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Abstract

Modern high-throughput structural biology laboratories produce vast amounts of raw experimental

data. The traditional method of data reduction is very simple—results are summarized in peer-

reviewed publications, which are hopefully published in high-impact journals. By their nature,

publications include only the most important results derived from experiments that may have been

performed over the course of many years. The main content of the published paper is a concise

compilation of these data, an interpretation of the experimental results, and a comparison of these

results with those obtained by other scientists.

Due to an avalanche of structural biology manuscripts submitted to scientific journals, in many

recent cases descriptions of experimental methodology (and sometimes even experimental results)

are pushed to supplementary materials that are only published online and sometimes may not be

reviewed as thoroughly as the main body of a manuscript. Trouble may arise when experimental

results are contradicting the results obtained by other scientists, which requires (in the best case)

the reexamination of the original raw data or independent repetition of the experiment according

to the published description of the experiment. There are reports that a significant fraction of

experiments obtained in academic laboratories cannot be repeated in an industrial environment

(Begley CG & Ellis LM, Nature 483(7391):531–3, 2012). This is not an indication of scientific

fraud but rather reflects the inadequate description of experiments performed on different

equipment and on biological samples that were produced with disparate methods. For that reason

the goal of a modern data management system is not only the simple replacement of the laboratory

notebook by an electronic one but also the creation of a sophisticated, internally consistent,

scalable data management system that will combine data obtained by a variety of experiments

performed by various individuals on diverse equipment. All data should be stored in a core

database that can be used by custom applications to prepare internal reports, statistics, and perform

other functions that are specific to the research that is pursued in a particular laboratory.

This chapter presents a general overview of the methods of data management and analysis used by

structural genomics (SG) programs. In addition to a review of the existing literature on the subject,

also presented is experience in the development of two SG data management systems, UniTrack

and LabDB. The description is targeted to a general audience, as some technical details have been

(or will be) published elsewhere. The focus is on “data management,” meaning the process of

gathering, organizing, and storing data, but also briefly discussed is “data mining,” the process of
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analysis ideally leading to an understanding of the data. In other words, data mining is the

conversion of data into information. Clearly, effective data management is a precondition for any

useful data mining. If done properly, gathering details on millions of experiments on thousands of

proteins and making them publicly available for analysis—even after the projects themselves have

ended—may turn out to be one of the most important benefits of SG programs.
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1 Introduction

1.1 Data in Structural Biology

Both structural genomics consortia and individual structural biology laboratories produce

tremendous amounts of data, and having accurate, complete and consistent data is critical for

reproducibility of biomedical research [1]. A single trip to a synchrotron for data collection

by a productive crystallographic lab can generate hundreds of datasets totaling around 2 TB

of raw data [2]. Modern data processing software can reduce, on the fly, a raw set of

diffraction images into a single file that contains a description of every diffraction peak:

Miller indices, intensity, and experimental uncertainty (sigma). These data are further

reduced into one relatively small file that contains scaled and merged diffraction intensities.

However, each file has to be associated with a particular sample (protein crystal) and the

description of the experiment, which is usually written in the header of the diffraction

image. These data are further used for structure determination and/or for function–structure

relation studies.

To perform these studies the experimenter needs information about the protein (at a

minimum, the protein sequence), crystallization conditions, and, for functional studies,

protein production details. If this information is available, the process described above is

simple to implement. Data harvesting from structure determination is relatively

straightforward. The whole process following the placement of a crystal in the X-ray beam

can be entirely controlled and captured by computer.

However, while this is very simple in theory, this simplicity has not yet been translated into

practice. Analysis of the Protein Data Bank (PDB) [3, 4] shows that the number of data

collection parameters marked as “NULL” in the header information (i.e., the detailed

description of the experiment) is still significant [5, 6]. Moreover, data in the header are

sometimes self-contradictory, contradictory to the experimental description in the paper

citing the structure, or both [7, 8]. In that case, contacting the authors of the deposit and

paper may be the only way to resolve the arising problems. Taking into account that only a

small fraction, about 13 % [9], of structures determined by high-throughput consortia are

converted (reduced) to peer-reviewed papers, the correctness of data uploaded to various

databases like TargetTrack [10], TargetDB [11], and data banks like PDB is absolutely

critical (see below).
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1.2 Large-Scale Initiatives Create New Databases: TargetDB/PepcDB/TargetTrack

Since their inception, many structural genomics efforts have adopted policies that

experimental data produced by member consortia should be made available to the

community from the moment of target selection. This has been particularly true for the two

large initiatives from the National Institutes of Health (NIH): the Protein Structure Initiative

(PSI) established in 2000 by the National Institute of General Medical Sciences (NIGMS)

and the SG centers focusing on infectious diseases established in 2007 by the National

Institute of Allergy and Infectious Diseases (NIAID). Even some partially privately funded

SG efforts like the Structural Genomics Consortium (SGC) have established policies to

release some experimental data to the general public [12] (typically only after the structure

is determined and deposited). In the specific case of the centers funded by NIGMS and

NIAID, the NIH established the target registration database, TargetDB [11], and required

that all member consortia deposit data on the progress of their targets. Subsequently many

other SG centers world-wide have deposited some of their experimental data as well.

