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Abstract

Physical activity plays an important role in preventing chronic disease in adults and the elderly.

Exercise has beneficial effects on the nervous system, including at the neuromuscular junction

(NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve

injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies

have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These

mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma

coactivator 1α, Insulin-like growth factor-1, glial cell line-derived neurotrophic factor,

neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation

and active zone decreases have been observed in aged NMJs, but these age-dependent

degenerative changes can be ameliorated by exercise. This review will discuss the effects of

exercise on the maintenance and regeneration of NMJs and will highlight recent insights into the

molecular mechanisms underlying these exercise effects.

Introduction

In recent years, the importance of physical activity in preventing the development of chronic

diseases, such as cardiovascular, metabolic, musculoskeletal, and neurological disorders, has

gained increasing recognition1. The forms of exercise training that increase physical activity

can be divided into endurance and resistance. The effects of these exercise types on the

nervous system have been studied in humans and rodents. Endurance training is any exercise

that increases the functional capacity of the aerobic system. The effects of endurance

training on laboratory animals have been studied using a treadmill, running wheel, and

swimming 2–5. Resistance training is any exercise that increases muscle contraction strength
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and anaerobic endurance. The effects of resistance training on laboratory animals have been

studied using ladder climbing 6 and isometric resistance training 7–9.

Exercise is known to have beneficial effects on the nervous system, including the peripheral

nervous system and NMJs 1,10. Training improves the recovery from peripheral nerve injury

or degenerative changes 1,10–14. For example, increased physical activity is beneficial in

recovery from the disruptive structural changes that occur in NMJs due to exposure to zero

gravity during space flight 12,15. It is important to keep in mind that adult mammalian NMJs

are not rigid structures. They show some degree of remodeling, including addition or

reduction of presynaptic branches and postsynaptic receptors within one NMJ, and the rate

of remodeling differs depending on the type of muscle 16–18. NMJs in soleus and pectineus

muscles show small additions and deletions to parts of the NMJs 16,18, but

sternocleidomastoid muscle shows only synapse size growth that appears to be related

directly to increased muscle fiber diameter 17. Another example of the plastic nature of

NMJs is seen at the synaptic vesicle release sites known as active zones. NMJ active zones

are not stable structures. They are quickly altered by extracellular stimuli 19,20 and

degenerate during aging 9,21. Interestingly, exercise can ameliorate degenerative changes in

the presynaptic active zones of NMJs in aged rats,9 as will be described later in this review.

The beneficial effects of exercise on maintenance and recovery of NMJs have been

summarized previously 1,10–13,22. However, important findings elucidating the cellular and

molecular mechanisms have been reported recently. The goal of this review is to highlight

recent insights into the role of exercise in maintaining the integrity of NMJs.

Adult NMJs and exercise

Endurance training increases the synapse size of NMJs in adult mice 2 and rats 3,4 (Table 1).

Exercise causes hypertrophy of the NMJs of extensor digitorum longus and gluteus

maximus muscles in adult mice and rats 2,3,23. Soleus muscle, however, has been used more

widely as a model to study NMJ adaptations to exercise, partly because of its homogeneous

muscle fiber type composition and its antigravitational function 12. Exercise generally has

been reported to cause hypertrophy of the NMJs of soleus muscles in adult mice and

rats 2,4,24, and to increase the branching and complexity of presynaptic nerve terminals, 4

although 1 study reported that there is no effect in adult rats 3. Furthermore, different types

of exercise, endurance versus resistance, produced slightly different results in soleus muscle

in studies conducted by the same research group 4,6. Endurance training induced significant

hypertrophy of the NMJs of soleus muscles, but resistance exercise induced only a trend of

increase (not significant) of AChR cluster area. The result of resistance training in the soleus

muscle is similar to the results for resistance training of genioglossus muscle in rats 9 and to

the results of rat hypoglossal nerve stimulation to mimic resistance training of the tongue 25,

neither of which causes an increase in the AChR cluster area. These results suggest that the

effects of exercise on NMJs depend on the type of exercise performed.

