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Abstract: Multispectral fluorescence lifetime imaging (m-FLIM) can
potentially allow identifying the endogenous fluorophores present in
biological tissue. Quantitative description of such data requires estimating
the number of components in the sample, their characteristic fluorescent
decays, and their relative contributions or abundances. Unfortunately, this
inverse problem usually requires prior knowledge about the data, which
is seldom available in biomedical applications. This work presents a new
methodology to estimate the number of potential endogenous fluorophores
present in biological tissue samples from time-domain m-FLIM data.
Furthermore, a completely blind linear unmixing algorithm is proposed.
The method was validated using both synthetic and experimental m-FLIM
data. The experimental m-FLIM data include in-vivo measurements from
healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo
measurements from human coronary atherosclerotic plaques. The analysis
of m-FLIM data from in-vivo hamster oral mucosa identified healthy
from precancerous lesions, based on the relative concentration of their
characteristic fluorophores. The algorithm also provided a better description
of atherosclerotic plaques in term of their endogenous fluorophores. These
results demonstrate the potential of this methodology to provide quantitative
description of tissue biochemical composition.
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1. Introduction

Fluorescence lifetime imaging (FLIM) is a powerful tool in biological and clinical sciences
for characterization of tissue samples. Despite several studies showing the potential of multi-
spectral FLIM (m-FLIM) as a promising clinical optical imaging modality, its utility has not
yet fully demonstrated [1–4]. One of the main reasons for this is the element of subjectivity
involved in interpreting multispectral FLIM images, which is based on qualitative compari-
son of spectral intensity and lifetime values obtained from sample fluorescence time-resolved
measurements with those of known fluorophores. Such comparison-based interpretation of
FLIM images is satisfactory only when the fluorescence decay recorded at a pixel in a FLIM
image can be attributed to a single fluorophore. However, in most practical applications, there
are often more than one fluorescing species contributing to the bulk fluorescence signal. In such
cases, it becomes imperative to develop a method that can quantitatively identify the number,
the type and the relative abundance of fluorophores present in the sample.

The number of components present in a sample, their identification and relative concentration
or abundance are three major problems, whose solutions are needed to provide meaningful
descriptions for m-FLIM data. These problems are also present in other fields of application,
such as in remote sensing where they are known as unmixing problems [5]. Different unmixing
schemes have been applied with spectral fluorescence data [6, 7], frequency resolved FLIM
data [8], and more recently with time-resolved m-FLIM data [9, 10]. The assumption that the
number of components is known a priori is a common approach [5], however this estimation is
complicated by the presence of outliers and experimental noise.

From the remote sensing literature, three distinct approaches for the estimation of the number
of components can be distinguished: methods based on information theoretic criteria [14, 15],
eigenvalue based algorithms [11–13], and more recently geometry based strategies [16–18].
Methods based on information theoretic criteria usually select a model, or families of prob-
ability density functions, that best fits the data according to a cost function. Some of these
algorithms were first employed in passive sensor array processing [14, 15]. Other approaches
are based on the eigenvalue decomposition of the observed data. These techniques also reduces
the dimensionality of the problem and the computational cost. The method by Harsanyi et al.
(1993) [11] introduced the use of Neyman-Pearson (NP) detection theory to make a decision
based on a fixed probability of false alarm. The virtual dimensionality (VD) [12] method is
based on the difference between the eigenvalues of the correlation and covariance matrix. This
technique detects a noise component when the difference between the eigenvalues have similar
magnitudes, and a signal source when the difference is significant. Another popular method-
ology is hyperspectral signal identification by minimum error (HySime) [13], which estimates
the subspace of the eigenvectors that best contains the data according to a least squares criteria.

Geometry-based approaches are a recent trend, which is providing important advances in
remote sensing. Hyperspectral intrinsic dimensionality estimation with nearest-neighbour dis-
tance ratios (HIDENN) [16] measures two geometrical properties from the data to estimate the
fractal dimension of a manifold that contains the data. The intrinsic dimensionality of this man-
ifold is then employed to estimate the effective dimensionality of the data. Outlier detection
method (ODM) [17] characterizes data as outliers of noise in a principal component space. The
noise components are spherically symmetric, while data signals are expected to present higher
radius, in a hyper-ellipsoid fashion. These differences are measured by using an outlier de-
tector based on inter-quartile ranges. The methods proposed by Ambikapathi et al. (2013) [18]
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are based on convex geometry. The constraints imposed on the abundances in a linear mix-
ture model provide information to decide if the measured data should lie inside a convex hull
(Gene-CH). In addition, if the end-members are linear independent they also lie inside an affine
hull (Gene-AH). In both cases, the end-members are the vertex of the hulls. An NP detector is
employed to validate the end-members.

It should be noted that the problem of estimating the number of components in the context
of m-FLIM data has never been attacked before. Hence the technical contribution of this work
relies on a new method for estimating the number of components in time-domain m-FLIM data
by proposing two simultaneous NP tests to evaluate temporal and spatial consistency among
the estimated end-members. These two tests are required mainly since the end-members are
highly overlapped in m-FLIM data, compared with remote sensing applications. The first NP
test evaluates temporal consistency by the linear independence of the resulting end-members
(the estimated fluorescence time-decays), without using dimensionality reductions as in [18].
The second NP detector checks the spatial consistency by the abundances or fractional con-
tributions of the end-members in the data sample. Only those end-members with significant
abundance levels are considered as original components; otherwise, they could be produced
by experimental noise or outliers. By employing our previous contributions in [9, 10], the new
method implements a complete solution for the blind linear unmixing problem for m-FLIM
data. That is, without prior information, our proposal thus estimates simultaneously the number
of end-members, their time-domain fluorescence profiles and their relative abundances. Syn-
thetic data was employed to measure quantitatively the performance of the algorithm. In addi-
tion, the algorithm was further validated using experimental m-FLIM data measured from in
vivo samples of hamster pouches with induced oral carcinoma, and ex-vivo human atheroscle-
rotic plaques.