Initially, the main purpose of TargetDB was the prevention of duplication of effort between

different SG centers and maximization of the structural coverage of the protein fold space.

The scope of the data was very modest. It included protein identification information

(sequence, organism) and the timeline of changes in experimental status for each target.

Status events included target selection, cloning, expression, purification, as well as

crystallization, diffraction, determination of crystal structure, and PDB deposition (for

targets studied by X-ray crystallography) or obtaining the HSQC spectra, determination of

NMR structure, and BMRB/PDB deposition (for targets studied by NMR).

However, even the modest amount of data available in TargetDB permitted interesting

analyses of the overall SG structure determination pipeline [13, 14]. In particular, the overall

efficiency of the pipeline—the ratio of solved structures to clones—was found to be below

10 % even in the most productive centers. The two steps that contributed most to the failure

of a target in the pipeline were production of soluble protein and diffraction-quality crystals.

Not surprisingly, the success ratio depended very strongly on the type of protein as well as

the methodology used by particular centers. There was not a single overall bottleneck factor.

In 2004, TargetDB was extended to the Protein Expression, Purification, and Crystallization

Database (PepcDB) [15] which in addition to simple status history included multiple trials,

tracking of failed as well as successful experiments, and more detailed descriptions of

protocols.

In 2010, PepcDB and TargetDB were merged into a single new database, TargetTrack, part

of the new PSI-Structural Biology Knowledge Base (PSI-SBKB) [10, 16]. The new

repository extended the definition of a target to include protein–protein complexes and

incorporated tracking of biological assays needed in the PSI:Biology phase. As of January

2013, TargetTrack contained data on over 300,000 targets and over 1,000 protocols.

1.3 Diverse Approaches to Data Management in SG Centers

Development of effective data management systems was a necessity for the large-scale SG

centers, not only in order to provide the data to the scientific community but also
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particularly to effectively handle the huge amounts of experimental data, plan experiments,

adjust experimental approaches (e.g., choice of cloning vectors, sequence truncation,

crystallization conditions, structure determination procedures), and prioritize targets. These

needs required gathering far more data than what was being required by TargetTrack.

In general, two levels of data management are needed in high-throughput, high-output

structural biology programs: the target tracking level and the experiment tracking level. The

target tracking level comprises target selection, overall experimental status of each target,

center-wide efficiency statistics, and generation of reports to the public and to other

databases such as TargetTrack. Almost all SG centers have a separate target-tracking

database, though some functionality (e.g., target selection) can be “offloaded” to other

specialized databases. The primary audience for the target-tracking level is everyone

interested in a “high-level” view of the data produced by the center: the center’s scientists

and administrators as well as members of the scientific community with interest in the

targeted proteins. This level is typically not designed for uploading new data or providing all

details of individual experiments; these tasks are better handled at the experimental tracking

level.

The experimental tracking level comprises the tools used to collect the results of

experiments performed in the laboratory. This type of tool is generally known as a

“laboratory information management system” or LIMS. LIMSs are typically used day to day

by the researchers conducting the experimental work of a laboratory and may be highly

customized to the protocols and work flow of a particular laboratory. LIMSs may also

provide tools to help design experiments, operate laboratory equipment, semi-automatically

harvest data, track the use of resources, etc. As a result, the primary audience for the LIMS

is composed of those interested in a “low-level” view of the data, the center researchers

themselves. As compared to the target-tracking level, it is not uncommon to use more than

one LIMS in a single SG center, as different systems may be used in different laboratories.

It should be noted that splitting the data management system of a typical SG center into two

distinct levels, “high-level” target tracking and “low-level” experiment tracking, is

somewhat arbitrary. Some data are natural candidates to be kept at the LIMS level only, for

example, the location in the freezer where a particular clone is stored or the particular lot of

a reagent or a crystallization buffer. Conversely, some data may only apply at the target-

tracking level, for example, the number of publications referencing a given protein. In

principle, it is possible for a single database and/or data management system to fully

implement both levels. However, in practice, it seems that solutions where the two levels are

implemented as separate systems/databases appear to be more common, especially for the

larger scale projects.

There have been several “top-down” attempts to design a general framework for SG data

management systems in the form of data dictionaries [17] or a protein production UML data

model [18]. The latter has been implemented by several systems, such as HalX [19] or the

Protein Information Management System (PiMS) [20] used by a number of European SG

labs. However, most of the SG centers set up data management systems in a more ad hoc,

“bottom-up” manner. Initially, some centers attempted to use commercial LIMS, but often
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these solutions were not flexible enough or even robust enough, and most SG centers

developed their own solutions “in-house.” There are exceptions to this rule. For example,

the Structural Genomics Consortium uses two commercially available software systems: the

Beehive LIMS (Molsoft LLC; http://www.molsoft.com/beehive.html) and Electronic

Laboratory Notebook (now iLabber; Contur Software; http://www.contur.com/home/). It

should be noted however that unlike many SG consortia, SGC does not deposit the results of

its experiments to PepcDB or TargetTrack. Several of the SG-developed data management

systems have been described in the literature [21 – 23], but to our knowledge, none of these

systems have been fully commercialized.