In contrast to increased physical activity causing hypertrophy of adult NMJs, decreased

physical activity results in degenerative changes and nerve terminal sprouting in adult NMJs

(reviewed in 12). For example, degenerative changes in NMJs occur upon exposure to zero

gravity during space flight, during extended bed rest, or when the limbs of laboratory
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animals are fixed artificially to prevent use 12. These observations suggest that daily

physical activity is required for maintenance of adult mammalian NMJs and prevention of

degeneration.

Aged NMJs and exercise

Exercise has beneficial effects also on aged NMJs, even though the effects are different from

those observed in younger adults (Table 1). Endurance training decreases AChR cluster size

in the extensor digitorum longus muscle of aged mice and the gluteus maximus muscle of

aged rat, which is the opposite effect of endurance training in younger adult animals 2,23.

Furthermore, endurance training does not alter synapse size in the soleus muscle of aged

mice 2 and rats 24. Similarly, isometric force training of the genioglossus muscle in aged rats

does not alter synapse size, although it appears to have a beneficial effect on presynaptic

active zones 9. Furthermore, endurance training in aged mice reduces age-related

morphological alterations and denervation of NMJs in other hind limb muscles: tibialis

anterior, gracilis, and gastrocnemius muscles 26. Importantly, time-lapse analysis in vivo

reveals that endurance training of aged mice partially reverses the age-related alteration in

NMJs. 26

These effects of exercise observed in aged animals should be interpreted with caution,

because aged NMJs exhibit various degrees of denervation in different muscles 27. In young

adult muscles, all NMJs are innervated, so analyses are limited to the adaptive changes in

existing NMJs in response to increased activity. However, aged animals exhibit denervation

in subpopulations of NMJs. Therefore, analyses of NMJs include the adaptive changes that

occur in the existing NMJs and the reinnervation of the NMJs that were denervated prior to

exercise. If analyses use aged muscles without denervation, for example the genioglossus

muscle 9 or extraocular muscles 27, then the adaptive changes in aged NMJs would be the

focus of analysis 9. These 2 approaches allow investigation of the potential therapeutic

effects of exercise in maintaining and/or regenerating aged NMJs depending on the type of

aged muscle.

In a recent study using aged genioglossus muscles, resistance training showed a beneficial

effect on the presynaptic active zones in aged NMJs 9. Active zones are cytosolic structures

needed for synaptic vesicle release 28–31. The active zone-specific protein Bassoon is absent

in many NMJs of aged mice and rats, while nerve terminals still fully innervate the

endplates 9,21. A loss of Bassoon can be seen prior to denervation of aged NMJs, which

suggests that a loss of active zones may play a role in age-dependent degenerative changes

in NMJs, including denervation. This is because NMJ denervation has been observed in

young humans and mice that exhibit a loss of active zones resulting from gene

mutations 31–33. This proposal is further supported by the finding that less active motor

nerve terminals withdraw from NMJs when NMJ synaptic transmissions are attenuated

under experimental conditions 34,35. Thus, these findings also suggest that NMJ synaptic

activity and innervation maintenance are closely related. Importantly, 2 months of isometric

force training reduces the active zone protein loss in the genioglossus muscle of aged rats 9.

In trained-aged rats, the average level of Bassoon protein at the nerve terminals increases to

the level observed in young adult NMJs, and the number of NMJs that do not contain a
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detectable level of Bassoon signal decreases significantly. This additional Bassoon protein

in the trained-aged NMJs distributes to active zones, which may aid in functional recovery

of NMJs.

