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Abstract

The usage of structured population models can make substantial contributions to public health,

particularly for infections where clinical outcomes vary over age. There are three theoretical

challenges in implementing such analyses: i) developing an appropriate framework that models

both demographic and epidemiological transitions; ii) parameterizing the framework, where

parameters may be based on data ranging from the biological course of infection, basic patterns of

human demography, specific characteristics of population growth, and details of vaccination

regimes implemented; and iii) evaluating public health strategies in the face of changing human

demography. We illustrate the general approach by developing a model of rubella in Costa Rica.

The demographic profile of this infection is a crucial aspect of its public health impact, and we use

a transient perturbation analysis to explore the impact of changing human demography on

immunization strategies implemented.
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1. Introduction

Structured population models have particular relevance in human epidemiology because

both contact patterns and severity of disease are strongly age-dependent. Theoretically, there
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are three linked challenges to making age-structured models relevant to the epidemiological

setting. First, the model framework must reflect both demographic and epidemiological

transitions (Anderson and May, 1991; Klepac and Caswell, 2010; Schenzle, 1984), which

requires taking into account the different time-scales of epidemiological rates and human

demography. Second, the model must be parameterized from diverse public health data that

are usually crude with respect to age structure (since cases are often binned into broad age

classes), age-specific mixing, and sparse with respect to time (since data are often

aggregated at intervals greater than the natural time-scale of infection). Third, parameterized

models must be able to evaluate various public health strategies in the face of current and

projected changes in demography. We illustrate these three linked challenges by developing

a structured model for rubella in Costa Rica – an infection for which disease severity is

particularly age-dependent.

Rubella is a directly transmitted and strongly immunizing infection that generally causes a

mild childhood disease. However, infection during the first trimester of pregnancy may

cause fetal death or congenital rubella syndrome (CRS). The latter entails a range of

impairments, including deafness, cataracts and blindness, and congenital heart disease. Since

routine vaccination generally decreases the force of infection (FOI, the rate at which

susceptible individuals become infected), it will increase the average age of infection unless

coverage is high enough to achieve elimination. Mass vaccination may therefore potentially

have the negative side effect of increasing CRS incidence (Anderson and May, 1983;

Anderson and May, 1985; Anderson and May, 1991; Edmunds et al., 2000b; Vynnycky et

al., 2003). Dynamically speaking, mass vaccination is analogous to reducing the birth rate, if

vaccine-induced immunity conveys life-long protection (Earn et al., 2000). Consequently, a

secular reduction in fertility rates is another factor that will increase the mean age of

infection. In the simplest analysis, an unstructured susceptible-infected-recovered (SIR)

model indicates that rubella immunization activities must attain sufficiently low equilibrium

incidence to offset the increase in the average age of infection in the birth rate context of

interest (Fig. 1). Perturbations due to changes in human demography or vaccination

coverage mean that reality will rarely reflect the simple case. Understanding age-structured

dynamics combining both changing demography and epidemiology in this context is thus

key, and for this, developing structured models is essential (Tuljapurkar and John, 1991).

From the point of view of public health, the dynamics of rubella in Costa Rica following

vaccination are particularly interesting. Theoretical concerns about increases in the CRS

incidence following introduction of rubella vaccination (Knox, 1980) appear to have been to

some degree born out in the country (Morice et al., 2009). Vaccination was introduced at

first at low coverage levels, and following years of low incidence, large outbreaks in older

individuals occurred in 1987 and 1999. This was matched by an increase of susceptibility in

older age groups (Jimenez et al., 2007) as well as an increase in CRS incidence. However,

interpreting the impact of vaccination on CRS incidence in Costa Rica is complicated by the

dramatic concurrent declines in the population birth rate.

Globally, introduction of the rubella vaccine is increasingly being considered, particularly

given large-scale efforts currently underway towards measles eradication (World Health

Organization, 2011). Understanding the contexts that might lead to problems by better
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understanding what occurred in Costa Rica is of considerable applied as well as theoretical

interest. We use a structured modeling approach and sensitivity analysis to explore the

determinants of the observed patterns, and to detail the impact of vaccination coverage

under changing human demography. Below, we first introduce the model framework. We

then describe data sources available, and approaches that can be used to parameterize the

model, and finally use a perturbation analysis to explore how outcomes are altered given the

changing human demographic context. We conclude by discussing the impact of changing

human demography on the impact of rubella immunization strategies.