The paper is organized as follows: Section 2 describes the linear unmixing model employed
in the decomposition of m-FLIM data. In Section 3, the proposed NP detectors for linear inde-
pendence and spatial coherence are presented in detail. Also, the BEAE is briefly introduced,
and the final algorithm for estimating the number of components, the end-members and their
abundances is detailed at the end of this section. The experiments and their results for the syn-
thetic and experimental m-FLIM datasets are shown in Sections 4 and 5, respectively. Section
6 introduces a discussion on the results, and the final remarks are presented in Section 7.

2. Linear unmixing of m-FLIM data

The linear mixture model [19–21] assumes that every measurement is a linear combination
of the end-members. In the case of time-domain m-FLIM data [9], the measurements and
the end-members are fluorescence intensity decays measured in different spectral bands si-
multaneously, which can be concatenated as shown in Fig. 1(a). The fluorescence decays
yk = [yk,1, . . . ,yk,L]

� ∈ R
L recorded at K positions k ∈ [1,K] are a combination of the end-

members p j ∈ R
L for all j ∈ [1,N] with their respective concentrations αk, j, which are usually

referred as abundances in remote sensing literature. This linear mixture is given by

yk =
N

∑
j=1

p jαk, j k ∈ [1,K] (1)

The mixture model can be rewritten in matrix form to include all the K measurements available.
For this purpose, the end-members matrix PN = [p1, . . . , pN ] ∈ R

L×N gathers the time-domain
fluorescence profiles of the N components, and the abundances are grouped in vectors αk =
[αk,1, . . . ,αk,N ]

� at each spatial location k. Using these definitions, the mixture model can be
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written as
Y = PNA N (2)

where Y ∈ R
L×K contains the available m-FLIM measurements, and the abundance matrix

A N ∈ R
N×K is defined as A N = [α1, . . . ,αK ]. This model considers the following two con-

straints for the abundances at each spatial location k [5], since these parameters represent the
proportional concentration of the end-members:

1�N αk = 1 k ∈ [1,K] (3)

αk ≥ 0, (4)

where 1N represents a vector with unitary entries of dimension N, and the inequality ≥ is inter-
preted component-wise. Furthermore, the linear mixture model in (1) subject to the constrains
in (3) and (4) can have a geometrical interpretation: the set of mixture samples Y = {y1, . . . ,yK}
should be a subset of a convex hull [22], where the end-members pn represent its vertices. The
corresponding convex hull can be written as

ΩN
p � conv{p1, . . . , pN}=

{
y ∈ R

L

∣∣∣∣∣ y =
N

∑
j=1

p jωn s.t.
N

∑
j=1

ω j = 1, ω j ≥ 0 ∀ j ∈ [1,N]

}
(5)

Moreover, our formulation requires that the end-members {p1, . . . , pN} are linearly indepen-
dent [23], and as a consequence ΩN

p is a simplex of size N − 1. A notable difference be-
tween linear unmixing for mFLIM data and remote sensing information is the incorporation
of constraints in the estimation of end-members [10]. The fluorescence intensity time decays
are strictly positive, and they are usually normalized in order to minimize intensity artifact
problems [19, 24]. Therefore, in our application, there are two additional constraints for the
end-members with respect to the linear unmixing model

1�L p j = 1, j ∈ [1,N] (6)

p j ≥ 0. (7)

3. Estimating the number of components

The accurate estimation of end-members PN and their abundances A N rely on a correct knowl-
edge of the number of components N in the m-FLIM data, which by itself represents a difficult
task due to the presence of noise and outliers [5]. Outliers are generated by measurement er-
rors or components with very low occurrence in the sample. The proposed algorithm is based
on our previous methodology for blind unmixing or BEAE [10] that requires a linear inde-
pendence property of the end-members. BEAE relies on alternating least squares (ALS) [25]
and restricted quadratic optimization to compute the end-members and their abundances in the
sample [9]. For this new challenge, we propose an iterative methodology to increase gradually
the estimation of the number of components, if at each step the resulting end-members satisfy
a joint coherence test to validate their independence and their spatial interpretation. Once all
candidates are good estimations of the fluorescent components present in the sample, the set of
end-members will satisfy the following criteria:

Linear Independence: The convex hull (5) is a simplex and the set of end-members should
be affinely independent [18, 23].

Spatial Coherence: Each end-member has a significant relative abundance, since it is con-
tributing to the sample fluorescence signal.

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12259



These criteria are evaluated by using NP tests [26], as detailed in the following subsections.