Muscle fibers and exercise

Are these adaptive changes of NMJs a secondary effect of muscle fiber hypertrophy induced

by exercise? Exercise causes muscle hypertrophy, and exercise-induced genes, such as

peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC-1α), have been

shown to increase muscle fiber diameter 36. The role that these exercise-induced genes play

in muscle hypertrophy has been reviewed in detail10,37. The NMJ size is coupled, to a

certain degree, to muscle fiber size 17,38. However, aged NMJs respond differently than

muscle fibers to exercise. Exercise increases muscle fiber size in the soleus muscle of aged

rats 24,39, but the NMJ size does not increase 2,24. Furthermore, some of the exercise-based

changes of NMJs cannot be explained merely by changes in muscle fiber diameter.

Examples include increased active zone protein level 9,40, reduced denervation rates,

reduced age-related morphological alterations in aged NMJs 26, and a reduction of AChR

cluster size in extensor digitorum longus and gluteus maximus muscles of aged mice 2,23.

Therefore, exercise induces NMJ hypertrophy partly by increasing muscle fiber diameter,

but also by direct modification of NMJs.

Molecular mechanism underlying the exercise effect on NMJs

The beneficial effects of exercise are observed predominantly in trained muscles, and a

systemic effect in non-trained muscles has not been observed 26,41 (also see 42). These

results suggest that NMJ hypertrophy in exercised young adults and the increase in active

zone protein levels in exercised aged NMJs are localized effects within the exercised

muscles and motor neurons innervating exercised muscles. The molecular mechanisms

through which exercise produces beneficial effects on NMJs have not been elucidated fully.

In human muscles, resistance training upregulates mRNA and protein expression levels of

extracellular matrix molecules 41,43, including laminin β2 41 (Figure 1, Table 2). The

exercise induced upregulation of laminin β2 expression may play a role in the effect of

exercise that increases the level of active zone protein Bassoon in aged NMJs 9. The link

between these 2 studies will be discussed below.

Laminin β2 is an extracellular matrix protein that is secreted by muscles and is concentrated

specifically in the synaptic cleft of NMJs 44,45. Laminin β2 binds directly and specifically to

P/Q- and N-type voltage-dependent calcium channels (VDCCs) 19. These VDCC pore-

forming subunits bind to synaptic laminins that contain laminin β2 and do not bind to non-

synaptic laminins, which contain laminin β1 19. Furthermore, synaptic laminins will bind to

VDCCs that are highly concentrated at presynaptic terminals in NMJs (e.g., P/Q- and N-

types) and not to other VDCCs [e.g., R- and L-type VDCCs (Cav1.2)] 19,46,47, which

suggests that laminin β2 is an extracellular ligand of synaptic VDCCs. Interactions between

laminin β2 and VDCCs lead to the clustering of VDCCs and presynaptic components in

cultured motor neurons 19. In vivo studies provide compelling evidence that this

extracellular interaction between laminin and VDCCs organizes the NMJ active zones. The
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number of active zones decreased when the interaction between the VDCCs and laminin β2

was perturbed in wild-type mice by infusing an inhibitor of this interaction 19. Moreover,

P/Q- and N-type VDCCs double knockout mice exhibit specific defects in the number of

active zones and docked synaptic vesicles, which were twice as severe as the defects

observed in the P/Q- and N-type VDCC single knockout mice 19,48. Humans who carry

laminin β2 mutations that result in active zone loss and denervation develop Pierson

syndrome, an autosomal recessive movement disorder associated with microcoria, and

nephrotic syndrome32,49. These data suggest that laminin β2 binds to synaptic VDCCs to

organize the active zones.

P/Q-type VDCCs are distributed in a discrete punctate pattern within NMJs and

preferentially co-localize with Bassoon9. It has been predicted that the VDCCs that trigger

synaptic vesicle release are located at or in close proximity to active zones 50–55. The three-

dimensional alignment of the P/Q-type VDCCs and Bassoon immunohistochemistry signals

suggests that these co-localization spots are discrete active zones within NMJs 9. This

proposal is also supported by rodent NMJ active zone studies that have used freeze fracture

electron microscopy 56, electron microscope tomography 57,58, and electrophysiology 59.