2. Model framework

We use a discrete-time model that incorporates both epidemic and demographic transitions

(Klepac and Caswell, 2010; Klepac et al., 2009) by structuring the population into age

classes, and epidemiological classes (‘maternally immune’ M, ‘susceptible’ S, ‘infected’ I,

‘recovered’ R, and ‘vaccinated’ V, taken to indicate the successfully vaccinated, and only

applied to susceptible individuals). We can frame the joint processes of aging and infection

as a matrix of demographic and epidemiological transitions. We structure the population into

age strata (1, 2, ...., z; where z is the total number of age strata, here taken as z=37 with

yearly age strata from age 1 to age 34, and decadal age strata thereafter up to age 64), and

epidemiological classes (M, S, I, R, and V). Initially ignoring demographic transitions

(survival and aging), within each age class a transitions between epidemiological categories

occur according to:

(1)

The five rows and columns represent the M, S, I, R, and V categories, respectively, and the

matrix contents capture transitions between them. The time-step is taken as the approximate

generation time of rubella (the latent plus infection period of the infection). Discrete time

approaches that use the generation time of the infection as a time-step go back to Bailey's

chain-binomial model (Bailey, 1957), and have received general support from analysis of a

range of immunizing childhood infections with generation times similar to that of rubella

(Bjørnstad et al., 2002; Metcalf et al., 2009). In the transition matrix da is the probability of

losing maternal immunity, φa is the probability of becoming infected, and va is the

probability of being vaccinated. The infection probability φ (also called the force of

infection, FOI) is a function of n(t), a vector describing the population at time t

(2)

according to

(3)
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where z is the total number of age classes, βa,j,t is the rate of transmission between

individuals in age classes a and j, referred to as the Who-Acquires-Infection-From-Whom or

WAIFW matrix, and γ captures heterogeneities in mixing not directly modeled (Bjørnstad et

al., 2002; Finkenstadt and Grenfell, 2000) and the effects of discretization of the underlying

continuous time process (Glass et al., 2003). Here we fix γ at 0.97 (except when calibrating

R0; see below), reflecting values obtained for measles in England and Wales (Bjørnstad et

al., 2002). Discrete-time models that do not incorporate this exponent (i.e., γ=1) result in

dynamics that are unrealistically unstable and prone to frequent extinction. Total population

size appears as a denominator of number of infected individuals in each age class since

previous experience with rubella indicates that transmission appears to scale in a frequency

dependent manner (Metcalf et al., 2011b) as expected when social clique size is relatively

independent of population size (Ferrari et al., 2011).

Seasonality in transmission often play an important role in the dynamics of childhood

infections (Ferrari et al., 2008; Schenzle, 1984), and is generally observed for rubella

(Metcalf et al., 2011a; Metcalf et al., 2011b). In the absence of detailed data, we chose to

model seasonal fluctuations as a trigonometric function (e.g., (Schenzle, 1984)), i.e.,

transmission to individuals in age strata a, from individuals in age strata j at time t are

defined by βa,j,t = β1,a,j (1 + β2 cos(2πt)) where β1,a,j is mean transmission from individuals

in age strata j to age strata a, and β2 is a parameter controlling the magnitude of seasonal

fluctuations.

We construct the full transition matrix A(n(t)) to project the entire population forwards via

aging, mortality and infection dynamics according to:

(4)

where sa is the probability that an individual in age class a survives to the next time step, ua

is the rate of aging out of age class a, and A1, A2, etc., are defined in equation (1), time-

subscript dropped for convenience. The dynamics of the population as a whole can be

projected forward according to the density dependent matrix model:

(5)

where B(t) is a vector representing the number of births at time t

(6)

Initial conditions were taken as values corresponding to the quasi-stationary distribution of

the stochastic model for each set of parameters (obtained by iteration).

Our matrix model structure (eqn 4) implicitly assumes that demographic transitions relating

to survival precede epidemiological transitions. The impact that this will have on dynamics
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is likely to be minimal since survival is very high across the chosen serial interval. The

separation of births from the overall demographic and epidemiological transitions (eqn 5)

also assumes that epidemiology precedes this aspect of demography. Given the gradual

nature of the change in birth rates modeled (Fig. 2) this will have some effect on initial

conditions, but will be minimal subsequently.

With this framework, we can calculate the basic reproductive ratio, R0 (the number of cases

that would result from the introduction of a single infected individual into a completely

susceptible population), as the dominant eigenvalue of the next generation matrix taken at

the disease free equilibrium (Allen and van den Driessche, 2008; Diekmann et al., 1990;

Klepac and Caswell, 2010). In this case, R0 is undefined for γ<1 so for its evaluation we set

γ=1. This is necessary because we need an approximate next-generation value for R0 to

calibrate our transmission matrix (see below). We use γ=0.97 for all dynamic simulations

(for reasons discussed above).

