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Targeting reactive nitrogen species: a promising 
therapeutic strategy for cerebral ischemia-reperfu-
sion injury
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Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy 
for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are 
mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and 
peroxynitrite (ONOO–), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the 
production of nitric oxide (NO) and peroxynitrite (ONOO–) in ischemic brain, which trigger numerous molecular cascades and lead to 
disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic 
brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the 
treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process 
of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO– to treat ischemic 
stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-
reperfusion injury.  
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Introduction
Stroke is the second leading cause of death and a leading 
cause of adult disability in human diseases[1, 2].  The latest data 
indicate that approximately 7 000 000 Americans have suffered 
a stroke, incurring an annual cost of $40.9 billion[3].  Ischemic 
stroke accounts for nearly 80% cases of stroke patients.  The 
process of ischemic stroke begins with blood flow cessa-
tion with energy depletion and follows serious pathological 
changes and brain damages through a series of molecular 
cascades after cerebral artery occlusion[4].  The most effective 
and essential treatment is to recover the blood supply by reca-
nalization of the occluded arteries[5, 6].  However, the recanali-
zation treatment can also aggravate brain damage, referred 
to as “cerebral ischemia-reperfusion injury”, which has been 
discovered in patients who have experienced disastrous out-
comes due to fatal edema or intracranial hemorrhage follow-
ing thrombolysis[7].  
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Review 

Cerebral ischemia-reperfusion injury can be defined as 
a deleterious, but salvageable, deterioration of an isch-
emic injury after reperfusion[8].  Free radicals are important 
cytotoxic molecules that play a role in the process of cerebral 
ischemia reperfusion injury.  Two major classes of free radi-
cals are the reactive oxygen species (ROS) and the reactive 
nitrogen species (RNS).  ROS are comprised of active species 
including hydroxyl radical, superoxide, singlet oxygen, and 
hydrogen peroxide, etc.  Under physiological conditions, ROS 
serve as redox signaling molecules and have important bio-
logical functions.  For instance, ROS can enhance the protein 
kinase C-dependent excitatory postsynaptic potential[9] and 
can inhibit the release of dopamine in the central nervous 
system[10].  However, ischemia and reperfusion insults induce 
the accumulation of excessive ROS, resulting in tissue oxida-
tive damage in ischemic brains[11, 12].  In recent decades, the 
roles of ROS in cerebral ischemia-reperfusion injury have 
been intensively investigated.  For example, during ischemia-
reperfusion injury, ROS accumulation can disrupt cellular 
signal transduction, activate inflammation factors, induce 
lipid peroxidations resulting in neural cell death, and con-
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tribute to the breakdown of the blood brain barrier (BBB) and 
enlargement of the infarction[13].  Antioxidant therapies, such 
as edaravone, NXY-059 and allopurinol, have been proposed 
to act as neuroprotective reagents for acute ischemic stroke 
patients with the potential to improve clinical outcomes[14–17].  
However, the roles of RNS in cerebral ischemia-reperfusion 
injury and the potential values of RNS modulators in the 
treatment of stroke remain to be addressed.  In this review, we 
have focused on the role of RNS, particularly nitric oxide (NO) 
and peroxynitrite (ONOO–), in cerebral ischemia-reperfusion 
injury.  Subsequently, we have discussed the potential of RNS 
inhibitors and activators in drug development.  

Roles of RNS in cerebral ischemia-reperfusion injury
NO and ONOO– are two common species of RNS that are well 
documented to be present in cerebral ischemia-reperfusion 
injury.  The low concentration of NO that is produced by 
endothelial nitric oxide synthase (eNOS) has physiological 
functions, whereas the high concentration of NO produced 
from inducible NOS (iNOS) and neuronal NOS (nNOS) is 
detrimental to the ischemic brain.  iNOS and nNOS can lead 
to inflammation, cell death, BBB hyperpermeability and 
infarction enlargement.  During cerebral ischemia or cerebral 
ischemia-reperfusion injury, NO is produced simultaneously 
with superoxide (O2 ·̄ ) and rapidly reacts with O2 ·̄  at a 
diffusion-limited rate to generate ONOO–.  Peroxynitrite can 
easily permeate lipid bilayers, leading to peroxidation of 
membrane lipids[18, 19], mediating nitration of tyrosine residue, 
inhibiting tyrosine phosphorylation and thereby affecting cel-
lular signal transduction.  Peroxynitrite inactivates aconitase 
and superoxide dismutase (SOD), mediates NO-induced BBB 
damage[20] and triggers apoptotic cell death[21].  Therefore, RNS 
are not only critical factors in cerebral ischemia-reperfusion 
injury but are also important drug targets for ischemic stroke 
treatment.  

