sets were devised to validate
the method. The first data set was composed of 351 non-
redundant mutations at position level, meaning that muta-
tions in a given position are either in the training or test
set exclusively. More information about the data sets used
can be found in Section 1 in Supplementary Material. In
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Figure 1. DUET workflow for obtaining a consensus prediction for a single point mutation. The grey and the blue boxes denote the server’s input and
output, respectively. Green boxes denote intermediate prediction values used by DUET and yellow boxes denote complementary information used to
optimize SDM prediction or by DUET.

order to perform a comparative test between DUET and
iStable (16), we used a dataset of mutations on the p53 pro-
tein, a transcription factor whose loss of function is corre-
lated with tumourigenesis which was assembled in a previ-
ous study (15). This data set contained 42 mutations within
the DNA binding domain of the tumour suppressor p53
protein with experimentally characterized thermodynamic
effects available in the scientific literature. None of these mu-
tations was present in the training set.

RESULTS
Figure 3 shows regression analysis for the stability predic-
tions generated by DUET in comparison with the experi-
mentally measured variation in stability for the considered
data sets. During training, DUET achieved a Pearson’s cor-
relation coefficient of r = 0.74 with a standard error of σ
= 0.98 kcal/mol, significantly better than mCSM (r = 0.69,
σ = 1.06 kcal/mol. See Section 2 in Supplementary Ma-
terial). Furthermore, a correlation of r = 0.82 with stan-
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Figure 2. Result page for DUET prediction. The results display the predicted change in folding free energy upon mutation (��G in kcal/mol). A positive
value (and red writing) corresponds to a mutation predicted as destabilizing; while a negative sign (and blue writing) corresponds to a mutation predicted as
stabilizing. The information displayed include the mCSM (i) and SDM (ii) individually predicted protein stability changes, the combined DUET prediction
(iii), a structural summary of the mutation highlighting the wild-type residue and position number, the mutation and its 3D environment (iv). The protein
and mutation can also be visualized (v), or a PDB file of the mutant downloaded for viewing in your preferred molecular visualization software.

Table 1. Comparative prediction performance of methods on P53 data set

Method Pearson’s coefficienta Standard error kcal/mola

mCSM 0.68 / 0.72 1.40 / 1.20
SDM 0.52 / 0.64 1.61 / 1.32
iStable 0.49 / 0.64 1.59 / 1.37
DUET 0.68 / 0.76 1.39 / 1.13

a The two values given per column correspond respectively to the whole validation set of 42 mutants and the results after removing 10% of the outliers.

Figure 3. Regression analysis between experimental and predicted stability changes by DUET. The left graph show the performance of DUET during
training while the right graph shows the predictive performance in two different blind test sets. Pearson’s correlation coefficient (r) and standard error (σ )
are also shown for each data set.
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dard error of σ = 0.72 kcal/mol is obtained after 10% out-
lier removal. In the first blind test set of 351 non-redundant
mutations, DUET achieved a correlation of r = 0.71 (σ =
1.13 kcal/mol, which is considerably higher than the perfor-
mance of either method individually (r = 0.56 and r = 0.67
for SDM and mCSM, respectively. See Section 2 in Supple-
mentary Material). The correlation in 90% of the data set
peaks at r = 0.79 (σ = 0.84 kcal/mol).

In order to compare DUET with iStable (16), a recently
proposed integrated computational approach, a blind test
with p53 mutations was devised. iStable is a meta-predictor
that combines seven different methods using SVM algo-
rithm, and integrates complementary information such as
residue solvent accessibility, secondary structure and se-
quence information.

Table 1 shows the comparative results between the com-
putationally integrated approaches DUET and iStable, as
well as mCSM and SDM. Even though iStable relies on
the predictions of seven different methods, the approach
achieved a correlation coefficient of only r = 0.49, which is
inconsistent with the correlation of r = 0.86 that the authors
report during cross-validation. In contrast, DUET achieves
a r = 0.68 (σ = 1.40 kcal/mol), which is consistent with the
methods performance during training and blind test valida-
tion. By removing 10% of outliers (only three mutations),
DUET’s correlation coefficient rises to r = 0.77 and stan-
dard error drops to σ = 1.12 kcal/mol, in comparison with
a correlation of r = 0.64 (σ = 1.37 kcal/mol) achieved by
iStable.

CONCLUSIONS

DUET is an accurate, free and easy-to-use bioinformatics
web server created for experts and non-experts alike who are
interested in gaining insight into the effects of nsSNPs on
protein stability. It integrates two complementary methods
into a consensus/optimized prediction, as a way to leverage
the best of SDM, a statistical potential energy function that
relies on substitution tables derived from homologous pro-
tein families which incorporates constraints on residue envi-
ronments during evolution, and mCSM, a machine learning
algorithm that takes into account the residue 3D phsyco-
chemical environment summarized as a graph-based struc-
tural signature. DUET is a valuable tool for a wide variety
of applications, ranging from protein stability modulation
to understanding the role of mutations in diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online including
[1–6].
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