We can extended the model to be stochastic and to include an immigration rate according to,

(7)

where in the stochastic setting, S[A(n(t)), n(t)] is a vector resulting from the sum of

stochastic draws from multinomial distributions defined according to each column of the

matrix A and the number of individuals in each category, n(t); Bt is a vector with zeros

corresponding to all but the first class (cf eqn 6), which in the stochastic setting is taken as a

draw from a Poisson distribution around the time-varying mean birth rate, and Mt is a vector

with zeros corresponding to all but the infected classes, and a draw from a random Poisson

distribution with mean ι for each of the infected classes (that is, we make the simplifying

assumption that the immigration rate is the same for all age classes). Large values of ι

correspond to high mobility and low coverage of adjacent locations; small values of ι

correspond to low mobility and effective vaccination in adjacent locations.

3. Parameterizing the model

Informing structured populations can be more straightforward than informing un-structured

models, because it is often easier to match data inputs (e.g., age specific vaccination and

death rates) to appropriate parameters in the model than in cases where population structure

is oversimplified or ignored. Here, birth rates and population size of Costa Rica changed

substantially over the period considered (1972-2000, Fig. 2a). We incorporate this directly

into the model. Survival over age was less variable (Fig. 2b) and also directly incorporated

into the model using the average rate over the time-course considered (Fig. 2b), again scaled

to the generation time of rubella. The rubella vaccine was introduced in Costa Rica in 1972

and the measles-rubella vaccine (MR) was introduced into the childhood vaccination

program in 1975 (Morice et al., 2003). Coverage increased gradually at a national scale (Fig.

2c). We include this in the model by allowing temporal variation in the vaccination rate of

one year olds.

Magnitude and patterns of transmission over age may be informed by an array of data

(Anderson and May, 1991). Sero-profiles (i.e. the age incidence of antibodies to rubella,
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indicating exposure to the infection, here available for rather broad age classes) taken before

the start of vaccination (Villarejos et al., 1971) suggest that the pre-vaccination average age

of infection, A was rather high (Fig. 3a), and shows slight regional differences. With life-

expectancy of around L=66 in Costa Rica in 1969, using the relationship R0~1+L/A

(Anderson and May, 1991), this suggests a rather low R0 (between 3 and 5), comparable

with R0 estimates of between 2 and 8 reported for rubella Europe (Edmunds et al., 2000a;

Edmunds et al., 2000b). To estimate the force of infection over age, we used the 'catalytic'

model (Griffiths, 1974), so called because of it structural similarity to equations commonly

used to study of chemical reactions (Grenfell and Anderson, 1985). For this model, the

cumulative probability P(a), of infection by age a is given by:

(8)

where φ(a) is the age-specific force of infection. We fit a piece-wise constant force of

infection model to the data, with four age classes (0-3, 4-14, 15-39, 40-66); note that these

are the age classes available in the data, and finer resolution is not available (each of these

bins is captured in the finer 37 stage structure used in our dynamic model). The pattern over

age indicates that infection is predominantly occurring in children of school age (Fig 2b).

The most direct source of information on human age-patterns of contact is provided by the

observational diary studies in Europe (Mossong et al., 2008). A strongly diagonal structure

(indicative of considerable mixing within an age class) combined with 'whiskers' of contact

between individuals in their early twenties and children (Fig 3c) characterizes these matrices

(Mossong et al., 2008; Rohani et al., 2010). To explore whether this is an appropriate

structure for the contact matrix in Costa Rica, we used the Europe-wide model (Mossong et

al., 2008). We then calculated the expected age-specific force of infection by considering

this contact matrix in combination with the age-specific prevalence (Fig. 3d), and compared

this with the empirical pattern revealed by the catalytic analysis (Fig. 3b). The overall

similarity of the two (Fig. 3b vs. Fig. 3d) suggests that the model of contacts obtained from

Europe is an adequate first cut in the absence of Costa Rican contact data. We finally

generated a WAIFW matrix (i.e., obtained values for β1,a,j for all age classes) by scaling the

contact matrix so that the resultant R0 matched empirical estimates from the seroprevalence

data. In preliminary analyses we also used the approach of (Farrington and Whitaker, 2005)

to estimate the WAIFW matrix. However, since this method is quite complicated and all

epidemiological conclusions derived were similar to those using contact data, we have not

included this analysis in this paper.