3.1. Linear independence criterion

In the BEAE methodology [10], we perform the linear unmixing of the m-FLIM samples while
estimating a set of candidate end-members:

PN̂ �
{

p1, . . . , pN̂

}
(8)

where N̂ > 0 is the estimated number of components. After an iteration, we add one more can-
didate to the set (8) and increase our estimation of the number of end-members to N̂ = N̂+1. As
long as the number of candidates N̂ is lower or equal to the real number of components N, i.e.
N̂ ≤ N, the set of end-members (8) will be affinely independent and ΩN̂

p will be a simplex. To
detect if the j-th candidate end-member pj is a linear combination of the rest, we propose the
following approach based on the methodology by Ambikapathi et al. (2013) [18]. For each can-
didate p j ∈PN̂ , its projection into the closed-subspace spanned by {p1, . . . , p j−1, p j+1, . . . , pN̂}
is calculated as

p̂ j = Pjβ j (9)

where Pj =
[
p1, . . . , p j−1, p j+1, . . . , pN̂

]∈R
L×(N̂−1) and β j =

[
β j,1, . . . ,β j,N̂−1

]� ∈R
N̂−1. The

optimal projection is estimated by a quadratic criterion as

β j = argmin
β

∥∥p j −Pjβ
∥∥2

2
(10)

subject to 1�
N̂−1

β = 1 and β ≥ 0, where ‖ · ‖2 denotes the Euclidean norm. A direct solution
for (10) can be obtained by using the methodology of Gutierrez-Navarro et al. (2014) [9]. In
our formulation, we consider that the estimation of the end-members is not perfect, and there is
some additive uncertainty which is represented by a zero-mean Gaussian vector wj ∈ R

L with
covariance Σ > 0, i.e.

p j = po
j +wj j ∈ [1, N̂],

where po
j denotes the true j-th end-member. In order to detect fake end-members, we define the

j-th error vector

e j = p j −Pjβ j ∈ R
L, (11)

=

⎡
⎢⎢⎣po

j −Po
jβ j︸ ︷︷ ︸

μ j

⎤
⎥⎥⎦+

⎡
⎢⎢⎣wj −W o

jβ j︸ ︷︷ ︸
v j

⎤
⎥⎥⎦ , (12)

where Po
j =

[
po

1, . . . , p
o
j−1, p

o
j+1, . . . , p

o
N̂

]
and W j =

[
w1, . . . ,wj−1,wj+1, . . . ,wN̂

] ∈ R
L×(N̂−1).

Note that the new uncertainty term v j is still a zero-mean Gaussian vector, but with covariance
κΣ > 0, where

κ = 1+
N̂−1

∑
i=1

β 2
j,i. (13)

Therefore, in our evaluation, there are only two possible cases:

• The candidate p j is a linear combination {p1, . . . , p j−1, p j+1, . . . , pN̂}, which implies that

μ j = 0 since the j-th end-member po
j can be represented exactly by Po

jβ j, ΩN̂
p is not a
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simplex and therefore N̂ > N, i.e. the error vector e j is only affected by the additive
uncertainty v j:

e j ∼ N (0,κΣ) . (14)

where N (a,B) denotes a Gaussian distribution with mean a and covariance B.

• The set in (8) is linearly independent and pj is a valid end-member, and as a conse-
quence μ j 
= 0, i.e. the error vector e j is affected by a constant term μ j plus the additive
uncertainty v j:

e j ∼ N
(

μ j,κΣ
)
. (15)

The noise covariance matrix of the extracted end-members Σ is estimated by using the method-
ology from Bioucas-Dias and Nascimento (2008) [13]. Hence, from our previous analysis, we
are facing a binary hypothesis test, where the observation (error vector) in (11) presents a Gaus-
sian distribution. Therefore, to simplify the evaluation, a quadratic decision variable rI

j is con-
structed by the weighted Euclidean norm of the error vector:

rI
j = e�j (κΣ)−1 e j ≥ 0 j ∈ [1, N̂] (16)

where the inverse of the resulting covariance in the error (κΣ)−1 is employed to normalize rI
j.

Since the error vector e j is Gaussian, then the new variable r j will have a χ2-distribution. In
this way, a binary hypothesis testing problem [26] is defined as:

H0 : rI
j ∼ χ2 (L−1) (17)

H1 : rI
j ∼ χ2

(
L−1,μ j

)
(18)

where L− 1 are the degrees of freedom in the distribution associated to the length of the er-

ror vector e j, χ2 (L−1) denotes a central χ2 distribution, and χ2
(

L−1,μ j

)
the non-central

one with noncentrality parameter μ j. The expression in (18) cannot be evaluated since μ j is
unknown. However, we can employ the NP approach [26] to overcome this limitation. This
method distinguishes between the null H0 and alternative H1 hypotheses by fixing the false
alarm probability for this test to a predefined value PI

FA, i.e.

PI
FA =

∫ ∞

η j

fχ (x,L−1) dx (19)

where η j is a constant that satisfies (19), and fχ (x,L−1) is the χ2-probability distribution
with respect to H0. Thus the decision can be made based only on a criterion that employs the
distribution of the null hypothesis H0 for j-th end-member, as

Decide HI
0 if rI

j < η j

Decide HI
1 if rI

j > η j
(20)
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and we can define the decision rule for our problem as

Decide HI
0 if

∞∫
r j

fχ (x,L−1) dx > PI
FA

Decide HI
1 if

∞∫
r j

fχ (x,L−1) dx < PI
FA

(21)

Since rI
j is the sum of L squared independent random variables with finite mean and unit vari-

ance, we can further simplify our decision rule. By the central limit theorem, for a large value
of L, the variable rI

j is close to a normal distribution. In the case of m-FLIM data, L is usually
several hundreds. Hence, we propose to simplify the calculations by using a linear mapping of
r j to normalize and obtain a new decision variable:

dI
j =

rI
j − (L−1)√

2(L−1)
∼ N (0,1) . (22)

Our decision problem for the linear independence criteria is finally stated as

Decide HI
0 if 1√

2π

∞∫
dI

j

e−x2/2dx > PI
FA

Decide HI
1 if 1√

2π

∞∫
dI

j

e−x2/2dx < PI
FA

(23)

3.2. Spatial coherence criterion

In the BEAE methodology [10], if the number of components is higher than the real value, the
extra end-members will be a linear combination of the real ones. However, low signal-to-noise
ratios and the presence of outliers may lead to evaluate an end-member that could deceive the
linear independence criteria. On the other hand, end-members with high abundance throughout
the m-FLIM sample are responsible for most of the fluorescence intensity. Even components
with a localized abundance could present high concentration levels, which could be the case
for some dyes or molecules of interest. Hence, end-members that represent real components
in the sample data should not only be linearly independent but also have a significant spatial
contribution, which is quantified by their abundances. Under this hypothesis, we need to discard
end-members with a low relative abundance throughout the m-FLIM data, since they will not
have spatial coherence. The abundance information of the end-members at each spatial location
of the sample is provided by the BEAE algorithm in matrix A N .