One comprehensive data SG management system that has gained wider use is Sesame,

developed by Zsolt Zolnai at Center for Eukaryotic Structural Genomics (CESG) [22]. It has

been adopted by a number of labs and specialized centers.

The data management system for the Joint Center for Structural Genomics (JCSG) was

developed by the center’s programming team in parallel with the construction of the

physical pipeline. The LIMS part of the system functions as a hub of information, recording

all pipeline steps from target selection to deposition. The tracking database uses Oracle as its

engine and tracks 424 experimental parameters, organized into 130 tables [24]. The tools

and interfaces to the database contain approximately 360,000 lines of code, which illustrates

the level of complexity of this and similar systems.

The Northeast Structural Genomics (NESG) consortium’s data management system is

organized as a “federated database framework,” comprising a set of distributed,

interconnecting databases [21]. The main target-tracking database, SPINE, serves as an

analysis system, utilizing data mining and machine learning tools. In particular, decision

trees are used for predicting chances for protein solubility, successful purification, and

crystallization. These predictions are used in directing targets to X-ray crystallography or

NMR studies [14].

The other two large-scale PSI:Biology centers—the Midwest Center for Structural

Genomics (MCSG) and the New York Structural Genomics Research Consortium

(NYSGRC)—use the data management system developed in the Minor Lab at the University

of Virginia. In both cases, the system is based on a collection of customized LIMS in each

site laboratory and a central database (UniTrack, described below) that curates and unifies

data obtained by various laboratories. In the case of MCSG, several different LIMSs are

used in different laboratories, including LabDB, Mnemosyne, and ANL-DB. In NYSGRC,

two different instances of LabDB are used. Similar systems are also deployed in the Center

for Structural Genomics of Infectious Diseases (CSGID) and the Enzyme Function Initiative

(EFI).

2 A Centralized Target Management System: UniTrack

The central, public system comprising the target-tracking level of the SG management

system developed by the Minor Lab at the University of Virginia is named UniTrack. As

mentioned above, the MCSG, NYSGRC, CSGID, and EFI consortia are all driven by

variants of the UniTrack system. The system comprises a core abstraction based on 10 years
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of experience in SG data management, with a common database architecture and set of tools

for managing target and experimental data. Each site is based on the UniTrack core but is

then highly customized for the needs of the particular center or consortium of research

laboratories. In each case, the UniTrack-derived system comprises the central tracking

database and a set of auxiliary databases and applications, which collect and integrate

experimental data and are provided by distributed LIMSs deployed in participating

laboratories (Fig. 1). Experimental data from different LIMSs are combined and

incorporated into UniTrack via a standard protocol. In the most basic case, each LIMS

generates XML files in a predefined format, which are parsed by UniTrack tools. An

alternative (and more efficient) method, where a LIMS directly communicates with the

tracking database, has also been developed. The LIMSs can be very diverse; however, they

all must be able to provide the minimum set of required data for cloning, expression,

purification, and crystallization experiments.

The experimental pipeline starts with target selection and validation, which is specific for a

particular center. The validation process is performed automatically and typically involves

checking the accuracy of the amino acid and the nucleotide sequences as well as checking if

the selected protein is homologous to proteins with structures in the PDB or to targets

selected by other SG centers. Validated targets are inserted into the tracking database.

Protein annotations and related data are automatically imported from external databases such

as NCBI GenBank [25], Uniprot [26], PDB, and the PSI-SBKB. Depending on the needs of

a particular center, between 30 and 80 attributes of any given protein target are stored in

UniTrack.

UniTrack keeps a history and the results of the experiments for each target (Fig. 2). About

400 distinct data attributes are used to describe an experimental trial, from the cloning of a

target through the determination of its structure. Almost all protein production and

crystallization data can be automatically imported from the local LIMS or equipment

database. However, smaller labs that do not have a LIMS deployed can still contribute data

to UniTrack by entering it manually using the customized interface. Diffraction and

structure determination data is currently imported automatically only from the LabDB

instances that have the hkldb module enabled [27]. Researchers in other labs upload scaling

logs and refinement files manually via the interface.

The tracking database also generates real-time internal reports and statistics as well as the

XML files that are being submitted to the TargetTrack repository. In addition, the periodic

reports required by various bodies are generated in real time from the database and

accessible to the general public. In some sense, all of the portions of UniTrack that generate

publicly accessible web pages serve as reports.

The customized instances of UniTrack for each center drive dynamic parts of the centers’

corresponding web portals. The web interfaces are implemented using the Model–View–

Controller (MVC) architecture, with separate layers for data retrieval (model), “business

logic” (controller), and web page rendering (view). Even with the use of the CakePHP MVC

framework (http://cakephp.org) the customized web interfaces for the centers are quite
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complicated; as an example, the implementation of the CSGID web interface contains over

50,000 lines of source code.