Importantly, this co-localization pattern of P/Q-type VDCCs and Bassoon in the NMJs is

consistent with a report that identified direct binding between VDCCs and Bassoon 48. In

addition, the active zone specific proteins Bassoon, CAST/Erc2, ELKS, and RIMs interact

with the VDCC β subunits 48,60–62, which forms a tight complex with the pore-forming α

subunits of the P/Q- and N-type VDCCs 63. VDCC α subunits also interact with the active

zone proteins RIMs and Piccolo 64–66. These active zone proteins most likely form a large

protein complex 67–70. Therefore, presynaptic VDCCs tether active zone proteins to the

presynaptic membrane and form electron-dense material in the NMJ active zones. Taken

together with the previous paragraph, these findings show that the muscle-derived laminin

β2 organizes NMJ active zones from the extracellular side by anchoring the VDCC subunits

and active zone protein complex.

NMJ active zones are maintained at a constant density as the NMJ matures but are degraded

in aged animals 21. The level of Bassoon decreases in the NMJs of aged mice and rats 9,21. A

lack of Bassoon is known to impair synaptic vesicle trafficking to presynaptic membranes in

the central nervous system and sensory neurons 71–73. Furthermore, a lack of Bassoon

decreases VDCC Ca2+ influx and weakens synaptic transmission, because the direct

interaction between VDCCs and Bassoon enhances the P/Q-type VDCC function 9. This

modification to VDCCs by Bassoon is similar to the effect of another active zone protein,

RIM1, on VDCCs 60,61. These findings are consistent with the Bassoon-dependent increase

in Ca2+ influx through L-type VDCCs in the inner hair cells of the auditory system 73.

Furthermore, impaired synaptic transmission at NMJs is a known characteristic in human

diseases and knockout mice associated with a decreased number of active zones 31,55,74.

Therefore, the reduced Bassoon protein level in aged NMJs most likely weakens synaptic

transmission. This hypothesis is supported by the observation that synaptic function is

attenuated in aged NMJs compared with young adult NMJs, including stronger synaptic

depression during repeated stimulation 75, reduction in the end-plate potential amplitude at

the plateau level after repetitive stimulation 76, and a reduction in the frequency of miniature
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end-plate potentials 76,77. Taken together, these findings suggest that active zone protein loss

may be a part of the molecular mechanism that causes the deterioration observed in aged

NMJs.

Active zone deterioration in aged NMJs is ameliorated by muscle exercise. Two months of

isometric force training rescued the loss of Bassoon in aged NMJs in the genioglossus

muscle of two-year-old rats 9. Exercise training did not alter NMJ size, which suggests that

the increase in the Bassoon immunohistochemistry signal in aged NMJs reflects an increase

in the protein quantity in each nerve terminal 9. The mean intensity of the Bassoon

immunohistochemistry signal in the NMJs of exercised aged rats is similar to the mean

intensity observed in the young adult rats. Importantly, the improvement in Bassoon protein

level observed in exercised aged NMJs is consistent with improvements observed using

electrophysiology in NMJ function after endurance training in aged mice 23. In summary,

exercise-induced upregulation of laminin β2 may play a role in preservation of active zones

in aged NMJs, which most likely exerts a positive effect on NMJ synaptic transmission.

Other molecular mechanisms involved in the exercise effect on NMJs

Signaling cascades involving neuregulins and PGC-1α play a role in the beneficial effects of

exercise (Figure 1, Table 2). Exercise increases the phosphorylation and proteolytic

processing of a transmembrane isoform of the signaling molecule neuregulin-1 in skeletal

muscle 78. Proteolytic cleavage of neuregulin-1 can also be induced by increasing the

neuronal activity in cultured neurons 79. Neuregulin induces expression of synaptic genes in

muscles, and this finding was confirmed in vivo using neuregulin1 heterozygote mice 80.