To evaluate the spatial coherence, for j-th end-member, its abundance is extracted from ma-
trix A N by the j-th row, and an histogram h j ∈R

B is constructed with B bins or levels, defined
by the vector b∈R

B. Therefore, the i-th element h j,i in h j represents the number of occurrences
where the abundance belonged to the range (bi−1,bi] with b−1 = 0 for j-th end-member. As a
result, each histogram satisfies 1�B h j = K for all j ∈ [1, N̂], and we define an spatial coherence
descriptor s j = [s j,1, . . . ,s j,B]

� with binary components:

s j,i =

{
1 if h j,i ≥ θ
0 if h j,i < θ

i ∈ [1,B] (24)

where θ is the minimum number of occurrences for an abundance bin to be considered signifi-
cant, and h j = [h j,1, . . . ,h j,B]

�. In this work, we fixed the threshold θ = 0.005K, i.e. 0.5% of the
total spatial sample. End-members with significant abundance values throughout the m-FLIM

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12262



sample will present mostly spatial coherence descriptors s j in (24) with all unitary entries. On
the contrary, the descriptor obtained from a bad candidate will be zero in entries related to low
abundances. Therefore, to evaluate the presence of bad end-member candidates, which present
only low-valued abundances, we can use the information provided by the spatial coherence
descriptor s j. With this information at hand, we propose a new decision variable rII

j ∈ R
B to

evaluate the spatial coherence of j-th end-member

rII
j =

b�s j

1�B s j
j ∈ [1, N̂]. (25)

As a result, rII
j is an indicator of the mean value of the abundances with significant contributions

throughout the m-FLIM data sample. Once again, a binary hypothesis test [26] will be faced:

HII
0 : The decision variable rII

j has a low value since it represents an end-member with a low-
valued abundance, with the following observation model:

rII
j ∼ U (0,ω1) (26)

where U (0,ω1) represents a uniform distribution in the interval [0,ω1], and ω1 ∈ (0,1].

HII
1 : If the j-th end-member does have a significant contribution in the m-FLIM sample then

rII
j ∼ U (0,ω2) (27)

where ω2 ∈ (0,1] and ω2 > ω1.

Since it is not possible to characterize the decision variable rII
j for HII

1 defined by the upper
bound ω2, as in the linear independence criterion, we propose another NP test based on the
spatial coherence descriptor:

Decide HII
0 if

∞∫
rII

j

f [0,ω1]
U (x) dx > PII

FA

Decide HII
1 if

∞∫
rII

j

f [0,ω1]
U (x)dx < PII

FA

(28)

where f [0,ω1]
U (·) denotes the uniform probability distribution in the interval [0,ω1], and PII

FA the
probability of false alarm for the spatial coherence test. As a result, the key parameter in the
spatial coherence criterion is ω1.

3.3. Blind end-member and abundance extraction algorithm

Our proposal is based on an ALS procedure [10] which minimizes the quadratic cost function

min
PN , A N

L(PN ,A N) = min
PN , A N

1
2
‖Y −PNA N‖2

F +ξ
N−1

∑
i=1

N

∑
j=i+1

‖pi − p j‖2
2 (29)

subject to constraints (4), (3), (6) and (7), where ‖·‖F denotes the Frobenius norm for matrices,
and ξ > 0 is a weight parameter related to the regularization term. The complete algorithm
employed in this paper is described in Algorithm 1.

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12263



Algorithm 1: Estimation of the Number of Components and Linear Unmixing of m-FLIM
Data.

input : An m-FLIM dataset Y of size L×K. Parameters: minimum abundance θ , upper bound on the distribution
of the spatial descriptor ω1, the probabilities of false alarm PI

FA and PII
FA, the maximum number of

components NMAX , the number of bins B and a tolerance parameter ε .
output: Estimation of the number of components N, the end-members PN and the abundance matrix A N .

1 Preprocess: Set negative elements in Y to 0, and normalize every measurement to satisfy 1�L yk = 1 for all
k ∈ [1,K].

2 Set N = 2
3 Select the initial candidates as P2 = [p1, p2] where

p1 = argmax
y∈Y

‖y‖2
2, p2 = argmax

y∈Y
‖y− p1‖2

2

4 if ‖p1 − p2‖2
2 < TOL then

5 END, there is only one component present in the sample.
6 else

7 end
8 while N <= NMAX do // Initialize ALS procedure
9 Set t = 0 and PN

t = PN and calculate A N
t using BEAE in [10]

10 repeat
11 Estimate PN

t+1 departing from A N
t using BEAE in [10]

12 Calculate A N
t+1 from PN

t+1 using BEAE in [10]
13 Set t = t +1
14 until

∣∣L(PN
t+1,A

N
t+1)−L(PN

t ,A
N
t )