Role of NO in the cerebral ischemia-reperfusion injury
NO can be produced from both enzymatic and non-enzymatic 
pathways.  NO can be derived from L-arginine through an 
enzymatic reaction catalyzed by NO synthases (NOS) and 
by the enzymatic reduction of available cellular nitrite pools 
through a diverse class of cytosolic and mitochondrial nitrite 
reductases.  Nitrite is a major metabolic product of NO pro-
duction and is found in all types of cells and tissues that utilize 
NO signaling processes[22].  In most cases, NO is enzymatically 
generated from the conversion of L-arginine and oxygen by 
various forms of NOS, including nNOS (type 1), iNOS (type 
2), and eNOS (type 3).  eNOS and nNOS are calcium-depen-
dent and generally produce nanomolar levels of NO, while 
iNOS is calcium-independent and produces micromolar levels 
of NO.  iNOS is often activated at the transcriptional level by 
de novo synthesis in response to many stimulating agents[23].  
The physiological concentration of NO (at levels less than 10 
nmol/L) generated from eNOS is essential to neuronal com-
munication, regulation of vascular tone, synaptic transmis-
sion, platelet aggregation and inflammatory responses[24–28].  

However, high concentrations of NO generated from calcium-
dependent nNOS activation and calcium-independent iNOS 
activation in macrophages and other cell types are detrimental 
to the ischemic brain [29].  

Using electron paramagnetic resonance (EPR) spin trapping 
techniques, two early studies directly demonstrated the 
production of NO in the brains of cerebral ischemic animal 
models[30, 31].  Other studies that adopted different methods, 
such as porphyrinic microsensor and NO indicator, revealed 
similar results; NO was significantly induced in the early 
phase of ischemic stroke[32, 33].  Using in vivo microdialysis to 
monitor stable NO metabolites (nitrite and nitrate), a previ-
ous study has shown a transient increase in NO by 50% for 
approximately 30 min after reperfusion[34].  At the early stage 
of ischemia, transient restriction of the blood supply leads to 
the increased activity of eNOS, which produces small amounts 
of NO and protects the brain vasculature[35].  Simultaneously, 
energy depletion induces the accumulation of glutamate and 
triggers the activation of calcium channels, which leads to 
NO production through nNOS stimulation[36, 37].  At the rep-
erfusion stage, the up-regulated expression of iNOS results 
in excessive NO formation, and the increased iNOS lasts for 
more than 7 d[36, 37].  The vast NO production from iNOS and 
nNOS are neurotoxic.  Using EPR spin trapping technology, 
we previously demonstrated a biphasic production of NO in 
a rat model of cerebral ischemia-reperfusion injury.  The first 
phase of NO productions was after 1 h of ischemia, and the 
second phase was at 24 to 48 h of reperfusion after 1 h of isch-
emia.  The first and second phases of NO production were cor-
related with increased nNOS and iNOS, respectively[38].  