In the absence of data at a finer than annual time scale during the pre-vaccination era, it is

impossible to estimate the exact magnitude of seasonality in transmission. However, given

no substantial evidence for large variation in transmission for other countries in the region

(Metcalf et al., 2011a; Metcalf et al., 2011b), and evidence for transmission predominantly

in school children (Fig. 3b), we set β2=0.2. This value is sufficiently high to generate an

annual peak in transmission observed throughout the range for rubella, but not of a degree to

will result in highly nonlinear dynamics (Ferrari et al., 2008). In the absence of data, we

assumed that seasonal variation in transmission affected all ages in the same way.
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As well as allowing a straightforward way of incorporating epidemiological and

demographic rates (i.e., births, vaccination, transmission, see above), structured models

produce a diversity of outputs that can be compared to data. For instance, sero-surveys

providing cumulative incidence by age, incidence data from surveillance systems, and rates

of severe outcomes (e.g., CRS, death) can all be compared with model outputs and used in

fitting procedures. Data from Costa Rica indicates that large, irregular outbreaks occurred

prior to eradication, with the age structure shifting upwards (Jimenez et al., 2007; Morice et

al., 2003) as predicted by epidemic theory (Anderson and May, 1991; Knox, 1980). Changes

in the age-profile in serology are reviewed in (Morice et al., 2005), and overall indicate an

increase in the age of infection, and proportion of women of child-bearing age at risk, also

seen in the incidence reports (Fig. 2d). The signature of this has been documented in the

burden of CRS (Morice et al., 2009). The pattern closely matches the cohorts unprotected by

vaccination through time (Fig. 2d), and thus suggests that susceptibility is predominantly

driven by vaccination rather than natural circulation over this period.

To develop an understanding of the dynamics linked to the age structure of susceptibility,

we simulated stochastic dynamics for 20 years prior to 1973 to arrive at the pre-vaccination

quasi-stationary distribution of the stochastic model, and then initiated vaccination following

coverage levels defined in the data, assuming on average 1 infected immigrant a year across

all age classes. Under reported levels of vaccination coverage, and in the absence of

heterogeneity in coverage, although the age profile of incidence is well reflected

(particularly its increase), total incidence is under-predicted, as rubella rapidly goes extinct.

Cases that do occur are entirely due to introductions that fail to spread. Classical theory

(Anderson and May, 1991) shows that circulation will cease in a homogenous population

with coverage of more than 80% for an immunizing infection with an R0 between 3 and 5

(the critical level of coverage require to attain herd immunity is, at its upper limit, 1-1/5 =

0.8). Heterogeneity in vaccination coverage indicated by coverage surveys in Costa Rica

during this time period (Calvo et al., 2004) may have resulted in pockets of susceptible

individuals, permitting the 1990's outbreaks to occur.

The potential for heterogeneity in coverage led us to explore the effects of lower effective

coverage. To capture this, we fitted a saturating curve of the form y=ax/(b+x) to coverage

through time and identified values of the parameters a and b corresponding to the lowest

sum of squares separating log observed and log simulated age incidence over 10 simulations

(Fig. 4). In these simulations, we assumed a reporting rate of 0.02 in 1973 that increases to

near perfect reporting in 2008 to be consistent with the fact that surveillance for measles and

rubella was targeted for improvement over this period with the introduction of standardized

protocols, training of health personnel and use of quality surveillance indicators to evaluate

surveillance. With this inferred vaccination profile, observed changes in the age profile are

well reflected, as are overall changes in incidence (Fig. 5). Altering the exact timing and

magnitude of changes in reporting slightly alters the best fitting vaccination profile, but the

various combinations of reporting and vaccination coverage all permit the intermittent large

outbreaks late in the time-series, indicating that the model can capture the broad qualitative

patterns observed both with respect to age-incidence and temporal dynamics.
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4. Perturbation analysis

To explore how the demographic context changes the impact of vaccination of rubella, we

can use a deterministic perturbation analysis to estimate the transient sensitivity of total

numbers of cases, and numbers of CRS cases to a change in vaccination coverage (Caswell,

2007). To establish this, we write

(9)

where θ refers to the parameter of interest, here vaccination coverage attained at age 1; A
and n are as defined in equations (2) and (4); Is is an identity matrix of dimension s

corresponding to the dimensions of A (i.e., s=5z), and the vec operator transforms matrices

into vectors with the columns stacked (Caswell, 2007; Henderson and Searle, 1979). To

solve eqn 9, we first define ai,j to include all appropriate transition components except

vaccination for each cell of the matrix. The derivative of the transition matrix relative to

coverage ∂A[θ,n(t)]/∂θT is then zero for transitions that do not include vaccination, ai,j

where vaccination occurred and −ai,j where vaccination did not occur. This yields an s×s

matrix that becomes an s2×1 matrix following the vec transform.