∣∣< ε;
15 A N = A N

t+1 and PN = PN
t+1

16 if N > 2 then // We have at least 3 candidates
17 for j ∈ [1,N] do // Evaluate Candidates
18 For j-th end-member, evaluate the decision variables rI

j and rII
j in (16) and (25), respectively

19 Test the linear independence criterion in (23)
20 Test the spatial coherence criterion in (28)
21 if HI

0 or HII
0 are TRUE then /* If any null hypotheses is true then a fake

component has been detected */
22 Set N = N −1
23 Perform the ALS procedure one last time (Lines 8 to 13)
24 Set A N = A N

t+1 and PN = PN
t+1

25 END
26 end
27 end

// No fake candidates detected, test more end-members
28 Choose the next candidate as the measurement with the largest estimation error, i.e. the measurement

with the poorest estimation by the N end-members

pN+1 � yko
where ko = arg max

k∈[1,K]
‖yk −PNαk‖2

2 (30)

29 Set PN+1 = [PN pN+1] and N = N +1
30 end
31 end
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4. Experiments

4.1. Synthetic experiments

The performance of Algorithm 1 was first evaluated by using computer simulations. Syn-
thetic m-FLIM data was created by considering the five synthetic end-members P5 depicted
in Fig. 1(a). The end-members were generated using the stretched exponential model [27],
and designed to be linearly independent. In multispectral time-domain fluorescence techniques
[28,29], the statistical noise in the photodetector follows a Poisson distribution. However, when
there is a large photon count, this stochastic term approaches a Normal distribution with zero
mean [30], whose standard deviation is proportional to the square root of the fluorescence
intensity. As a result, the noise components have a variable variance that depends on the ac-
tual fluorescence intensity. Hence, the synthetic data was produced according to the following
model:

Y = P5A 5 +E (31)

where E ∈ R
L×K is a noise matrix defined as E = [e1, . . . ,eK ]. The noise components ek =

[ek,1, . . . ,ek,L]
� ∈ R

L at position k are proportional to the square root of the intensity at that
location and time instant, ek,i = δk,i

√
yk,i for all k ∈ [1,K] and i∈ [1,L], where δk,i ∼N

(
0,σ2

)
.

In this way, the standard deviation of the noise component at k location and i time instant will be
equal to σ√

yk,i. Since the equivalent signal-to-noise ratios will be time-varying at each spatial
sample, the values of σ were selected to satisfy a Peak Signal-to-Noise (PSNR) ratio of 15, 20
and 25 dB according to

PSNR = 10log10

(maxi∈[1,L] yk,i

σ2

)
. (32)

for all spatial locations k in the sample. The matrices of synthetic abundances A 5 were selected
to assign purity levels [18] ρ equal to 1.0, 0.9 and 0.8, see Fig. 1(b). The purity level ρ is a
measure of the presence of pure samples in the data. The value of ρ for the j-th end-member is
defined by its spatial abundance as

ρ = max
k∈[1,K]

∥∥αk, j
∥∥

2 (33)

A value ρ = 1 indicates the presence of pure samples of the j-th component in the synthetic
data. In fact, a ρ value lower than 1 makes the linear unmixing decomposition more difficult [5,
22]. We analysed the influence of PFA and the upper bound on the distribution of the descriptor
ω1 of the spatial coherence test in the NP evaluations. The probabilities of false alarm were set
to the same value for both tests PI

FA = PII
FA = PFA, and the number of bins B was fixed to 30 bins.

This value of B balanced a compromise between accuracy and complexity in our evaluations.
The size of each m-FLIM dataset was 75×75×510, where the first two dimensions correspond
to the spatial plane of the sample (the same dimension of the abundance maps in Fig. 1(b),
and the third dimension is time, as shown in Fig. 1(a). A total of 50 synthetic data sets were
employed for each PSNR level.

4.2. In-vivo experimentation with hamster pouches

We employed in-vivo m-FLIM data taken from the cheek pouches of a golden Syrian ham-
ster. The data was obtained from Jabbour et al. (2013) [29], where the protocol employed to
treat the hamster and the tissue extraction are detailed. One dataset corresponds to the left
pouch, which was left untreated for control purposes. The right pouch was treated with 7, 12-
dimethylbenz[α]anthracene (DMBA) to induce oral carcinogenesis. Both tissue samples have
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Fig. 1. The 5 synthetic end-members (a) and their abundance maps (b), with purity level
ρ = 1, employed in the synthetic evaluation. The end-members of 510 samples represent
the concatenated fluorescence intensity time-decays at three different wavelength bands.
The x and y positions (75× 75) in (b) correspond to spatial coordinates in the sample,
while the color depicts the quantitative abundance values.

an approximate area of 16×16 cm2, and they were imaged using a 400×400×1200 m-FLIM
dataset. The first two dimensions correspond to the X-Y plane of the tissue sample. The third
dimension corresponds to time-domain fluorescence intensity decays measured with a temporal
resolution of 160 ps in three wavelength bands: 390 nm, 452 nm, and >500 nm.

The m-FLIM samples were processed together to estimate their common end-members and
abundances. Measurements over the edges of both samples were discarded to reduce border
effects. For the estimation of the end-members and due to computational limitations, the size of
the initial m-FLIM dataset was reduced in the X-Y plane to 300× 300× 1200, but afterwards
the complete m-FLIM dataset was processed to estimate the abundances in the original X-Y
plane 400×400 measurements. Since in the experimental data a high PSNR is considered, the
parameters employed in the NP tests were ω1 = 0.2, B = 30 bins and the threshold for the
minimum number of significant measurements θ was set to 225 positions.