2.1 The LabDB “Super-LIMS”

LabDB is a modular “super-LIMS,” originally developed to track the structure

determination pipeline from cloning to structure determination (Fig. 3). The central

component of the system is a PostgreSQL database server coupled with a web-based

framework, along with two specialized tools: Xtaldb, for designing and tracking

crystallization experiments, and hkldb, a module of the HKL-2000/3000 system [27] for

incorporating information from crystallographic data collection and structure determination.

hkldb and Xtaldb can also be used with stand-alone databases.

One of the fundamental design goals of LabDB is to harvest data automatically or

semiautomatically from laboratory equipment whenever possible. To that end, the system

has modules to import data from a variety of different types of laboratory equipment,

including chromatography systems (GE Healthcare AKTA systems), electrophoresis

documentation and separation systems (Bio-Rad GelDoc, Caliper LabChip GX),

crystallization observation robots (Rigaku Minstrel, Formulatrix Rock Imager), and others.

The system provides tools to import data from groups of many similar experiments at once,

for example from spreadsheet files, and to track shipments of purified protein and other

samples from one laboratory to another.

A good example of how the LabDB system incorporates laboratory hardware to capture data

automatically is the reagent tracking module. The system provides a tool to label bottles of

chemical reagents with unique barcodes, which are tied to more detailed information about

the chemicals in the database. When a researcher prepares a stock solution of a given

reagent, he or she first scans the barcode of the reagent bottle before weighing out the

chemical. LabDB uses this to track the particular lots and suppliers of chemicals and link

them with the details of the stock solutions created (which are then also labeled with unique

barcodes). These barcodes allow data to be carried along the pipeline, providing much more

detailed information about the origin and history of given stock solutions than would be

possible with hand-written labels. Furthermore, as this data is linked to later steps, it is

possible to determine which reagent lots were used in successful vs. unsuccessful

experiments, especially if complications arise in the replication of experimental results.

Two issues are critical for a LIMS to be widely adopted: the LIMS should facilitate

experimental procedure whenever possible, and the system should harvest data accurately

and efficiently (i.e., both quickly and easily). Automatic retrieval of data directly from lab

equipment such as balances or solution formulation robots, along with efficient collection of

experimental design parameters, minimizes manual data entry and facilitates a more

complete and more accurate description of the experiment. Using barcode scanners and

tablet computers, LabDB performs calculations on the fly based upon the information

retrieved via the barcodes, such as calculating the amount of chemical needed to create a

particular concentration given various volumes.
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The most recent advances in LabDB are in the area of tracking other kinds of biomedical

experiments beyond the traditional SG pipeline of clone to structure. These include

spectrophotometric kinetic assays, fluorescence-based thermal shift assays, and isothermal

titration calorimetry.

2.2 The Expansion of SG into Biomedical Research

The infectious disease centers funded by the NIAID were among the first to expand the

traditional SG pipeline into biological and biomedical research. The CSGID and the Seattle

Structural Genomics Center for Infectious Disease (SSGCID) are tasked to specifically

characterize the structures of proteins with important biological roles in human pathogens,

especially those on the NIAID Category A–C priority lists. A particular focus of these

centers is screening purified proteins for binding to inhibitors, cofactors, substrates, and

analogs. This screening is done both in silico and in vitro via a variety of techniques,

including fluorescence-based thermal shift binding, spectrophotometry, isothermal titration

calorimetry, and crystallography-based screening. Sometimes the results of computational

experiments like model prediction or ligand binding are also included.

At its outset in 2000, the PSI was predominantly focused on developing new technologies

and protocols for structure determination and, in its second phase, solving significant

numbers of structures in part as an attempt to increase the structural coverage of the “fold

space” of proteins [28, 29]. In its third phase, PSI:Biology, the initiative has expanded into

large-scale biological and biomedical research. By focusing on targets of biological and

medical significance, whether selected by PSI centers or nominated directly by the

biological community, PSI:Biology centers can expand their impact by providing not only 3-

D protein structures but also techniques for efficient protein production and purification and

materials such as cloned expression vectors (made available through material repositories).

In some cases, purified protein samples are even supplied directly to other laboratories. The

determination of 3-D protein structures, in concert with advanced biomedical research,

allows for more complete characterization of many significant proteins and presents the

biochemical and biophysical data in the context of structural information. The ultimate goal

is the creation of a powerful scientific and intellectual network to study even the most

challenging biomedical problems.

The EFI, a U54 “Glue Grant” funded by NIGMS, is another example of the use of SG

methods applied to a large-scale biological project. In this program, the traditional SG

pipeline of clone to structure is only the first step in a broader program to develop a large-

scale, multidisciplinary strategy to assign function to unknown enzymes identified by

genome sequencing. Biological experiments performed by the EFI include enzymatic

assays, binding assays, mass spectroscopy, metabolomics, and in silico binding studies.