The increased NO production in ischemic brain plays two 
roles: one in cell death and the other in BBB disruption.  The 
small amount of NO produced from eNOS exerts neuropro-
tective effects, whereas the greater amount of NO produced 
from iNOS and nNOS is neurotoxic.  The opposing roles of 
NO have been attested by both genetic and pharmacological 
approaches.  For example, eNOS knockout mice had larger 
infarction volumes than those of wild-type mice after cerebral 
ischemia[39], indicating the neuroprotective effects of the NO 
derived from eNOS.  Similar results were obtained from the 
studies using statins or corticosteroids, which showed that 
these medications could increase eNOS activity and attenu-
ate the brain damage in an experimental stroke animal model.  
The neuroprotective mechanisms of those medications include 
the elevation of cerebral blood flow, the reduction of thrombo-
sis formation, the suppression of NMDA receptor activation, 
the improvement of inflammatory and oxidative status, and 
the enhancement of vasorelaxation[29, 39–41].  A knockdown of 
either the iNOS or nNOS gene was found to have a neuropro-
tective effect in mice that underwent transient or permanent 
cerebral ischemia[42, 43].  Similarly, selective NOS inhibitors, 
such as 1400W, BN80933, and ARL17477, revealed preventive 
effects against ischemic stroke[44–46].  The underlying mecha-
nism of the NO neurotoxicity is primarily through its interac-
tion with protein moieties, which leads to S-glutathiolation[47], 
nitrosothiol formation[48], or protein nitrosylation[49].  The 
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formation of peroxynitrite is also an important neurotoxic 
mechanism of NO in cerebral ischemia-reperfusion injury[50, 51] 
that will be discussed in the next session.  

In addition to the cell death, the blood-brain barrier break
down is another important pathophysiological process in 
cerebral ischemia-reperfusion injury.  The BBB consists of 
microvascular endothelial cells, astrocytic endfeet and the 
extracellular matrix (ECM).  Tight junctions (TJs), consist-
ing of junction adhesion molecule-1 (JAM-1), occludin and 
claudins[52], in the layer of microvascular endothelial cells are 
the key elements of the BBB.  The cytoplasmic domains of 
these proteins are anchored to the cytoskeleton through acces-
sory proteins such as those classified in the zonula occludens 
(ZOs) family.  Activation of the matrix metalloproteinases 
(MMPs) is one of the critical pathways in the BBB opening[53–56].  
MMPs are a group of proteases with more than 20 members, 
among which are MMP-2, -3, and -9, the main forms found in 
the brain.  During cerebral ischemia, the activation of MMP-2 
was found at the first stage of the BBB opening[56–58], whereas 
enhanced MMP-9 activity was related to the second stage[59, 60].  
Activated MMPs can hydrolyze the BBB extracellular matrix 
and TJ proteins and subsequently degrade the extracellular 
matrix around cerebral blood vessels and neurons.  Hypoxia 
mediates the MMP-9-dependent TJ rearrangement and 
induces edema formation; thus, inhibition of MMP-9 could be 
an important therapeutic strategy for the treatment of brain 
edema[61].  A systematic review suggests that MMP-9 could 
be used not only as a drug target but also as a biomarker 
for monitoring brain damage and predicting hemorrhagic 
transformation during thrombolytic treatment[62].  Excessive 
NO production appears to be related to the BBB breakdown 
during ischemic stroke.  Overexpression of eNOS or treatment 
with an NO donor has been shown to inhibit the expression 
of MMP-2 mRNA in endothelial cells[63].  However, decreased 
MMP-9 activity was found in nNOS-null mice and in mice 
treated with a selective nNOS inhibitor[64].  The nonselective 
NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) sig-
nificantly reduced the BBB breakdown and MMP-9 activity in 
a middle cerebral artery occlusion (MCAO) animal model[65, 66].  
Therefore, the roles of NO in the activation of MMPs and 
BBB disruption are related to the amount of NO produced 
from different subtypes of NOS under different experimental 
conditions.  However, the mechanisms of NO-mediated MMP 
activation and BBB disruption remain largely unknown.  
Recent studies conducted by us suggested that caveolins play 
critical roles in the NO-mediated MMP activation and the 
BBB disruption during cerebral ischemia-reperfusion injury.  
Caveolins are 22 kDa proteins found in plasma membrane 
invaginations known as caveolae (50–100 nanometers), which 
consist of three subtypes: caveolin-1 (Cav-1), caveolin-2 
(Cav-2), and caveolin-3 (Cav-3).  Cav-1 can inhibit the expres-
sion of NOS and production of NO via the caveolin-binding 
motif.  Cav-1 was immunoprecipitated with eNOS in endothe-
lial cells[67] and was found to inhibit eNOS activity through 
direct binding to eNOS through amino acid residues 82-101 
of the Cav-1 binding sequence[68, 69].  Cav-1 binds to iNOS 