4.3. Ex-vivo experimentation with atherosclerotic plaques

The proposed methodology was also tested with m-FLIM data from ex-vivo human coronary
arteries. The samples were obtained from Park et al. (2011) [28]. The temporal resolution of the
measurements was 250 ps, and they were recorded in the wavelength bands: 390 ± 20 nm, 452
± 22.5 nm and 550 ± 20 nm. The datasets were classified by an expert [28] using histopathol-
ogy analysis. Two samples were labeled as Low-Collagen/Lipids (LCL), two datasets were
identified as having High-Collagen (HC), and another two as High-Lipids (HL), while the last
three samples were classified as Mixtures (Mix), since none component was dominant. Nine
individual datasets with a field of view 2× 2 mm2 (60× 60× 510) were analysed jointly with
Algorithm 1 to estimate the number of components and estimate their quantitative descriptions.
The same configuration of parameters employed in section 4.2 were used for these experiments.

5. Results

5.1. Synthetic validation

The performance of Algorithm 1 to estimate the number of end-members was evaluated first
using the synthetic datasets, see Fig. 1. The results obtained for each noise level (PSNR) and
parameters configurations (ω1,PFA,ρ) are shown in Table 1. Note that these results allow to
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identify separately the effect of each parameter (ω1,PFA,ρ) in the estimated number of end-
members for the subsequent experimental validation.

Table 1. Average number of end-members estimated ± the standard deviation from 50
simulations for each experiment using different PSNR levels. The real number of end-
members present in the mixture samples is 5.

ω PFA

ρ = 1.0 ρ = 0.9 ρ = 0.8
PSNR PSNR PSNR

15 dB 20 dB 25 dB 15 dB 20 dB 25 dB 15 dB 20 dB 25 dB

0.1

1.00e-03 3.96 ± 0.20 5.08 ± 0.34 5.00 ± 0.00 3.88 ± 0.33 4.98 ± 0.32 5.00 ± 0.00 3.12 ± 0.33 4.76 ± 0.48 5.00 ± 0.00
1.00e-04 3.94 ± 0.24 5.08 ± 0.34 5.00 ± 0.00 3.80 ± 0.40 4.98 ± 0.32 5.00 ± 0.00 3.06 ± 0.24 4.74 ± 0.49 5.00 ± 0.00
1.00e-05 3.92 ± 0.27 5.08 ± 0.34 5.00 ± 0.00 3.78 ± 0.42 4.94 ± 0.24 5.00 ± 0.00 3.04 ± 0.20 4.72 ± 0.50 5.00 ± 0.00
1.00e-06 3.90 ± 0.30 5.04 ± 0.28 5.00 ± 0.00 3.74 ± 0.44 4.94 ± 0.24 5.00 ± 0.00 3.00 ± 0.00 4.70 ± 0.51 5.00 ± 0.00

0.2

1.00e-03 3.00 ± 0.00 3.00 ± 0.00 4.96 ± 0.20 3.00 ± 0.00 3.00 ± 0.00 4.98 ± 0.14 2.46 ± 0.50 2.96 ± 0.20 4.96 ± 0.20
1.00e-04 3.00 ± 0.00 3.00 ± 0.00 4.96 ± 0.20 3.00 ± 0.00 3.00 ± 0.00 4.98 ± 0.14 2.46 ± 0.50 2.96 ± 0.20 4.96 ± 0.20
1.00e-05 3.00 ± 0.00 3.00 ± 0.00 4.96 ± 0.20 3.00 ± 0.00 3.00 ± 0.00 4.98 ± 0.14 2.46 ± 0.50 2.96 ± 0.20 4.96 ± 0.20
1.00e-06 3.00 ± 0.00 3.00 ± 0.00 4.96 ± 0.20 3.00 ± 0.00 3.00 ± 0.00 4.98 ± 0.14 2.46 ± 0.50 2.96 ± 0.20 4.96 ± 0.20

0.3

1.00e-03 2.00 ± 0.00 2.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.18 ± 0.39 2.00 ± 0.00 2.00 ± 0.00 2.74 ± 0.44
1.00e-04 2.00 ± 0.00 2.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.18 ± 0.39 2.00 ± 0.00 2.00 ± 0.00 2.74 ± 0.44
1.00e-05 2.00 ± 0.00 2.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.18 ± 0.39 2.00 ± 0.00 2.00 ± 0.00 2.74 ± 0.44
1.00e-06 2.00 ± 0.00 2.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.18 ± 0.39 2.00 ± 0.00 2.00 ± 0.00 2.74 ± 0.44

5.2. Oral carcinogenesis in hamster pouches

Three end-members were detected (N̂ = 3) when solving the hamster m-FLIM datasets simul-
taneously. By recalling that j-th end-members p j, represents the concatenated response at three

wavelengths (pλ1
j , pλ2

j , pλ3
j ), i.e. p j = [(pλ1

j )� (pλ2
j )� (pλ3

j )�]�, we can evaluate the accuracy
and interpretation of the estimated end-members by the resulting average lifetime and normal-
ized intensity at each frequency band [31]. For this purpose, we compute in discrete-time the
average lifetime for each j-th end-member at wavelenght band λi:

τλi
j =

t� p̂λi
j

1�L p̂λi
j

i, j ∈ [1,3] (34)

where p̂λi
j represents the end-member pλi

j after performing the time-deconvolution [31] with
the instrument response, and t is the time vector associated to the periodic sampling during
the experiment. The normalized intensity for each wavelength band λi and j-th end-member is
expressed as

Iλi
j =

1�L p̂λi
j

∑3
i=1 1�L p̂λi

j

i, j ∈ [1,3] (35)

The average lifetimes and normalized intensities are shown in Table 2. Based on this infor-
mation, the end-members were identified as Collagen, Porphyrin and NADH/FAD. The end-
members calculated are depicted in Fig. 2. The abundance maps obtained from 400 × 400
measurements of the m-FLIM dataset are shown in Fig. 3.