Neuregulin-1 mediated upregulation of synaptic gene expression in muscles requires the

transcription coactivator PGC-1α, phosphorylation of PGC-1α, and interaction of PGC-1α

and GA-binding proteins 81. Furthermore, exercise increases the expression level of

PGC-17α in rodents and humans 82,83, and elevated levels of PGC-1α increase the

transcription of synaptic genes in cultured primary muscle cells 81. Additionally, AMP-

activated protein kinase (AMPK) may play a role in activating PGC-1α in response to

exercise 84. AMPK is an energy-sensing enzyme 85 that is activated in skeletal muscles

during exercise 86,87. AMPK phosphorylates PGC-1α directly, which is required for the

PGC-1α-dependent induction of the PGC-1α promoter 88. Interestingly, knockout mice for

the neuregulin1 isoform highly expressed in motor neurons (CRD-NRG-1) exhibit

presynaptic defects in developing NMJs 89, which suggests that neuregulin signaling also

plays a role on the presynaptic side of NMJs. In summary, these signaling cascades most

likely play a role in the exercise-induced modification of NMJs.

Exercise induces expression of insulin-like growth factor-1 splice variants (a.k.a. mechano

growth factor) in skeletal muscles 90,91 (Table 2). Insulin-like growth factor-1 (IGF-1)

preserves NMJs in a motor neuron disease mouse model 92, which suggests that IGF-1 also

plays a role in the beneficial effects of exercise on NMJs. Interestingly, the expression level

of IGF-1 is regulated negatively by microRNA (miR)-206 in the skeletal muscles of fish 93.

Several miRs are highly expressed in skeletal muscles and are considered to be muscle

specific, including miR-206 94. In human skeletal muscles, many miRs are regulated by

exercise 95–97. For example, endurance training for 12 weeks significantly decreases the
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expression level of miR-206 98, which may increase the expression level of IGF-1.

Additionally, IGF-1 inhibits expression of miR-378, and miR-378 negatively regulates the

expression level of insulin-like growth factor 1 receptor (IGF1R) in mouse

cardiomyocytes 99. Together, IGF-1 and muscle-specific miRs may play a role in the

beneficial effects of exercise by enhancing the IGF-1 signaling pathway. This interesting

potential role for the IGF-1 signaling cascade awaits further study in human skeletal

muscles. It has also been reported that miR-206 promotes regeneration of NMJs in a motor

neuron disease mouse model 100. The discrepancy between this positive role of miR-206 and

the finding that exercise downregulates miR-206 is due potentially to the difference between

motor neuron disease animals and healthy animals. Further investigation is needed to

elucidate the role of miRs in exercise.

Exercise also upregulates transcription of several other neurotrophic factors 101–104 which

have beneficial effects on NMJs (Table 2). The expression level of neurotrophin 4 (NT-4) is

activity-dependent, and electrical stimulation of the sciatic nerve increases NT-4 expression

in mouse skeletal muscles 105. Importantly, NT-4 receptor (TrkB) is expressed in motor

neurons, and NT-4 induces the sprouting of motor nerve terminals in adult rats in vivo 105.

These results demonstrate that increased NT-4 can explain, at least in part, the beneficial

effects of exercise on NMJs. However, the role NT-4 plays in exercise-induced hypertrophy

of the NMJs is unknown, because NMJ size was not measured in this study. Similarly,

brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor

(GDNF) are upregulated in the rat soleus muscle by exercise 102,103. Therefore, the

expression level of these factors in skeletal muscles is activity-dependent. These

neurotrophic factors increase the survival of motor neurons 106–116. Furthermore,

neurotrophins modulate the synaptic transmission efficiency of the NMJs in embryos and

adults 117–121. In addition, GDNF increases the number of motor units and induces

continuous synaptic remodeling of adult NMJs 122. These findings suggest that exercise

induces expression of GDNF and BDNF, which increase the survival of the innervating

motor neurons and have beneficial effects on NMJs in exercised muscles. Interestingly, the

GDNF protein level is not upregulated uniformly by exercise and seems to be muscle

specific, because it has been shown that GDNF is downregulated in the extensor digitorum

longus muscle after exercise 103.