and nNOS in a similar manner as it does to eNOS[70, 71].  To 
elucidate the potential mechanisms of the NO-mediated MMP 
activation and BBB disruption, we recently conducted a series 
of experiments to address the relationship of Cav-1, RNS, and 
MMP activity and the impact of their interaction on the BBB 
disruption using both rat and mouse MCAO models.  Focal 
cerebral ischemia-reperfusion down-regulated the expression 
of Cav-1 in the isolated cortex microvessels, hippocampus 
and cortex of the ischemic brain.  The down-regulation of 
Cav-1 correlated with the increased activities of MMP-2 and 
-9, decreased ZO-1 expression and enhanced BBB perme-
ability.  Treatment with L-NAME reserved the expression of 
Cav-1, inhibited MMP activity and reduced BBB permeabil-
ity.  After focal cerebral ischemia-reperfusion, Cav-1-deficient 
mice displayed higher MMP activities and BBB permeabilities 
than wild-type mice.  The effects of the L-NAME on the MMP 
activity and BBB permeability were partly reversed in Cav-
1-deficient mice.  Thus, we proposed a novel mechanism for 
BBB disruption in cerebral ischemia-reperfusion injury.  In 
ischemic stroke, overproduction of NO from nNOS and iNOS 
inhibited the Cav-1 expression, while the down-regulation of 
Cav-1 increased NOS activity and generated more NO[38].  This 
positive feedback loop could aggravate the effects of NO on 
the BBB insult during cerebral ischemia-reperfusion injury.  
Moreover, the inhibition effects of L-NAME on MMP activ-
ity and BBB permeability were partly mediated by Cav-1[66].  
Nevertheless, there are some controversial reports in literature.  
For example, increased Cav-1 expression and phosphorylation 
were shown to be correlated with the decreased expressions of 
occludin and claudin-5 in a rat cortical cold injury model[72, 73].  
Another study demonstrated that green tea polyphenols 
reduced the expression of Cav-1 within the microvessel frag-
ments and ameliorated the BBB permeability in cerebral isch-
emic rats[74].  The discrepancy in previous studies might be 
due to the use of different ischemia protocols.  Further work 
addressing the relationship of NO, Cav-1, and MMPs will aid 
in our understanding of the mechanisms of the BBB disruption 
and brain damage in cerebral ischemia-reperfusion injury.  

Roles of peroxynitrite in ischemic stroke 
In addition to NO production in the ischemia-reperfused brain, 
an overproduction of superoxide is also observed in neurons 
and endothelial cells during both the ischemic phase and the 
reperfusion period[75–77].  Thus, the formation of ONOO– is dra-
matically increased due to the extremely rapid reaction ratio 
of NO and superoxide [~1×1010 (mol/L)-1 s-1].  The increase in 
ONOO– levels has been discovered in blood samples of isch-
emic stroke patients which were collected at 24 h and 48 h 
after ischemic stroke[78, 79].  Peroxynitrite has about 400 times 
higher penetrating capacity across lipid bilayers than its par-
ent radical superoxide anions.  As a critical neurotoxic fac-
tor, peroxynitrite exerts its cytotoxic effects through protein 
tyrosine nitration, lipid membrane peroxidation, induction of 
mitochondrial dysfunction, and PARP activation leading to 
DNA breakage[80].  Peroxynitrite triggers tyrosine nitration, 
the addition of a nitro (-NO2) group to the hydroxyl group of 
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tyrosine residues to form 3-nitrotyrosine, which is the foot-
print of ONOO– [51, 81].  Accumulated 3-nitrotyrosine has been 
found both in the MCAO animal models and in the autopsies 
of patients who have died of stroke[82, 83].  By tyrosine nitration, 
ONOO– could alter protein structure and function, which may 
cause enzymatic activity inhibition, cytoskeletal disruption 
and signal transduction dysfunction[84].  Comprehensive stud-
ies have indicated that protein nitration could be one of the 
critical mechanisms of ONOO–-induced cytotoxicity[51].  Lipid 
peroxidation is considered to be another mechanism underly-
ing the cytotoxicity of ONOO–.  For example, through a lipid 
peroxidation reaction, ONOO– can oxidize the low-density 
lipoprotein and promote the development of atherogenesis[85].  
ONOO– can also oxidize the myelin lipids and contribute to 
the process of inflammation in the brain tissue[86].  In addition, 
peroxynitrite can mediate DNA damage through its activation 
of the PARP pathway[51].  Peroxynitrite also induces the gen-
eration of DNA single-strand breaks by nitration of guanine 
nucleotides or by oxidative modification of the sugar-phos-
phate backbone.  The presence of DNA single-strand breaks 
can further activate PARP.  Peroxynitrite has been reported 
to cause DNA strand breakage and induce PARP activation 
in various cell types, such as vascular endothelial cells[87, 88], 
macrophages[89], fibroblasts[90], and neurons[91].  Furthermore, 
the PARP-deficient mice were less vulnerable than wild-type 
mice to MCAO-induced cerebral ischemic injury[92, 93].  