2.3 Data Management Challenges in Collaborative Networks

One cannot overestimate the importance of target selection by the scientific community for

such collaborative networks. For PSI:Biology the mechanism is twofold: (a) community

members can submit targets through the community nomination target program and (b) the

“high-throughput-enabled biology partnerships” supported by PSI:Biology can directly
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nominate targets relevant to their areas of functional study. These biological partnerships,

where consortia of biological researchers from a variety of areas are paired with high-

throughput structure determination consortia, focus on particular cellular organelles or

protein complexes (such as mitochondrial proteins, nuclear receptors, tight junction

membrane proteins) or particular systems (immune function complexes, natural product

biosynthesis, cell–cell adhesion, etc.). As of February 2013, PSI programs had about 3,000

community requests and 6,500 targets selected by the high-throughput-enabled biological

partnerships.

Collaborative networks provide special challenges in experimental data management, as

biological research uses a very broad array of methods, including microscopy, enzymology,

biophysical techniques, and whole-cell experiments to address projects of interest. The

power of such a network can be dramatically enhanced when large centers provide not only

structural information but also pure protein samples to the whole network. The protein

samples can then be used for many different in vitro experiments. The importance of the

ability to perform a large array of experiments using the same protein sample cannot be

overemphasized, as inconsistent experimental results may be caused by the use of different

protein samples, e.g., differences in affinity tags, cloning boundaries, and chemical

incorporations [30–32].

Similarly, the NIAID centers also accept target nominations from the community. Targets

directly requested by community and other “community-interest” targets constitute about a

third of all targets for both the CSGID and SSGCID. As of February 2013, CSGID has

accepted about 2,000 community targets from over 100 requesters—mostly academic

researchers but also pharmaceutical companies such as Novartis and Merck. Close to one-

half of all structures solved by the CSGID and about 40 % by SSGCID are community-

nominated or community-interest proteins. Community collaborations impose specific

demands on SG data management systems. They require establishing effective

communication between the community researchers and the center, especially at the stages

of selection, cloning, ligand binding, and functional studies. UniTrack contains tools that

allow community requesters to monitor the progress of their targets.

In addition, the data management system for SG centers must interact with another

component of the collaborative network—the material repositories. The two existing

repositories, the PSI:Biology Materials Repository (http://psimr.asu.edu/) [33, 34] and BEI

Resources (http://www.beiresources.org) [35], used by the infectious disease SG centers

store tens of thousands of protein clones that are available to researchers worldwide. LabDB

contains modules assisting the center researchers in tracking shipments of clones to the

repositories, while the UniTrack interfaces allow checking the availability of particular

constructs.

3 Tracking Biomedical Experiments with SG Data Management Systems

For the traditional structural biology pipeline, the experimental steps required to produce,

for example, a structure by X-ray crystallography are well prescribed. A gene of interest is

cloned and expressed, protein is purified and set up for crystallization, crystals are
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harvested, crystallographic data are collected, and the structure is determined (a similar

pipeline can be described for structure solution by NMR). Despite differences in protocol,

the basic data parameters of each type of experiment are well known. Data parameters

comprise both the details of an experimental design and the measurable outcomes of the

experiment. For example, design parameters for an expression experiment might include the

strain of organism expressed, media used, temperature of expression, etc., and outcome

parameters might include the rate and optical density of growth, estimates of expression

yield, etc.

Furthermore, the “traditional” process is essentially linear; for each given step in the

process, the prior step is a prerequisite. Thus, (1) the types of experiment steps needed

(cloning, expression, etc.), (2) the data parameters to be collected at each step, and (3) the

order in which steps are performed can all be defined a priori. This has made the design of

the data management systems used to track high-throughput structural biology experiments

somewhat straightforward. However, the process of target salvage or rescue, which involves

returning to prior experimental steps once a target has “stalled” or otherwise failed in the

pipeline, does add some complications.

Today, SG centers (and other programs that include high-throughput structural biology as a

component) increasingly incorporate into their work flows other types of biomedical

experiments spanning many other disciplines: biochemistry, biophysics, microbiology, cell

biology, etc. This has raised significant challenges in data management, whether these

biomedical experiments are performed in-house or by research partnerships. Unlike the

traditional SG data pipeline, the number of different types of experiments that may be

performed has expanded dramatically. Each of these experimental procedures differs

significantly both in methodology and in parameters that are collected and thus require

different types of tools to efficiently capture their data.

Additionally, the ways in which experiments are interrelated are more complex. Biomedical

studies are generally not linear (i.e., they cannot be organized into a simple, step-by-step

“pipeline”), and many experimental steps can be done in any order. For example, a ligand

binding experiment can either be done before or after structure determination; one is not a

prerequisite for the other. However, the two experiments can influence one another; the

results of a ligand-binding screen can suggest potential soaking experiments, or conversely,

unidentified density in a structure can suggest potential binding partners. Given the more

complex interrelationships between experiments, the data structure required to track them is

much more complicated.

In an ideal world, individual components of a LIMS would be developed to track details of

each kind of biological or functional experiment and track the appropriate data. The sheer

diversity of techniques used makes this development slow and resource intensive. To some

degree, such tools are in development. For example, the LabDB LIMS includes modules for

tracking the results of spectrophotometric kinetic assays, fluorescence-based thermal shift

assays, and protein and DNA electrophoresis. The Sesame LIMS includes modules for NMR

and cryo-EM experiments as well as metabolomics. A key challenge for such LIMSs is that

they should be able to automatically import detailed experimental information from
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laboratory equipment. For example, LabDB automatically parses data files from two

different RT-PCR systems used for fluorescence-based thermal shift assays and converts the

data into a common format for data comparison and analysis (Fig. 4).