The vec-transformed derivative of the transition matrix relative to n(t), ∂vecA[θ,n(t)]/∂nT(t)

is an s2×s matrix where every column reflects the vec transformed derivative of the matrix A
relative to each successive value in the vector n. To estimate this we require an expression

of the derivative of the density dependent term φa(n(t)), to the number of individuals in each

the population classes. For n ∈{M,S,R,V} this is

and for n ∈ {I},

Since φa only appears for transitions out of susceptible stages (eqn 1), these will be the only

transitions for which the derivative ∂vecA[θ,n(t)]/∂nT(t) is not zero. For example for

susceptible individuals of age a that are not vaccinated (corresponding to probability 1-va),

that do survive (corresponding to probability sa), remain in the same age class

(corresponding to probability 1-ua), and are not infected, relative to the number of

maternally immune, susceptible, recovered or vaccinated individuals of any age class i

(represented by n), the corresponding derivative of A[∂,n(t)] is
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(10)

Relative to the number of infected individuals in age class a, the derivative is

(11)

For the equivalent susceptible individuals that become infected, the relationships are the

same, but multiplied by −1.

To evaluate ∂vecA[θ,n(t)]/∂nT(t), we first define the derivative of the matrix A[θ,n(t)] using

the above for each value in the population vector (M1, S1, ...). For each matrix derivative, we

then take the vec transform. This defines the column in the ∂vecA[θ,n(t)]/∂nT(t) matrix

corresponding to the element in the population vector to which the derivative was

calculated. All that remains is to define the initial state for dn(t)/dθT, here taken as zeros,

since the parameters do not affect the initial population structure. Sensitivities of numbers of

individuals in each age class can then be estimated using eqn 9; and numbers of infected

individuals can be scaled by fertility in each age class to obtain the sensitivity of CRS

burden to changes in vaccination coverage (Caswell, 2007; Klepac and Caswell, 2010). To

obtain the cumulative burden over the years of vaccination (1975-2010), sensitivities or

scaled sensitivities may be directly summed.

Increasing low coverage (Fig. 6, top row) averts more rubella cases for constant birth rates

(Fig. 6a, horizontal line) than if birth rates are falling as seen in Costa Rica. This occurs

because in a persistently high birth-rate context averting cases in an increased proportion of

new-born individuals prevents transmission to many others, because of the functional

equivalence between birth rate and transmission (Earn et al., 2000). For the CRS burden, the

relationship is generally the opposite: increasing the proportion of the birth cohort

vaccinated has a larger effect when birth rates are declining than if they are not, at least

when coverage is low. This pattern occurs because declining birth rates are themselves

increasing the burden, by increasing the average age of infection, so the impact of reducing

incidence is larger. For sufficiently high coverage, this pattern is reversed, and the effect

reflects that of numbers of infected individuals, since the reduction in incidence is large

enough to overwhelm the effect of birth rate on the average age of infection.

5. Discussion

Epidemic dynamics of strongly immunizing childhood infections have been the focus of

much research. Theoretical predictions of unstructured models and epidemiological

surveillance data are often closely matched (Grenfell et al., 2002; Keeling et al., 2001).

Seasonal variation in transmission generally stands in for differences in mixing over age in

these unstructured models (Bjørnstad et al., 2002; Earn et al., 2000), for example via low

transmission during times corresponding to school holidays. However, for infections like

rubella where the age of infection is a critical aspect of the burden, extending models to

incorporate demographic structure becomes essential. Additionally, unstructured models
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must generally disregard data on age-incidence as a source of information, and this may

considerably weaken inference, especially where data is only available at a yearly time-

scale, preventing direct parameterization of seasonal variation in transmission.

Here, we combine a diverse array of data to parameterize a model of rubella in Costa Rica

(Fig. 7) that incorporates the age-dependent mechanisms we know to be operating (e.g., age

variation in transmission, etc.). This framework provides insights into rubella dynamics in

Costa Rica, but also points to uncertainties, such as the likely role of both changes in

reporting rates over the time-scale of interest, and vaccination heterogeneity resulting in

pockets of susceptible individuals (Fig. 4). Although our model has the potential to capture

all the qualitative features of the transients affecting incidence and age structure in Costa

Rica, the strongest quantitative fit to the empirical patterns is seen for lower vaccine

coverage than reported. This inferred lower vaccine coverage may both capture the

combined effect of changes in reporting and spatial heterogeneity in susceptibility, as well

as potentially compensate for some aspect of model mis-specification, and thus may not

necessarily be the true mechanism.