In addition to its neurotoxicity, ONOO– also contributes to 
the BBB breakdown; it can mediate the activation of MMPs 
and the degradation of the TJ proteins, which subsequently 
leads to breakdown of the BBB integrity.  Peroxynitrite was 
reported to activate MMP-1, 8, 9 via S-glutathiolation in 
purified human zymogens in the presence of GSH[94].  It can 
also modulate the activity of MMP-2 by modifying a cysteine 
residue in the auto-inhibitory domain of the zymogen[95, 96].  
3-Morpholinosydnonimine (SIN-1, a ONOO– donor), rather 
than S-nitroso-N-acetyl-l,l-penicillamine (SNAP, an NO 
donor), increased the secretion of activated MMP-2 and the 
expression levels of MT1-MMP through activation of NF-κB[97].  
Furthermore, the synthesized form of ONOO– is found to 
inactivate tissue inhibitor of MMP 1 (TIMP-1) by triggering 
TIMP-1 protein fragmentation[98].  Peroxynitrite inactivates 
TIMP-4 through the formation of nitration products on four 
tyrosine residues, subsequently activating MMP-2 in endothe-
lial cells[99].  Peroxynitrite breaks down and rearranges tight 
junction proteins, which induces BBB disruption.  Peroxynitrite 
decomposition catalysts (PDCs), such as FeTMPyP and 
FeTPPS, comprise an important tool for the study of ONOO–.  
PDCs can potentiate the reduction of NO and O2

–, isomerize 
ONOO– to nitrate and decrease its decomposition to other 
reactive intermediates.  It was reported that FeTMPyP not only 
protected the BBB integrity in an in vitro BBB model[100], but it 
also prevented MMP activation and neurovascular injury in 
response to ischemia-reperfusion insults[101].  Taken together, 
ONOO– is responsible for the neurotoxicity and the BBB break-
down in cerebral ischemia-reperfusion injury.

RNS as potential molecular targets for drug development 
strategies
NO and ONOO– are crucial players of RNS in mediating 
BBB breakdown and brain damage during cerebral ischemia-
reperfusion injury.  Through complex cellular and biochemical 
mechanisms, RNS could mediate the degradation of TJs in the 
BBB and induce the influx of substances into the brain paren-
chyma from blood vessels, leading to the BBB opening and 
brain vasogenic edema.  Therefore, RNS could be potential 
drug targets for the treatment of ischemic stroke.

Targeting NO as a drug development strategy
As NO has dual roles in this biological system, the therapeutic 
strategies should aim to establish balanced levels of NO by 
increasing the NO level derived from eNOS and decreasing 
the cytotoxic NO level by inhibiting the production of NO 
from iNOS and nNOS.  