A somewhat complementary approach is to develop a more “generic” LIMS design, which

allows the researcher to create a “protocol” describing a type of experiment and then provide

data each time the protocol is used. Typically, the data provided for each experiment type is

more general—for example, a textual description of the experiment or perhaps the names

and values of parameters relevant to the experiment described. The TargetTrack

specification allows experimenters to provide data in this format for “biological

experiments” or “biophysical assays.” Another example of a LIMS that follows this model is

PiMS, where most data input to the system is described in terms of protocols and samples.

The advantage of such an approach is in its flexibility. New components of the LIMS are not

needed to adapt to the new experimental types. This is at the expense of greater difficulty in

data mining due to the relatively unstructured format of data imported into the system.

In order for a LIMS to be successful, the system must also provide tools that drive the

design of new experiments. This is useful in multiple contexts, whether one is identifying

targets for salvage/rescue or providing more immediate feedback while an experiment is still

in progress. The tools for this purpose should make use of well-designed data mining

mechanisms. For example, the new very-fast-pixel array detectors allow for data collection

with narrow oscillation ranges, even below 0.01°. Tests of these detectors with high-quality

crystals may show the advantages of using very narrow oscillations. In practice however, the

mosaicity of typical macromolecular crystals used today for structure solution (for an

example, see the distribution in Fig. 5) limits the advantages of narrow oscillations. For

high-mosaicity crystals, experimenters should use larger oscillation ranges such as 0.5°

rather than 0.05°. Unfortunately, there are no publicly available databases of experimental

conditions used during diffraction experiments, and data collection protocols are based more

on anecdotal evidence than on data mining. The large difference in productivity of similar

synchrotron beamlines can be associated with differences in experimental protocols that

synchrotron users are advised to adopt [36].

3.1 Data Mining

The types of data mining that can be done with the data collected by SG centers can be

divided into two broad categories. The first is real-time (or near-real-time) analyses, which

provide not only overall summaries of the status of an experimental pipeline but also

additional experimental guidance. The second is more detailed statistical analyses, which

require more in-depth transformation and processing of the results.

Typically, real-time analyses can be done through the use of “dashboards” or “scoreboards,”

which present a current (or nearly current) view of a particular type of data in a running

database. These analyses can include such trivial measures as the overall success rate of a

center, the success rate of individual experimental steps for particular labs or for particular

organisms, and the mean time between target selection and deposition for various classes of

proteins. It can also include some less trivial analyses that can be computed in real time,

such as determination of phasing method—single-wavelength anomalous diffraction (SAD),
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multiple-wavelength anomalous diffraction (MAD), or molecular replacement (MR)—that

would maximize the probability of success in the diffraction experiment. For structure

validation the analysis of various parameters describing structure quality in the context of

best similar structures is very important. There are a number of examples of such dashboards

in the interfaces of the “unified” data management systems (Figs. 6 and 7).

In particular, internal reports tracking the productivity of member labs (which tabulate the

number of experimental steps performed at each lab overall as well as within the last 2

weeks or 2 months) have been very useful. These internal reports can aid in the early

identification of bottlenecks arising in the experimental pipeline. Of course, this is only

possible if the data in the database are current and not “censored” by experimenters.

Censorship is defined in this case as an omission of unsuccessful experiments, mainly

because the researcher did not see the value of a negative result. Other types of dashboards

often used are the scatterplots representing the quality measures for deposited structures

(such as R, Rfree, or the Molprobity clashscore vs. resolution; see Fig. 7). These plots can be

filtered by various criteria, such as the project, organism, source of crystals, or name of the

crystallographer. These reports make apparent which deposits are outliers with respect to the

structure quality guidelines established by the NIH. The authors of such deposits are often

subsequently asked to re-refine and redeposit them.

By contrast, more detailed analyses often require significant processing of the data,

determination of data accuracy and completeness, calculation of statistical measures, etc.

and thus require a more detailed (and off-line) processing of experimental data. These types

of data mining studies have included in-depth measurements of the properties of peptides

most likely to produce crystal structures [14, 37, 38] and the design of new formulations of

crystallization screens [39, 40]. Ideally, such data mining studies should produce tools to

help researchers design, validate, and optimize their experiments. For example, the Check

My Metal server enables improved refinement of metal sites in protein structures [41].