Other signaling proteins are also regulated by exercise. Homer is an adaptor protein that has

a role in controlling the Transient Receptor Potential (TRP) Channel activity in skeletal

muscles 123,124 and accumulates at postsynaptic sites in skeletal muscles 125. In human

skeletal muscles, postsynaptic protein levels of Homer increase with exercise and decrease

with bed rest,125 (Table 2). Homer2 binds directly to the transcription factor nuclear factor

of activated T cells (NFATc1), and activated NFATc1 moves from the cytoplasm to the

nucleus in exercised muscle 125. NFAT1c1 upregulates expression levels of synaptic genes,

acetylcholinesterase, and utrophin, in skeletal muscles 126,127. Utrophin is a large

cytoskeletal protein that accumulates preferentially at NMJs and participates in the

maturation of the postsynaptic site 128–131. These findings suggest that Homer plays a role in

the NFATc1-dependent signaling pathway to increase transcription of synaptic gene in

exercised muscle.
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Implications for treatment

The molecular mechanisms underlying the beneficial effects of exercise on NMJs are being

elucidated, but knowledge gaps currently prevent complete reproduction of these benefits by

pharmacological treatments. This review covers a subset of the genes, proteins, and

signaling pathways that are modified by exercise, and transcriptome analyses have recently

revealed a large number of genes that are controlled in response to increased physical

activity in the spinal cord 132–134 and skeletal muscles 41–43,133,135–140. Tissue-specific and

age-dependent differences in these responses are being revealed within skeletal muscle

tissues, and thus, further mechanistic investigations are needed. As summarized in this

review, exercise clearly has beneficial effects on the maintenance and regeneration of NMJs.

The molecular mechanisms underlying these beneficial effects provide potential new

therapeutic targets for motor neuron diseases, neuromuscular junction diseases,

musculoskeletal diseases, and age-dependent degeneration of NMJs. Currently, many

studies that manipulate signaling pathways related to exercise have focused their analyses

mostly on muscles but not NMJs 84,141–143. The effects of exercise mimetics as

pharmacological treatments of neuromuscular diseases have not yet been determined

successfully. Therefore, it is anticipated that further research will yield methods to

pharmacologically mimic, enhance, or modify these cellular and molecular mechanisms of

exercise in order to enhance exercise-based interventions or replace them in individuals

whose disabilities preclude exercise intervention.
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AChR acetylcholine receptor

AMPK AMP-activated protein kinase

BDNF brain-derived neurotrophic factor

GDNF glial cell line-derived neurotrophic factor

IGF-1 insulin-like growth factor-1

IGF1R insulin-like growth factor 1 receptor

miR microRNA

NFATc1 nuclear factor of activated T-cells

NMJs neuromuscular junctions

NT-4 neurotrophin 4

PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1α
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VDCCs voltage dependent calcium channels
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Figure 1.
A schematic diagram showing genes and proteins controlled by exercise at the vertebrate

neuromuscular junction. Solid arrows represent an upregulation or enhancement of RNAs or

proteins by exercise. T-shaped arrows represent a suppression of RNAs or proteins by

exercise. See text and tables for the modification mechanisms and functions of these RNAs

and proteins by exercise. A motor neuron and its presynaptic terminal are indicated in green.

The green arrow indicates hypertrophy or sprouting of the motor nerve terminal induced by

exercise. Synaptic vesicles and voltage-dependent calcium channels accumulate near the

active zone indicated using a black triangle, which depicts the electron dense material of the

active zones detected by electron microscopy. A muscle fiber is indicated in pink with

acetylcholine receptors indicated in red and synaptic extracellular matrix indicated in orange

at the synaptic cleft. A junctional fold is indicated as a trough on the postsynaptic

membrane. The relative size of the structures in this diagram is not in scale.
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Table 1

Effects of exercise type and aging on neuromuscular junction size

Exercise type Muscle Adult NMJ Aged NMJ

Endurance Extensor digitorum longus Increase (mouse [2], rat [3]) Decrease (mouse [2])

Gluteus maximus Increase (mouse [23]) Decrease (mouse [23])

Soleus Increase NMJ size (mouse [2], rat [4, 24]), No
change (rat [3])

No change (mouse [2], rat [24])

Resistance Soleus No change (rat [6]) Unknown

Genioglossus * No change (rat [25]) No change (rat [9]), * decrease (rat [25])

NMJ = neuromuscular junction.