From a public health perspective, since birth rates and coverage may vary through time (Fig.

2), and heterogeneity of transmission across age (Fig. 3) is likely to be the rule, structured

models are also essential to assess the transient effects of shifts in demography and

vaccination (Caswell, 2007). A key public health question that the Costa Rican experience

can inform is whether the gradual introduction of coverage led to more cases of CRS than

would have been observed with no introduction at all (given a specified time interval).

Bearing the caveats outlined above in mind, across an array of values of R0 (3-12) we find a

negative sensitivity of the cumulative CRS burden on an increase in vaccination coverage

(see, e.g., Fig. 6), which is retained across a range of birth scenarios. This indicates that for

situations broadly resembling that of Costa Rica, introducing vaccination even at rather low

levels is likely to largely result in positive outcomes relative to the CRS burden, and would

therefore be recommended (although note that extending the time-horizon could eventually

result in an increase in the cumulative burden (Metcalf et al., Submitted); and additionally,

only deterministic rather than stochastic sensitivities were explored).

A second critical question in the current context of changing human demography is the

degree to which changes in coverage are affected by changes in the birth rate. The relative

magnitude of the effects of vaccination in a declining birth context vs in a constant birth

context may be reversed for rubella incidence vs CRS incidence. The analysis of rubella in

Costa Rica explicitly reveals the time-scales and magnitude over which such effects play

out, emphasizing the importance of introducing the rubella vaccine into a declining birth

situation, despite the relatively lower impacts of immunization in this context on overall

incidence.

Structured population models and next-generation techniques have the potential to greatly

inform public health questions: the age-structured approach is essential to prediction of age-

structured outcomes, but also to exploiting the array of data sources available The more

detailed reflection of underlying mechanism further simplifies parameterization but also

reveals areas of important remaining uncertainty.

Metcalf et al. Page 10

Theor Popul Biol. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Acknowledgments

We thank the people of the Costa Rica national network of epidemiology for all their hard work in conducting
surveillance activities and providing the rubella data used in this study, and the POLYMOD project. This work was
funded by the Royal Society (CJEM), the Bill and Melinda Gates Foundation (CJEM, BTG, JL, PK), the RAPIDD
program of the Science & Technology Directorate of the Department of Homeland Security, and the Fogarty
International Center National Institute of Health (BTG) and NIH grant NIH/GM R01-GM083983-01 (CJEM,
BTG).

References

Allen L, van den Driessche P. The basic reproduction number in some discrete-time epidemic models.
Journal of Difference Equations and Applications. 2008; 14:1127–1147.

Anderson RM, May RM. Vaccination against rubella and measles: qualitative investigations of
different policies. Journal of Hygiene of Cambridge. 1983; 90:259–325.

Anderson RM, May RM. Age related changes in the rate of disease transmission: implications for the
design of vaccination programmes. Journal of Hygiene of Cambridge. 1985; 94:365–436.

Anderson, RM.; May, RM. Infectious diseases of humans. Oxford University Press; Oxford, OX2
6PD: 1991.

Bailey, NTJ. The mathematical theory of epidemics. Griffin; London: 1957.

Bjørnstad ON, et al. Endemic and epidemic dynamics of measles: Estimating epidemiological scaling
with a time series SIR model. Ecological Monographs. 2002; 72:169–184.

Calvo N, et al. Using surveys of schoolchildren to evaluate coverage with and opportunity for
vaccination in Costa Rica Revista Panamericana de Salud Publica. 2004; 16:118–124.

Caswell H. Sensitivity analysis of transient population dynamics. Ecology Letters. 2007; 10:1–15.
[PubMed: 17204112]

Diekmann O, et al. On the definition and the computation of the basic reproduction ratio R0 in models
for infectious diseases in heterogeneous populations. Journal of Mathematical Biology. 1990;
28:365–382. [PubMed: 2117040]

Earn DJD, et al. A simple model for complex dynamical transitions in epidemics. Nature. 2000;
287:667–670.

Edmunds WJ, et al. The pre-vaccination epidemiology of measles, mumps and rubella in Europe :
implications for modelling studies. Epidemiology and Infection. 2000a; 125:635–650. [PubMed:
11218214]

Edmunds WJ, et al. Modelling rubella in Europe. Epidemiology and Infection. 2000b; 125:617–634.
[PubMed: 11218213]

Farrington CP, Whitaker HJ. Contact surface models for infectious diseases: estimation from serologic
survey data. Journal of American Statistical Association. 2005; 100:370–379.