Strategies for increasing substrates of NO production 
Basal levels of NO have physiological functions, such as vaso-
dilatation, neuronal communication, and synaptic transmis-
sion.  NO donors and substrates of eNOS may be applied to 
improve the outcome of patients with acute ischemia stroke.  
The NO donor nitrite has been proven to be an effective treat-
ment for transient ischemia[102].  The NO precursor, L-arginine, 
increased blood flow, reduced the size of infarction and 
increased the functional neurological recovery in a rat model 
of ischemia stroke[103].  A systematic review summarized a 
total of 25 studies and concluded that L-arginine is effective in 
increasing rCBF and reducing the infarction volume in experi-
mental stroke models[104].  However, L-arginine was found to 
be useful only for eNOS-deficient mice, but not in wild-type 
mice[29].  In addition, the administration of L-arginine may be 
hazardous to patients who have stimulated NOS activity[105].  
Importantly, one clinical trial showed that L-arginine failed 
to be beneficial for ischemic stroke patients[106].  One of the 
explanations for the failure is that L-arginine may also increase 
the blood flow in normal brain tissue, thus relatively reducing 
the blood flow to the ischemia penumbra[107].  The potential 
applications of L-arginine for ischemic stroke should be 
further investigated with well-designed clinical trials.  

Strategies for increasing eNOS activity
Statin is one of the promising agents that could increase the 
activity of eNOS.  Statin can improve eNOS expression both 
through LDL-dependent and independent pathways[108, 109].  It 
was reported to reduce both the infarction volume and edema 
formation in ischemic stroke animal models[110, 111].  The protec-
tive effect of statin was completely abolished in eNOS knock-
out mice, indicating that the protective effects of statin are 
eNOS-dependent[112].  Ample preclinical and clinical studies 
further support the neuroprotective effects of statin, and it is 
now recommended for the prevention of stroke[113, 114].  How-
ever, recent studies suggest that statin treatment exerts nega-
tive side effects, including increased incidence of hemorrhagic 
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stroke[115, 116] and higher risk of infection[117].  Therefore, further 
studies by using well-designed clinical trials are necessary to 
evaluate the application of statin in ischemic stroke treatment.  
Given that statin has multiple pharmacological activities, 
the beneficial effects for ischemic stroke treatment cannot be 
attributed solely to the production of NO via eNOS activation.  

nNOS and iNOS inhibitors
As stated above, a non-selective NOS inhibitor, L-NAME 
(Figure 1a), can reduce the infarction volume, prevent the 
BBB breakdown and improve the recovery of neurological 
functions in cerebral ischemic mouse models[118, 119].  However, 
L-NAME also targets eNOS, which has protective effects dur-
ing the ischemic process.  Therefore, it is reasonable to use 
specific NOS inhibitors targeting only nNOS and iNOS in the 
treatment of ischemic stroke.  Delta-(S-methylisothioureido)-
L-norvaline (L-MIN) (Figure 1c), an nNOS-specific inhibitor, 
was reported to reduce infarction size in a rat stroke model[120].  
Similarly, other nNOS inhibitors, including 7-nitroindazole[121] 
(Figure 1b), tirilazad[122] (Figure 1d) and ARL-17477[44] (Figure 
1e), also reduce infarction volume in a rat transient MCAO 
model.  In addition to nNOS inhibitors, selective iNOS inhibi-
tors such as 1400W and aminoguanidine are also promising 
for protecting brains from ischemic injury.  For example, 
1400W (Figure 1f) has been shown to attenuate ischemic brain 
injury.  Administration of aminoguanidine (Figure 1g) even as 
late as 24 h after occlusion could reduce the infarct volume by 
up to 30%[123].  

Overall, although the NOS inhibitors have potential 
therapeutic values for cerebral ischemia-reperfusion injury 
in animal models, clinical evidence from human subjects is 
still lacking.  Thus, it is a crucial time to conduct preclinical 
experiments and clinical trials to evaluate the safety and 
efficacy of a subset of NOS inhibitors for ischemic stroke 
treatment.  

Peroxynitrite related drug discovery
Given that peroxynitrite is responsible for neurotoxicity in 
cerebral ischemia-reperfusion injury, drug development for 
either scavenging or catalytically decomposing peroxynitrite 
could be a potential valuable therapeutic strategy.  However, 

compared to NO, drug development by targeting peroxyni-
trite is much slower, partly due to the technical limitations in 
the direct detection of peroxynitrite.  