3.2 Making Data and Information Available to the Public

A key goal of many SG programs is to make their results available and useful to the

scientific community in forms other than publications or PDB deposits. This objective is

addressed in part by the PSI Knowledgebase [10, 16], which provides a centralized web

resource for searching SG structures, biological annotations, homology models, and

experimental data and protocols. The ultimate purpose of the Knowledgebase is to convert

SG data into useful information to be used by the biological community. Some individual

centers also developed tools for dissemination of SG results. For example, JCSG developed

Topsan [42], which is a wiki-type web resource that creates individual “pages” describing

each PDB deposit to which the community can collaboratively add new information. This

approach is also used by Proteopedia [43]. The SGC developed iSee interactive 3D

presentations of structures solved by the consortium. These are generated using the ICM

software developed by Molsoft LLC [44]. The UniTrack-based web portals have the ability

to automatically generate a set of interactive 3D presentations for new protein structures

using the ICM technology. Interactive content is embedded directly on the pages describing

each structure and can be accessed using the freely available ActiveICM plug-in. Each
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structure presentation is accompanied by a short annotation written by the researcher who

solved the structure. This includes a structure description and any potential functional

information. Each automatically created presentation can be further expanded and/or highly

customized by the annotator. An example of an extended and highly customized

presentation can be seen using an ICM-enabled web browser on the CSGID website (http://

csgid.org/csgid/deposits/view/3E4F). Within the presentation, users can rotate and

manipulate structures to view structural units, ligands, oligomerization states, and B-factor

distributions. Additionally, presentations can be downloaded and edited using ICM Browser,

Browser Pro, or ICM Pro. ActiveICM is being used for scientific publishing [45] by journals

such as PLoS ONE and Nature.

3.3 Unmet Challenges

A data management system is truly successful when the paradigm “data in, information out”

is fully satisfied. Despite enormous progress, the major unmet challenge of high-throughput

programs including structural genomics is an adequate rate of conversion of data into

biomedically useful information, ideally as peer-reviewed papers. This is a general difficulty

of modern science; one is swamped in experimental data, and extraction of useful

information is quite often a Sisyphean task. Addressing this task effectively requires either

very substantial manual labor or implementation of “knowledge-based systems,” with

comprehensive tools for efficiently summarizing and mining experimental data, and in some

cases implementation of machine learning methods. Ultimately, the only way to check the

consistency and accuracy of a database is to examine reports generated by the database for

internal and external users. The usefulness for external users, i.e., the scientific community,

is the justification for the high costs related to the development and maintenance of

databases. The scientific community is not limited to academic users but may also include

commercial companies working on new drugs. Reliable information about the relationships

between functional and structural data could potentially save millions of dollars in the drug

discovery process [1].

Why is the development of data management systems so difficult? There may be no single,

definitive answer to that question, but the problem is clearly widespread. The personal

experience of one author shows that even a relatively simple database to track an airline’s

checked baggage may fail when the baggage is lost and cannot be recovered for a number of

days due to inadequate tools for checking data consistency. Similarly, the authors have

received e-mails from an airline at (for example) 8:30 p.m. with a new late night departure

time but also stating that they should still “be at the gate prior to 4:30 p.m.,” making one

wonder if airline database programmers have mastered time travel. Unfortunately for

database operators/developers, but fortunately for science, cutting-edge databases used in

biomedical sciences appear to operate with fewer failures despite their tremendous

complications. Keeping track of very diverse biological experiments performed in multiple

labs, as well as tracking the shipments of constructs, proteins, crystals, and data between

labs, is a problem of great complexity. In our opinion the main issue faced by data

management systems in biological consortia is “creeping entropy,” the accumulation of

inconsistent or plainly wrong data, causing users to lose confidence in the usefulness of the

system. “Virtually all software systems today suffer to an unnecessary degree from the force
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of entropy” [46]. Correction of these issues requires data curation, which is very expensive

in terms of time and resources. In fact, data curation should be considered a necessary part

of the routine maintenance of any database to oppose its natural tendency toward disorder

and inconsistency. This process cannot be (fully) automated; while tools can be developed to

assist in the curation process, ultimately a human being must review the data to ensure its

validity. In recent years, the needs of biology-related databases led to the formation of a new

and growing profession, biocurator [47]. To illustrate the scope of this new field, scientists

from over 250 different institutions worldwide are represented in the International Society

for Biocuration [48].

A particular problem in designing and maintaining effective data management systems for

large-scale biological programs is the interaction of two very different “cultures” involved

with the system: the data management system developers and the biological researchers.

People with training and experience in both software development and biological research

are still relatively rare. Despite earnest efforts, the two groups often do not understand each

other well. For example, addressing a request by a biologist, a system developer may

propose a solution that is elegant, general, and yet fails completely to address the needs

identified by the biologist. In turn, biologists are often bewildered when they are told by

system developers that a supposedly minor modification of their experimental procedure

would require an extensive redesign of the database schema taking several months of work.

It is very important that project leaders try to bridge this cultural gap. This is especially

crucial when designing new parts of the data management system. Development of an

appropriate database abstraction is the single most important part of the design, requiring

close collaboration of the two groups. At the testing and maintenance stage, it is crucial that

real experiments leading to new structures and publications are performed by these two

groups together. This approach is used in the development of LabDB and UniTrack, where

both the people responsible for particular biomedical projects and the people who are

writing the code are considered “developers” of the data management systems.

