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Abstract

His-tag affinity purification is one of the most commonly used methods to purify recombinant

proteins expressed in E. coli. One drawback of using the His-tag is the co-purification of

contaminating histidine-rich E. coli proteins. We engineered a new E. coli expression strain,

LOBSTR (low background strain), which eliminates the most abundant contaminants. LOBSTR is

derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and

slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much

higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low-

expressing protein targets by reducing background contamination with no additional purification

steps, materials, or costs, and thus pushes the limits of standard His-tag purifications.

Keywords

BL21(DE3); E. coli protein expression strain; His-tag affinity purification; LOBSTR

INTRODUCTION

Many methods of recombinant protein purification have been developed. One of the most

widely used techniques is the His-tag affinity purification1. A small His-tag (usually 6 or 10

histidines) is fused to either the N or C terminus of the target protein, enabling capture by

nickel or cobalt ions coordinated on a variety of commercially available resins. The small

size of the His-tag, low cost, and ease of use have made it the most popular affinity-tag

available. Expression of recombinant His-tagged proteins is largely carried out in E. coli

because it is easy to culture and it allows for the production of target proteins with high

yield. However, one major drawback of His-tag affinity purification of proteins expressed in

E. coli is the presence of naturally histine-rich host proteins, resulting in co-purification of

these contaminants2,3. The two most common E. coli contaminants are ArnA, a bifunctional

enzyme involved in the modification of lipid A phosphates with aminoarabinose4, and SlyD,

a peptidyl-prolyl cis/trans-isomerase1,5. ArnA has several non-consecutive histidine
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residues, which are surface exposed and form clusters within the hexameric structure2,3,6. In

contrast, SlyD is characterized by a 48 amino acid unstructured C-terminal tail containing 15

histidines4,7. Because the Ni-binding mechanism of ArnA and SlyD mimics that of the His-

tag, both proteins are co-purified along with the target protein in His-tag affinity

purifications. For well expressing recombinant proteins, these endogenous proteins are a

small problem because they are out-competed by the sheer amount of the protein of interest.

However, many proteins, including human proteins, large, multi-domain proteins and co-

expressed protein complexes are ignored as viable targets for in vitro studies because they

express poorly and consequently cannot be isolated in sufficient amounts or with high

purity. When protein expression is low, host proteins, especially ArnA and SlyD, have a

similar abundance and compete for binding on Ni or Co resins. As a result, ArnA and SlyD

are purified in nearly equal amounts when compared to the target protein. The most effective

means to increase the purity of the target protein is to use additional affinity tags or multiple

purification steps, however this lowers the yield and increases the purification time and cost.

Because both arnA and slyD knockout strains suffer growth defects, these strains are not

viable options for recombinant protein expression8,9. To address these problems, we

designed a new E. coli expression strain named LOBSTR (low-background-strain), which

features genomic modifications in arnA and slyD based on surface engineering. LOBSTR

maintains normal cell growth but significantly reduces the Ni- and Co-binding affinities of

both host proteins. LOBSTR drastically reduces ArnA and SlyD contamination, thus

enabling the purification even of poorly expressing target proteins.

MATERIALS AND METHODS

Wild type arnA was PCR amplified from E. coli genomic DNA with NdeI and XhoI

restriction site overhangs on the 5’ and 3’ ends, respectively, using primers 1F and 1R (See

all primer details in Table S1), and cloned into the bacterial expression vector pColaDuet

(EMD Millipore). Two serine point mutations were introduced at site 1 (H359S and H361S)

using primers 2F and 2R. Two additional serine point mutations were introduced at site 2

(H592S and H593S) using primers 3F and 3R to generate the final arnA mutant containing a

total of four histidine to serine mutations.

The arnA knockout strain was generated with the E. coli recombineering technique10, using

the pKD4 plasmid as a template for the selectable marker and BL21(DE3) as the parental

strain. The forward and reverse primers, 4F and 4R, were designed to maintain the reading

frame of arnB, which shares its start codon with the stop codon of arnA within the arn

operon11 (also called pmrHFIJKLM operon12). A slightly modified scheme was used to

introduce the arnA mutant back into the arnA knockout strain at the original locus (Fig. S1).

First, mutant arnA was amplified and combined with the amplified selectable marker in a

second PCR step. The resulting PCR product containing mutated arnA and the selectable

marker was transformed into the arnA knockout strain for recombination using the λ Red

recombinase plasmid (pKD46). The selectable marker was eliminated using the FLP

plasmid (pCP20). For the modification in slyD, the arnA mutant strain was transformed with

a PCR product (generated using primers 5F and 5R) containing a selectable marker flanked

by homologous overhangs that, after recombination, result in the elimination of the 46-

residue C-terminal, histidine-rich segment of SlyD. Again, the selectable marker was later
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removed using pCP20. Proper genomic integration was confirmed by PCR and sequencing.

The RIL plasmid (Agilent Technologies) encoding rare tRNAs was transformed into the

final expression strain to improve the expression of our eukaryotic target proteins.