Development of fluorescent probes for peroxynitrite detection 
Unlike NO, which can be directly detected by EPR or fluores-
cent imaging with various sensitive and specific probes both 
in vitro and in vivo, peroxynitrite detection is not successful 
due to less specificity and sensitivity.  For instance, dichloro-
fluorescein (DCF) and rhodamine 123 have been proposed for 
ONOO– detection, but they cross-react with H2O2, ·OH, ·NO2, 
·CO3

−, Fe(II), Fe(III)/ascorbate, Fe(III)/EDTA, cytochrome c, 
and HOCl[124–126].  To resolve this problem, we developed a 
novel fluorescent probe, named HKGreen-1, that has highly 
sensitivity and selectivity for ONOO–.  In primary cultured 
neurons, HKGreen-1 staining fluorescence was highly 
increased in the SIN-1 treatment group, but no fluorescence 
was observed in the other RNS- and ROS-treated groups[127].  
With this probe, we discovered endogenous ONOO– genera-
tion in oxygen-glucose-deprived cortical neurons[128].  Based 
on the first generation of HKGreen-1, several modified probes 
have been produced[129, 130].  These modified probes aim to 
act as peroxynitrite scavengers with the potential to protect 
ischemic brains from the ONOO–-mediated injury.

Peroxynitrite decomposition catalysts (PDCs)
FeTMPyP (Figure 2a) and FeTPPS (Figure 2b), two represen
tative PDCs, were reported to reduce infarction size, brain 
edema, and neurological deficits, partly by reducing the 
peroxynitrite level, as well as protein nitration even when 
administered at 6 h after MCAO treatment[131].  Moreover, 
the administration of FeTMPyP 30 min prior to reperfusion 
prevented BBB breakdown by inhibiting MMP activation in a 
transient MCAO rat model[101].  FeTMPyP was also reported to 
improve plasma-induced vascular dysfunction and infarction 
in a mild hyperglycemic MCAO model[132].  Interestingly, the 
effects of FeTMPyP on the infarction volume and neurological 
defects were further improved when FeTMPyP was combined 
with a PARP inhibitor in a focal cerebral ischemia model[133].  
Further studies on the long-term outcomes of PDC treatment 
for ischemic stroke are necessary.  

Figure 1.  Chemical structures of NOS inhibitors.  a, L-NAME; b, 7-nitroindazole; c, L-MIN; d, Tirilazad; e, ARL 17477; f, 1400W; g, Aminoguanidine.
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Peroxynitrite scavengers
The development of ONOO– scavengers is an attractive 
strategy for drug discovery in stroke treatment.  Herewith, we 
have summarized the recent progress in this field.  

Uric acid 
Uric acid is an endogenous peroxynitrite scavenger.  The 
level of serum uric acid (SUA) was remarkably decreased in 
stroke patients[134].  Higher SUA levels appear to be associated 
with better outcome in both patients that have or have not 
undergone thrombolytic therapy[135, 136].  Extraneous uric acid 
protected neurons against excitotoxic and metabolic injury 
by scavenging ONOO–, thereby attenuating mitochondrial 
damage and lipid peroxidation in vitro.  Treatment with uric 
acid (Figure 2c) remarkably reduced the infarction volume, 
improved the behavioral outcome and attenuated the inflam-
matory response in rat MCAO cerebral ischemia models[137, 138].  
Uric acid not only possesses neuroprotective effects but also 
extends the benefits of the recombinant tissue plasminogen 
activator (rt-PA).  Co-treatment of uric acid with rt-PA showed 
greater protective effects than either treatment did alone[138].  A 
phase II clinical trial of combined UA and rt-PA treatment has 
indicated that the treatment is safe and has the benefit for the 
increase of SUA level and the inhibitions of lipid peroxidation 
and MMP-9[134, 139].  A randomized, placebo-controlled phase II 
trial of combined treatment with UA and rt-PA for acute isch-
emic stroke patients is ongoing[140].