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12267



Table 2. Average lifetimes and normalized intensities of the end-members extracted from
the m-FLIM datasets of hamster pouches. The 2nd end-member presented no response in
the first and second wavelength band.

���������������Component j
Wavelength λ Lifetime Normalized Intensity

390 nm 452 nm >500 nm 390 nm 452 nm >500 nm

τλ1
j τλ2

j τλ3
j Iλ1

j Iλ2
j Iλ3

j

1 6.1249 ns 5.289 ns 4.3854 ns 0.6611 0.2689 0.0700
2 N/A N/A 8.6284 ns N/A N/A 1.000
3 1.6201 ns 3.5216 ns 2.8461 ns 0.0665 0.6046 0.3289
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Fig. 2. End-members extracted from the m-FLIM datasets of hamster pouches. The second
end-member presents practically no emission fluorescence signal on the first two bands.
The end-members were identified as Collagen, Porphyrin and NADH/FAD according to
the lifetimes calculated in Table 2 .

5.3. Atherosclerotic plaques

M-FLIM samples from ex-vivo atherosclerotic plaques were analysed using the methodology in
Algorithm 1. Three wavelengths were also considered in the m-FLIM measurements: 390 nm,
452 nm, and 550 nm. Once more, three components were detected (N̂ = 3) and their decon-
voluted lifetimes were also calculated according to eq. (34). The average lifetimes are shown
in Table 3, where now the end-members were identified as Collagen, Elastin and Low Den-
sity Lipoproteins (LDL). The end-members and their abundances are shown in Figs. 4 and 5,
respectively.

6. Discussion

Blind linear unmixing of m-FLIM data allows to obtain a quantitative description of the bio-
chemical composition of the biological samples, which is easy to interpret and validate. Usually,
the interpretation and validation is difficult without prior knowledge of the number of compo-
nents in the sample, and their characteristic signatures. This task is even more difficult when
unreliable or partial information is available, as is usually the case when working with biomed-

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12268



(a)

Collagen

100 200 300 400

50

100

150

200

250

300

350

400

Porphyrin

100 200 300 400

NADH

100 200 300 400
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Collagen

100 200 300 400

50

100

150

200

250

300

350

400

Porphyrin

100 200 300 400

NADH

100 200 300 400
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Abundance maps (400×400) corresponding to the end-members in Fig. 2 detected
in the m-FLIM datasets of hamster pouches. The abundance maps shown in row (a) corre-
spond to the quantitative description obtained from the healthy hamster pouch. Meanwhile,
the diseased tissue produced the abundance maps shown in row (b).

Table 3. Average Lifetime and Normalized Intensities of the end-members extracted from
m-FLIM datasets of atherosclerotic plaques.���������������Component #

Wavelength λ Lifetime Normalized Intensity
390 ± 20 nm 452 ± 22.5 nm 550 ± 20 nm 390 ± 20 nm 452 ± 22.5 nm 550 ± 20 nm

τλ1
j τλ2

j τλ3
j Iλ1

j Iλ2
j Iλ3

j

1 5.9946 ns 6.8429 ns 5.9085 ns 0.6594 0.2530 0.0876
2 1.9527 ns 3.9044 ns 4.4292 ns 0.2658 0.4754 0.2588
3 4.8496 ns 9.9976 ns 11.3631 ns 0.2787 0.2860 0.4353

ical data. The method proposed in this paper performs the linear decomposition of time-domain
m-FLIM data, while it evaluates the accuracy of the solution by the linear independence and
spatial coherence NP tests. As a result, our proposal takes a decision based on the quality of the
end-members and their abundances obtained in an iterative fashion. The iteration stops once the
current solution is not able to satisfy the linear independence criterion among the end-members,
and the spatial coherence related to their abundances. To the best of the authors’ knowledge,
this is the first completely blind algorithm tailored for linear unmixing of time-domain m-FLIM
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Fig. 4. End-members extracted from the m-FLIM datasets of atherosclerotic plaques, which
were identified as Collagen, Elastin and LDL.

Fig. 5. Abundance maps (60× 60) for the m-FLIM datasets of atherosclerotic plaques,
where each row correspond to a quantitative description. The m-FLIM datasets were iden-
tified through histopathology analysis as LCL, HC, HL and Mix, as indicated in the picture.
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data. In the literature, there are some approaches targeted for remote sensing applications [5],
however, there are intrinsic differences. First, satellite imagery usually contains a high number
of end-members (> 30), while the number of endogenous fluorophores present in an m-FLIM
sample is usually low. This property could be seen as an advantage, but in m-FLIM data, the
end-members are highly overlapped which complicates the linear unmixing problem. Further-
more, the BEAE method [10] takes advantage of the non-negativity nature of fluorescence,
which is translated into a normalization of the end-members that helps to constraint the solu-
tion space [23, 32], and reduce the signal variability in the data [10].

In the evaluation process, experimentation with synthetic data is the only way to quanti-
tatively measure the performance of the proposal, since it is difficult to estimate the exact and
localized abundance of biological samples without destroying them. These experiments are also
useful to determine the best parameter configuration in the proposed methodology. According
to the results obtained in Table 1, the proposed algorithm presented good performance in esti-
mating the number of components in the synthetic m-FLIM data at PSNR levels of at least 20
dB, independently of PFA and ρ . For PSNR = 20 dB, ω1 = 0.1 performed the best, while for
PSNR = 25 dB either ω1 = 0.1 or ω1 = 0.2 performed similarly well.