Ferrari MJ, et al. The dynamics of measles in sub-Saharan Africa. Nature. 2008; 451:679–684.
[PubMed: 18256664]

Ferrari MJ, et al. Pathogens, social networks and the paradox of transmission scaling. 2011 ID 267049.

Finkenstadt B, Grenfell BT. Time series modelling of childhood diseases: a dynamical systems
approach. Journal of the Royal Statistical Society, Series C. 2000; 49:187–205.

Glass K, et al. Interpreting time-series analyses for continuous-time biological models-measles as a
case study. Journal of Theoretical Biology. 2003; 223:19–25. [PubMed: 12782113]

Grenfell BT, Anderson RM. The estimation of age-related rates of infection from case notifications
and serological data. Journal of Hygiene of Cambridge. 1985; 95:419–436.

Grenfell BT, et al. Endemic and epidemic dynamics of measles: Scaling predictability, noise and
determinism with the time series SIR model. Ecological Monographs. 2002; 72:185–202.

Griffiths DA. A catalytic model of infection from measles. Applied Statistics. 1974; 23:330–339.

Henderson HV, Searle SR. Vec and vech operators for matrices, with some uses in jacobians and
multivariate statistics. Canadian Journal of Statistics. 1979; 7:65–81.

Hunter CM, Caswell H. The use of the vec-permutation matrix in spatial matrix population models.
Ecological Modelling. 2005; 188:15–21.

Metcalf et al. Page 11

Theor Popul Biol. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Jimenez G, et al. Estimating the burden of Congenital Rubella Syndrome in Costa Rica, 1996-2001.
The pediatric infectious disease journal. 2007; 26:382–386. [PubMed: 17468646]

Keeling MJ, et al. Seasonally forced disease dynamics explored as switching between attractors.
Physica D. 2001; 148:317–335.

Klepac P, Caswell H. The stage-structured epidemic: linking disease and demography with a multi-
state matrix approach. Theoretical Ecology. 2010; 4:301–319.

Klepac P, et al. Stage structured transmission of phocine distemper virus in the Dutch 2002 outbreak.
Proceedings of the Royal Society, Series B. 2009; 276:2469–2476.

Knox EG. Strategy for rubella vaccination. International Journal of Epidemiology. 1980; 9:13–23.
[PubMed: 7419327]

Metcalf CJE, et al. Seasonality and comparative dynamics of six childhood infections in pre-
vaccination Copenhagen. Proceedings of the Royal Society of London. Series B. 2009; 276:4111–
4118.

Metcalf CJE, et al. The epidemiology of rubella in Mexico: seasonality, stochasticity and regional
variation. Epidemiology and Infection. 2011a; 139:1029–1038. [PubMed: 20843389]

Metcalf CJE, et al. Minimum levels of coverage needed for rubella vaccination: impact of local
demography, seasonality and population heterogeneity. Submitted.

Metcalf CJE, et al. Rubella meta-population dynamics and importance of spatial coupling to the risk of
Congenital Rubella Syndrome in Peru. Journal of the Royal Society Interface. 2011b; 8:369–376.

Morice A, et al. Accelerated rubella control and congenital rubella syndrome prevention strengthen
measles eradiction: the Costa Rican experience. Journal of Infectious Diseases. 2003; 187:S158–
S163. [PubMed: 12721908]

Morice A, et al. Tendencias de la inmunidad a la rubéola en mujeres de edad fértil y pre-escolares en
Costa Rica 1969-1996. Acta Pediatrica Costarricense. 2005; 19

Morice A, et al. Congenital rubella syndrome: progress and future challenges. Expert Review of
Vaccines. 2009; 8:3223.

Mossong J, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases.
PloS Medicine. 2008; 5:e74. [PubMed: 18366252]

Rohani P, et al. Contact Network Structure Explains the Changing Epidemiology of Pertussis. Science.
2010; 330:982–985. [PubMed: 21071671]

Schenzle D. Estimation of the basic reproduction number for infectious diseases from age-stratified
serological survey data. IMA Journal of Mathematics Applied in Medicine and Biology. 1984;
1:161–191.