Phenolic compounds
Flavonoids, hydroxycinnamic and hydroxybenzoic acids are 
natural phenolic compounds.  Their antioxidant activities 
are related to their hydrogen-donating and metal-chelating 
properties.  These compounds can scavenge various species 
of free radicals, including peroxynitrite, superoxide, H2O2, 
and ·OH.  Several compounds can scavenge ONOO– and 
have neuroprotective effects in ischemic stroke in vivo.  For 
example, resveratrol (Figure 3b) direct reacts with ONOO– in 
vitro[141] and protects neuronal cells by decreasing oxidative 

damage and suppressing glial activation[141–143].  Curcumin 
(Figure 3a) was reported to attenuate the ONOO–-induced BBB 
breakdown and ameliorate the brain damage during cerebral 
ischemia-reperfusion injury[144].  Green tea catechins (Figure 
3c) protected the penumbra from ischemic reperfusion injury, 
which is thought be a result of decreases in iNOS expression 
and ONOO– level[145].  Caffeic acid (Figure 3d) was reported 
to directly react with ONOO– [146] and protect ischemic brain 

Figure 2.  Chemical structures of PDCs and UA.  a, FeTMPyP; b, FeTPPS; c, Uric acid.

Figure 3.  Chemical structures of phenolic peroxynitrite scavengers.  a, 
Curcumin; b, Resveratrol; c, (−)-Catechin; d, Caffeic acid. 
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tissues in a rat MCAO model[147].  However, there are few 
studies about their reaction rates and whether the reactions 
are direct or indirect in vivo.  The overall mechanisms for these 
compounds to exert protective effects should be further inves-
tigated.  

Non-phenolic compounds
Many non-phenolic antioxidant compounds exert strong 
ONOO- scavenging activities with neuroprotective effects, 
including cerium oxide[148], ebselen[149] (Figure 4a), edara-
vone[150, 151] (Figure 4b), betulinic acid[152] (Figure 4c), and mela-
tonin[153, 154] (Figure 4d).  One such compound, edaravone, has 
been applied to acute stroke treatment in Japan and China for 
many years, and it has become a useful neuroprotective agent 
in clinical treatment in these regions[155].  One of the potential 
mechanisms of edaravone is related to decreased nitrotyrosine 
formation in vivo.  However, similar to phenolic compounds, 
the detailed reaction mechanism(s) remain unknown.  

Regardless of the direct or indirect reaction in vivo, all of the 
above compounds could ameliorate cerebral ischemia-reperfu-
sion injury through decreasing ONOO– -induced nitrotyrosine 
formation.  Therefore, seeking an ONOO– scavenger or decom-
poser will likely be an important strategy for drug discovery 
in the treatment of ischemic stroke.

Conclusion
To date, almost all of the neuroprotective drugs tested were 
unsuccessful in their clinical trials, and rt-PA is the only FDA-
approved drug for ischemic stroke treatment.  However, the 
time window of rt-PA greatly limits its application; most 
stroke patients are unable to seek medical assistance quickly 
enough to receive the rt-PA treatment within the necessary 3-h 
window.  Beyond that time window, delayed thrombolysis 
will induce fatal edema or intracranial hemorrhaging because 
of the cerebral ischemia-reperfusion injury.  A combinatorial 
application of neuroprotective drugs with thrombolysis drugs 

would be an effective approach to maximize clinical outcome 
through extending the time window for thrombolysis, thereby 
reducing the reperfusion injury and enhancing the recovery of 
neurological function.  During thrombolysis, reperfusion may 
produce large amounts of NO and ONOO–, which are very 
important mediators of neurotoxicity and the BBB breakdown.  
Therefore, targeting these RNS might be valuable for reducing 
the side effects of thrombolytic agents.  Although some drug 
candidates have been implemented in clinical trials, most can-
didates are still at the early experimental stages.  With gained 
understanding of the detailed mechanisms of RNS in ischemic 
stroke and the development of new RNS detection strategies, 
it will be possible to develop novel RNS-based drug candi-
dates for ischemic stroke.  
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