The binding affinity of wild type and mutant ArnA were assessed by immobilizing purified

protein onto a 1 ml His-Trap FF column (GE Healthcare) equilibrated in 50 mM potassium

phosphate pH 8.0, 300 mM NaCl, and 5 mM beta-mercaptoethanol. Protein was eluted with

a linear gradient of 0–150 mM imidazole. The imidazole concentration at the elution peak of

each protein was recorded and compared.

Growth analysis was performed at 18, 25 and 37°C for both LOBSTR and the BL21(DE3)

strains carrying the same test expression plasmid (See table S2 for a list of all test

constructs). Cultures of 1L were grown in LB medium supplemented with 0.4% (w/v)

glucose and antibiotic selection at 37°C to OD600 ~0.7. Protein expression was induced

with 0.2 mM IPTG 20 minutes after the cultures were shifted to the desired expression

temperature. OD600 was measured from the initial synchronization time and until the cells

were harvested ~20–22 hours after induction.

To test protein purification, BL21(DE3) and LOBSTR cultures were started at 37°C in LB

medium supplemented with 0.4% (w/v) glucose and appropriate antibiotic selection. At

OD600 ~0.7, cultures were shifted to 18°C and induced with 0.2 mM IPTG ~20 min later.

Cultures were harvested after 18–20 hours. For each strain and construct tested, a total of

~3.5g of cells were resuspended in 50 mL of resuspension buffer (40 mM potassium

phosphate pH 8.0, 150 mM NaCl, 40 mM imidazole, and 3mM beta-mercaptoethanol) and

lysed with a cell disrupter (Constant Systems). Lysates were cleared for 25 min at 9500×g

and the soluble fraction was incubated with 400 µl bed volume of Ni Sepharose 6 Fast Flow

(GE Healthcare) resin for 1 hour while stirring at 4°C. The resin was collected and washed

with 6 mL of resuspension buffer and eluted with 2 mL of elution buffer (40 mM potassium

phosphate pH 8.0, 150 mM NaCl, 250 mM imidazole, and 3 mM beta-mercaptoethanol).

Elution fractions were analyzed on a 4–15 % SDS-PAGE gradient gel (Bio-RAD) and

stained with Coomassie Blue R250. Purifications using Ni-NTA (Qiagen) and Talon

(Clontech) resins were performed using resuspension buffer containing 20 mM or 5 mM

imidazole, respectively, following manufacturer’s recommendations.

RESULTS

We designed surface engineered forms of E. coli ArnA and SlyD based on their crystal and

NMR structures, respectively6,7 (Fig. S2). Both proteins have exposed histidine-rich

surfaces that result in binding to immobilized metal-affinity resins. ArnA is a hexamer,

formed by a dimer of trimers. The structure revealed two prominent surface-exposed patches

of histidine residues. One of the patches is at a trimer interface and results in a cluster of 9

histidines per trimer (Fig. S2, site 1). We mutated histidine residues 359 and 361 to serines

to abolish this histidine-rich surface. The second cluster of surface-exposed histidines was

removed by mutating histidines 592 and 593 to serines (Fig. S2, Site 2). To determine

whether the histidine to serine mutations resulted in weaker Ni-binding affinity, both

recombinant wild type and mutant ArnA were first purified in batch. Subsequently, pure
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protein was loaded onto a His-trap Ni-column and eluted with a linear imidazole gradient.

Wild type ArnA eluted at a concentration of ~60 mM imidazole, while mutant ArnA showed

significantly weaker binding affinity, eluting at ~30 mM imidazole (Fig. S3). Thus, mutating

four histidine residues to serines in ArnA (24 per hexamer) lowers the Ni-affinity to a level

comparable to non-specific binding. Similarly, analysis of the SlyD NMR structure showed

that all of the clustered histidine residues reside in an unstructured tail at the very C terminus

of the protein (Fig. S2). A previous study suggested that deleting this tail has little effect on

cell growth13,14. Thus, we truncated SlyD at residue 150, thereby maintaining the structural

integrity of the catalytic N-terminal domain while removing the entire unstructured tail.

Using a modified recombineering10 approach, we then replaced the genomic copies of arnA

and slyD in the host strain BL21(DE3) with our mutant versions to create LOBSTR

(overview Fig. S1). To confirm that the combined genetic modifications in LOBSTR also

maintain normal growth, we monitored and compared its growth rate to the parental

BL21(DE3) strain at 18, 25 and 37°C. A test construct (See table S2 for a list of all test

constructs) was expressed over the duration of the growth analysis. No significant difference

in growth rate at any of the induction temperatures was observed between LOBSTR and

BL21(DE3), and the final OD600 of the cultures after overnight induction were very similar

(Fig. 1).