Tuljapurkar S, John AM. Disease in changing populations: growth and disequilibrium. Theoretical
Population Biology. 1991; 40:322–353. [PubMed: 1808755]

Villarejos VM, et al. Estudio de efectividad y securidad de la vacuna contra la rubeola. Boletin de la
oficina sanitaria panamericana. 1971:174–180. [PubMed: 4250738]

Vynnycky E, et al. The predicted impact of private sector MMR vaccination on the burden of
Congenital Rubella Syndrome. Vaccine. 2003; 21:2708–2719. [PubMed: 12798608]

World Health Organization. Meeting of the Strategic Advisory Group of Experts on immunization,
April 2011 – conclusions and recommendations. Weekly epidemiological record. 2011; 86:205–
220. [PubMed: 21608300]

Metcalf et al. Page 12

Theor Popul Biol. Author manuscript; available in PMC 2014 July 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
In a classic SIR framework (here, dS/dt = μ(1 – v) – βSI – μS and dI/dt = βSI – gI – μI, where

μ is the birth and death rate (total population size as taken as N=1), v is vaccination coverage

of the birth cohort, and g is the generation time of the infection) the equilibrium proportion

of infected individuals I* (y axis, left) is defined by I* = μ[(1 – v)R0 – 1]/β and thus declines

with increasing vaccination coverage of the birth cohort (x axis). The average age of

infection A increases (y axis, right), approximately following R0=G/A where G is the

inverse of the birth rate. Different lines reflect 20, 30 or 40 births per 1000 (solid, dashed

and dotted lines, respectively); other parameters are g is 18 days−1, and β=R0/(g+μ) with

R0=5.
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Figure 2.
Demographic, vaccination and infection characteristics of Costa Rica over the time-span

considered including a) birth rate (from http://data.worldbank.org); b) mortality over age in

1990 and 2000 (from http://apps.who.int/ghodata/?vid=720; c) variation in coverage via

infant vaccination through time; and d) rubella incidence over age across Costa Rica on a

log scale (legend) in years following the introduction of vaccination. Black squares indicate

the fraction of each cohort covered by routine infant vaccination (reflecting Fig. 1b). Older

age outbreaks start at the upper limit of this line.
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Figure 3.
a) Seroprofiles (points) of rubella pre-vaccination in 1969 (Villarejos et al., 1971), fitted

with a logistic regression (lines) for rural communities, urban communities, and the entire

country; the corresponding average age of infection (defined as −β0/βs where β0 is the

intercept of the fitted logistic regression; and βs the slope) ranges between 17 and 21; b)

corresponding age-specific FOI fitted with a catalytic model; c) log pattern of observed

contacts across age (Mossong et al., 2008); d) profile of the expected FOI over age obtained

by combining the age structure of the Costa Rican population between 1980 and 1985 with

the age structure of infected individuals and the contact matrix shown in c).
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Figure 4.
Fitted curve (blue line, y=x/(5.53+x)) to reported vaccination coverage levels (black points)

and curve reflecting the closest match between 15 simulated age-incidence profiles and the

observed age incidence (red line, y=0.89x /(12+x)); the log sum of squares surface is shown

on the right; parameters corresponding to the observed (square) and predicted (circle)

shown. We assume that reporting rates increase gradually from 0.02 in 1980, reaching close

to perfect reporting in 2008.
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Figure 5.
The range of 50 stochastic simulations for R0=4, assuming on average one infected

immigrant a year and vaccination coverage levels adjusted as described above (dark grey

polygon) or following the observed (light grey polygons) with the observed (black lines)

average age of infection (left) and number of cases observed (right). Simulated case

numbers are re-scaled for comparison with the observed (right) by calculating a reporting

rate so that the average number of cases simulated in 1980 reflects the observed number of

cases, corresponding to pobs=0.02; we assume that this increases exponentially, reaching

close to perfect reporting in 2008.
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Figure 6.
For birth-rate profiles ranging from that reported for Costa Rica (steep decline starting

around 1985; solid line) to constant birth through the period (horizontal dashed line), we

estimated the sensitivity of the cumulative number infected to vaccination coverage

achieved in infants (y axis) for coverage levels of 0 (black line), 0.1 (red line), 0.3 (green

line), 0.4 (blue line) and 0.5 (turquoise line); and likewise for the sensitivity for the number

of CRS cases. For both, sensitivity is consistently <0 indicating that an increase in

vaccination always reduces cumulative cases and cumulative CRS cases over this time-

horizon; however, greater effect is observed for lower coverage levels, and for the CRS

burden, the direction of effects may shift with coverage levels, see text.
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Figure 7.
Relationship between data and the age-structured model. Solid lines ending in arrows

indicate either data or elements inferred from data (i.e., R0, the appropriate structure of the

WAIFW) that directly enter the model; double-ended arrows indicate data that is compared

with model output for model validation.
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