The processing of the m-FLIM data of hamster pouches determined the presence of three
components. Using their estimated lifetime values and relative normalized intensities for each
measured emission band, we could identify the first one as Collagen, whose fluorescence has a
peak emission at ≈ 400 nm and lifetime values in the order of 4-6 ns. The second end-member
was identified as Porphyrin, whose fluorescence has not emission below 500 nm and lifetime
values longer than 7-8 ns [29]. The third end-member presented lifetimes that did not match any
expected end-member found in hamsters oral mucosa. The lifetime of this third end-member
in the 390 nm wavelength band alone matched the description of NADH, however, the lifetime
is too long in the wavelengths bands 450 nm and > 500 nm. These lifetimes actually seem
to match the description of FAD, which is another of the expected primary endogenous fluo-
rophores [29]. This is the reason why the third end-member was labelled as a mixture of NADH
and FAD. We believe that m-FLIM data presented no pure samples of NADH and FAD, which
is why they could not be separated. The third end-member profile was characterized by a peak
emission at the 450 nm channel, and lifetime values between ≈1.5-3.5 ns. These fluorescence
characteristics can be associated to NADH, whose fluorescence emission also peaks at ≈450
nm with lifetime values between ≈0.5-3 ns, depending whether it is in a free or bound state.
On the other hand, FAD has a peak emission ≈510 nm and similar lifetime values. Since the
third end-member profile also has significant contribution in the 500 nm band, it could be pos-
sible that this end-member reflects the contribution of both NADH and FAD. The fact that these
two molecules are usually co-localized within the cell cytoplasm further support this hypothe-
sis. Thus, the third end-member was attributed to a combined contribution of both NADH and
FAD.

The healthy pouch, depicted in Fig. 3(a) presented a high relative concentration of Colla-
gen, with some NADH/FAD contribution in the lower left section, and practically no Porphyrin
through the imaged area. On the contrary, the right pouch presents a tumour which is visible in
the lower right section of the abundance maps, as shown on Fig. 3(b). The resulting abundances
reveal that the tissue surrounding the tumour contains high levels of Collagen and lower levels
of Porphyrin, in a similar fashion to the healthy tissue in Fig. 3(a). The tumour area presents
high abundance of Porphyrin, reaching relative concentration values of 100% in some areas.
The relative concentration of NADH/FAD was also high in the tumor region, and has relative
high presence throughout the entire imaged are of the DMBA treated cheek pouch. The quan-
titative results obtained in the hamster m-FLIM samples matches the qualitative description
provided by Jabbour et al. (2013) [29]. The detection of Porphyrin and NADH/FAD could play
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an important part in the detection of precancerous lesions, which is of great interest in clinical
diagnosis of oral carcinoma.

The method was also tested with m-FLIM samples of ex-vivo human coronary atheroscle-
rotic plaques. We were able to find the principal endogenous fluorescent biomarkers in
atherosclerotic plaques [33], and estimate their relative concentrations quantitatively. The com-
puted lifetimes allowed the identification of estimated end-members as Collagen, Elastin and
LDL without ambiguity, see Table 3. The time profiles of the end-members and their abun-
dances are shown in Figs. 4 and 5, respectively. The results were contrasted against the visual
description provided from histopathology analysis previously reported [28]. The samples la-
beled as LCL, rows 1 and 2 from Fig. 5, actually contained some Collagen and high levels of
Elastin, which is consistent with the previous results reported in [9]. The samples labelled as
HC and HL were consistent with the quantitative results in rows 3 and 4 from Fig. 5. High
levels of Collagen were also detected in the samples labeled as HL (rows 5 and 6 in Fig. 5).
The samples classified as mixtures are described in the last three rows of Fig. 5, an provide a
quantitative description of the mixed components in the sample.

Algorithm 1 was implemented in Matlab under a Windows 64 bits operative system. No code
optimization or hardware acceleration methods, such as parallel programming, were employed.
The experiments were performed on a Core i7 4770 CPU with 12 GB in RAM. The linear
unmixing of each synthetic dataset of 75× 75× 510 took around 47.48 seconds. Due to a
high PSNR in the experimental data, the laboratory evaluation used the following parameters:
ω1 = 0.2, θ = 0.005K and PFA = 10−3. The quantitative description of an m-FLIM dataset of
both hamster pouches 400× 800× 1200 was obtained in around 18.60 minutes. Meanwhile,
the linear unmixing for the complete nine artery datasets of 60×540×510 from subsection 4.3
was estimated in approximately 2.49 minutes.

7. Conclusions

In this paper, a new methodology to estimate the number of components in time-domain m-
FLIM data was presented. The proposal departs from a blind end-member and abundance ex-
traction algorithm for linear unmixing. This algorithm does not require a priori information
and could be used with minimal intervention from the users. The method was validated with
both synthetic and experimental data. Compared to previous approaches in the literature, this
proposal provides quantitative results for an intuitive description and interpretation of the bio-
logical samples. Future work will focus on developing more efficient methods for blind linear
unmixing, as well as, a CUDA implementation of Algorithm 1 to reduce computational time.

Acknowledgments

This research was supported by grants from CONACYT-TAMU (2012-034), CONACYT
(#168140) and NIH (R01CA138653, R01HL11136). The work of O. Gutierrez-Navarro was
supported by a doctoral fellowship from CONACYT. The authors acknowledge Brian Apple-
gate, Jesung Park, Sebina Shrestha and Paritosh Pande for providing the ex-vivo human coro-
nary arteries data.

#208447 - $15.00 USD Received 17 Mar 2014; revised 2 May 2014; accepted 2 May 2014; published 13 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012255 | OPTICS EXPRESS  12272