To verify that LOBSTR reduces ArnA and SlyD contamination, we performed small-scale

purifications of seven different protein constructs in the parental BL21(DE3) strain and in

LOBSTR. The seven constructs (Table S2) were chosen to represent a wide range of

potential targets, including low- and higher-expressing constructs, monomeric proteins,

dimeric complexes, 6×- and 10×His-tagged proteins. Most of our test constructs contain a

SUMO-tag fused to the N terminus to increases protein solubility. In the BL21(DE3) strain

background, high levels of contamination by both ArnA and SlyD can be seen in the

elutions (Fig. 2). Illustrating the low expressions levels of target proteins, ArnA and SlyD

are purified in amounts nearly equivalent to that of the target protein, as seen in constructs 2,

4, and 5. However, in LOBSTR, the vast majority of contaminants are eliminated, with the

target protein now being the most prominent protein. Purification of construct 1, a

heterodimeric complex with one binding partner carrying a 6×His-tag, is also greatly

enhanced in LOBSTR. Furthermore, the amounts of all target proteins purified are similar

between the BL21(DE3) strain and LOBSTR. Since the initial purity is much greater, fewer

subsequent purification steps are required to obtain pure protein, resulting in equivalent, if

not greater, final yields from LOBSTR. Curiously, a secondary contaminant, indicated by a

double asterisk (**) in Fig. 2, is also reduced in LOBSTR. This protein, identified by mass

spectrometry as Hsp15, is reported to bind nucleic acids15. While no modifications have

been made to this protein in LOBSTR, we speculate that it may have non-specific binding

affinity to SlyD, which is highly negatively charged. To ensure that the results seen here are

reproducible on a variety of commercially available resins, we purified constructs 1 and 5 on

two additional commonly used resins, Ni-NTA (Qiagen) and Talon (Clontech) (Fig, 2B).

Both resin manufacturers recommend lower imidazole concentrations in the binding and

washing buffers compared to the Ni Sepharose 6 FF resin (GE Healthcare), which was used

for the purifications above. Still, nearly complete elimination of ArnA and SlyD

contamination is observed on these resins as well (Figure 2B).
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DISCUSSION

LOBSTR enables the pursuit of poorly expressed protein targets in E. coli by lowering the

background contamination of ArnA and SlyD. Previously, constructs yielding only 0.1–1

mg of target protein per liter of culture could be considered inadequate for in vitro studies.

At such low levels of expression, ArnA and SlyD compete for the binding capacity of the

metal affinity resin and are co-purified in equivalent or even greater amounts. LOBSTR

enables a significantly higher yield and purity of poorly expressed target protein eluted from

Ni or Co resins. Protein purity is of key importance for most downstream purposes, whether

the protein is used in medical applications, binding studies, functional assays, or structural

studies (EM, SAXS, NMR, and crystallography). An alternate approach to eliminate E. coli

host contaminants has been developed previously9. Here, ArnA, SlyD, and Can were

genomically tagged with a chitin-binding domain and eliminated over chitin beads, pulling

out the contaminants and leaving the target protein in the flow-through. In addition, GlmS is

mutated to reduce binding to Ni and Co. While this method is successful in removing the

contaminants, it requires an additional purification step as well as an additional resin,

increasing both the time and cost of each purification. However, LOBSTR only requires a

one-step purification to eliminate the major E. coli contaminants ArnA and SlyD with no

additional costs and is specifically designed for low-expressing proteins. An alternate

purification strategy is to simply perform a second IMAC step after cleaving off the His-tag

from the protein of interest so that contaminants are rebound while the cleaved protein

remains in the flow-through. While this method is successful when the contaminants make

up only a small fraction of the total immobilized protein in the first IMAC step, it is highly

inefficient if the contaminants are abundant and thus substantially reduce the initial yield.

LOBSTR instead, incorporates genomic modifications to arnA and slyD in order to reduce

the affinity of their gene products for metal affinity resins, eliminating them from co-

purification with recombinant proteins of interest. Thus, proteins that were previously

ignored as targets for recombinant expression and purification are now accessible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LOBSTR and the parental BL21(DE3) strain show comparable growth
The growth (OD600) of both LOBSTR and the parental BL21(DE3) strain was measured

from initial synchronization at 0 hours until the final harvest. Both strains carried the same

expression plasmid and were grown at 37°C until an OD600 ~0.7, at which point protein

expression was induced at 18, 25 and 37°C (black arrow). The growth curves for LOBSTR

and BL21(DE3) are shown in red and black, respectively. Cell growth during log phase and

final cell density is similar for both strains.
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Figure 2. ArnA and SlyD are eliminated from His-tag purifications from LOBSTR
Elution samples of test purifications from BL21(DE3) and LOBSTR using common metal

affinity resins are shown. A. Seven protein constructs were purified from both the parental

BL21(DE3) strain and LOBSTR using Ni Sepharose 6FF resin (GE Healthcare). The

constructs are numbered 1–7, and contain either a 6×His-tag (1 and 4) or a 10×His-tag

(2,3,5–7). See table S2 for a list of all test constructs. The elution samples were run on an

SDS-PAGE gel and stained with Coomassie Blue R250. ArnA and SlyD are indicated by

arrows and target proteins indicated with a black circle (●). The double asterisk (**)
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indicates Hsp15, another protein showing reduced Ni-binding affinity in LOBSTR. B.
Purifications of constructs 1 and 5 from BL21(DE3) and LOBSTR were also carried out on

two additional commonly used resins, Ni-NTA (Qiagen) and Talon (Clontech). In each case,

ArnA and SlyD are successfully eliminated in LOBSTR.
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