As mentioned above, one of the particular challenges of tracking biological data is the sheer

diversity of potential experiments. When a chain of experiments is planned, one successful

experiment in the chain can make others unnecessary. When data management systems were

focused on tracking the “standard” structure determination pipeline, there was an implicit

understanding of the scope of the methods that would be used, and thus most of the

parameters that would need to be harvested could be determined or predicted a priori. The

level of diversity increases even more when data from different consortia are brought

together into a single database like TargetTrack.

Another particular challenge is in the sheer amount of experimental data to be collected. As

the centers continue to become more efficient at producing greater numbers of experimental

samples more quickly, the process of actually entering the results into the databases

becomes a rate-limiting step, even when data are harvested semiautomatically. In particular,

the process of protein crystallization, where each protein sample can potentially be used to

produce thousands of individual crystallization trials, represents a virtual avalanche of data

to be imported into the database. Further, given the comparatively large number of

crystallization experiments typically required to yield useful results [49], the temptation to
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only include positive outcomes is strong, even though both positive and negative results are

crucial for usefully data mining crystallization results. Some LIMSs, like LabDB, have

partially addressed this issue by importing experimental data from the laboratory

automatically or semiautomatically, but many systems still have challenges in ensuring that

data entry and import are as simple as possible. Similarly, systems for importing data like

the XML files used by TargetTrack will not be able to scale to the millions of data produced

by the high-throughput centers.

Outside SG and other large projects, in many small-scale biological research laboratories,

data are still primarily managed through written notebooks and spreadsheets. Such tools are

not adequate to handle more complicated data. None of the available general-purpose

commercial or open-source LIMSs have gained wide acceptance among small-scale

laboratories. Some LIMS-like systems are in use; many pieces of scientific equipment come

with specialized databases for automatically gathering and analyzing the data collected with

that equipment. However, there is little incentive for equipment vendors to provide tools to

integrate data from these databases with data from other databases, let alone data collected

manually. Such tools are being created by the SG centers, and hopefully when they

encompass a sufficiently broad range of experimental methods, they might be a decisive

factor in encouraging adoption of modern data management systems in small-scale

laboratories.

4 Conclusions

Data management in a large modern laboratory has become paramount for coordinating and

tracking the vast amount of data generated across multiple experiments, time frames, and

centers, not to mention the potential for data mining to extract even more useful and

interesting information. Successful data management requires a system with a well-planned,

cohesive, and flexible framework. How to best achieve this coordination and level of detail

is currently being addressed in different ways, but the measure of success comes back to

“data in, information out.” A coherent organizational structure using a “bottom-up”

approach, along with mechanisms to connect these results into a unified system, has been

working well for the SG centers, giving them the ability to adapt to new nonlinear and

distributed experimental pipelines. In particular, the development of “super-LIMS” such as

LabDB gives much needed flexibility as the frontier of the SG landscape continues to

advance across organizations. The overall success of SG data management efforts should be

measured not only in classical terms, i.e., the number of papers and/or number of citations,

but most of all by the impact on the scientific community. There is no simple measure of

that impact, but the number of papers published by an SG center jointly with other

institutions is an indication of this impact. The map of collaborations for one SG center (Fig.

8) illustrates that the “big data” produced by the large-scale SG centers is also relevant to the

biological research performed in small-scale laboratories around the world.
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Fig. 1.
The architecture of the UniTrack data management system. The central database interacts

with LIMSs distributed in member labs. A number of auxiliary databases are used to store

data from the PDB, data from other SG centers, and SG publications. The central database is

responsible for producing reports for external data repositories such as PSI-SBKB. UniTrack

databases are synchronized with external data sources such as NCBI GenBank, UniProt, and

PubMed via custom scripts. Users interact with the system via a web interface
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Fig. 2.
Fragment of an experiment tree displayed in the UniTrack-based CSGID interface. Boxes

represent particular experiments: purification (P), crystallization drop (XD), crystal harvest

(X), data collection (beamline name), structure solution (Sol), refinement (R factor), and

PDB deposit (PDB id). Paths in the tree represent trials for a particular sample. The white

box that appears when the cursor hovers over an item displays additional details about a

particular step. In addition, clicking on any of the boxes display all the data known about

this step stored in the database

Zimmerman et al. Page 20

Methods Mol Biol. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
A typical target overview page in the LabDB LIMS
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Fig. 4.
The fluorescence-based thermal shift assay module of the LabDB LIMS, showing the

graphical representation of the imported experimental data. Data were imported from an

Applied Biosystems 7900-HT RT-PCR system
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Fig. 5.
Histogram showing the distribution of maximum mosaicity value (as fit during integration)

of diffraction datasets collected on MCSG targets processed at the University of Virginia, as

tracked by the hkldb module of HKL-3000. Only datasets that resulted in both a scaled

dataset and an initial model are counted in the distribution
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Fig. 6.
Example of a data dashboard: a plot of the cumulative progress for the MCSG center
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Fig. 7.
Example of a data mining “dashboard”: a plot of Rfree vs. resolution for structures

determined by the CSGID
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Fig. 8.
Map showing locations of collaborators of the MCSG (institutions of scientists who

coauthored papers funded at least in part by the center)
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