*
In reference 25, chronic electrical stimulation was applied to the nerve to mimic a clinical exercise paradigm 144.

Muscle Nerve. Author manuscript; available in PMC 2015 March 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nishimune et al. Page 19

Table 2

Effects of exercise on synaptic genes, NMJ morphology, and NMJ function.

Signaling
pathways,
genes, and
proteins Effects of exercise Effects on NMJ morphology and function

[Presynaptic active zone organizer]

Laminin β2 Increases the level of extracellular matrix
molecules, including laminin β2 (mRNA)
in humans [41].

• Organizes presynaptic active zones [19].

• Lack of laminin β2 decreases synaptic transmission efficiency
[31, 74]

Bassoon Reverts the Bassoon protein level at the
presynaptic terminal of aged NMJs to
young adult level [9].

• Organizes presynaptic active zones [9, 48].

• Lack of Bassoon decreases the function of presynaptic calcium
channel [9].

[Neuregulin/PGC-1α]

Neuregulin-1 Increases the phosphorylation and
proteolytic processing of neuregulin-1 in
skeletal muscle [78].

Induces the expression of synaptic genes [80].

PGC-1α Increases the expression level of PGC-1α
in humans [83] and rats [82].

• Increases the transcription of synaptic genes in muscles [81].

• Neuregulin-1 mediated upregulation of synaptic gene
expression in muscles requires PGC-1α, phosphorylation of
PGC-1α, and interaction of PGC- 1α and GA-binding proteins
[81].

AMPK Increases AMPK activation in human
[86,87].

AMPK activates PGC-1α by directly phosphorylating it [88].

[Neurotrophic factors]

IGF-1 Increases the expression level of IGF-1 in
human [90, 91].

• Preserves NMJs from degeneration in motor neuron disease
model mice [92].

• Inhibits the expression of microRNA (miR)-378, which
negatively regulates the expression level of IGF-1 receptor [99].

miR-206 Decreases the expression level of miR-206
in human [98].

• Increases the expression level of IGF-1, which is negatively
regulated by miR-206 in the skeletal muscles of fish [93].

• miR-206 promotes the regeneration of NMJs in motor neuron
disease model mice [100].

NT-4 Increases NT-4 mRNA level by electrical
stimulation of sciatic nerves [105].

• Induces sprouting of NMJs [105].

• Enhances neuromuscular transmission [120].

BDNF Increases the expression level of BDNF
[102].

• Increases EPP amplitude and enhances neuromuscular
transmission [120,121].

• Increases the survival of motor neurons [106–116].

GDNF Increases the expression level of GDNF
[102].
Increases the protein level of GDNF in the
rat soleus muscle, but decreases in the
extensor digitorum longus muscle [103].

• Increases the number of motor units and induces the continuous
synaptic remodeling of adult NMJs [122]

• Increase the survival of motor neurons [106–116].

[Homer-NFATc1]
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Signaling
pathways,
genes, and
proteins Effects of exercise Effects on NMJ morphology and function

Homer Increases protein level of Homer at
postsynaptic side of NMJs [125].

• Homer2 binds directly to the transcription factor nuclear factor
of activated T cells (NFATc1) and activated NFATc1 moves
from the cytoplasm to the nucleus in exercised muscle [125].

• Activated NFATc1 upregulates the expression levels of synaptic
genes, acetylcholinesterase and utrophin [126, 127].
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