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Abstract

N-terminal RCC1 methyltransferase (NRMT) was the first eukaryotic methyltransferase identified

to specifically methylate the free α-amino group of proteins. Since the discovery of this N-

terminal methyltransferase, many new substrates have been identified and the modification itself

has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human

homolog of NRMT, Methyltransferase-like protein 11B (METTL11B, now renamed NRMT2).

We show here for the first time that NRMT2 also has N-terminal methylation activity and

recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes

have similar tissue expression and cellular localization patterns. However, enzyme assays and

mass spectrometry experiments indicate they differ in their specific catalytic functions. While

NRMT1 is a distributive methyltransferase that can mono-, di-, and trimethylate its substrates,

NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2

accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by

priming its substrates for trimethylation.
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INTRODUCTION

N-terminal methylation of free α amino groups had been documented for many decades, but

very little was known about the function of this modification [1]. Of the few eukaryotic

proteins known to be N-terminally methylated, almost all contained an N-terminal X-Pro-

Lys consensus sequence (Rubisco being an exception [2]), indicating that one specific

enzyme might be responsible for this post-translational modification [1]. The first functional

role of N-terminal methylation was determined by mutating the Ser-Pro-Lys consensus of

the Ran guanine nucleotide exchange factor Regulator of Chromatin Condensation 1

(RCC1) [3]. This resulted in loss of RCC1 N-terminal methylation, decreased affinity of

RCC1 for DNA, mislocalization of RCC1 during mitosis, and the formation of multi-polar

spindles [3]. It has also recently been shown that the N-terminal glycines of CENP-A and

CENP-B are N-terminally methylated [4, 5]. N-terminal methylation of CENP-B regulates

its binding to centromeric DNA [5], and N-terminal methylation of CENP-A likely helps

regulate the phasing of CENP-A nucleosomes on centromeric α-satellite DNA [4]. In

addition to regulation of protein-DNA binding, many N-terminally methylated proteins are

found in large multi-subunit complexes with their N-termini at locations of contact to

neighboring proteins, signifying this modification may also play a role in the regulation of

protein-protein interactions [1]. N-terminal methylation is also protective against digestion

by cellular aminopeptidases [6] and may interfere with N-terminal acetylation and the N-end

rule pathway [7, 8], indicating a role in protein stability.

The first eukaryotic N-terminal methyltransferase, NRMT/NTMT (now NRMT1), was

identified as the enzyme that methylates the N-termini of RCC1 [9] and the ribosomal

proteins Rpl12 and Rps25 [10]. Accordingly, NRMT1 loss in human embryonic kidney cells

results in decreased RCC1 localization to chromatin and increased multi-polar spindle

formation during mitosis [9]. Yeast lacking NRMT1 have altered ribosomal profiles and

defects in translational fidelity and efficiency [11]. We have previously shown that NRMT1

mono-, di-, and trimethylates an N-terminal X-Pro-Lys (X-P-K) consensus sequence, with X

being any amino acid other than Leu, Ile, Trp, Asp, or Glu [9]. Using this consensus

sequence, we have also confirmed a variety of new NRMT1 substrates, including the tumor

suppressor Retinoblastoma protein (RB), the oncoprotein SET, the transcription factor

Kelch-like protein 31, and numerous myosin light chains and ribosomal proteins [9].

Though NRMT1 substrates are numerous and predominantly abundant proteins, NRMT1

itself is ubiquitously expressed at considerably low levels (Figure 5C), suggesting there may

be an additional enzyme(s) capable of N-terminal methylation.

NRMT1 (formerly METTL11A) is a member of the Class I Methyltransferase family, as it

lacks a SET domain (common of the histone methyltransferases) and is composed of a seven

beta-strand structure. Sequence analysis indicates one close human homolog,

Methyltransferase-like protein 11B (now renamed NRMT2) [10]. Characterization of other

methyltransferase families has shown that such close homologs usually differ in either their

expression/localization patterns or their catalytic activity. For example, PRMT1 and PRMT8

are both type I arginine methyltransferases from the protein arginine methyltransferase

(PRMT) family. They both methylate glycine/arginine-rich motifs, however, PRMTI is

ubiquitously expressed and PRMT8 is specifically expressed in the brain [12]. PRMT8 is
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also myristoylated, resulting in membrane-specific localization [12]. In comparison, the

nuclear receptor-binding SET domain proteins NSD1 and NSD2 are both nuclear histone

methyltransferases. However, NSD1 is a histone H3 lysine 36 dimethylase [13], while

NSD2 is a histone H3 lysine 36 trimethylase [14].

Here we report that NRMT2 is a functional N-terminal methyltransferase that also

recognizes and methylates an X-P-K consensus sequence. NRMT1 and NRMT2, analogous

to the NSD family of methyltransferases, have similar localization and expression patterns

but differ in their catalytic activity. NRMT1 is a distributive methyltransferase that can

mono-, di-, and trimethylate its substrates, while NRMT2 is primarily a monomethylase. We

propose a model whereby their similar localization patterns allow NRMT2 to prime for

NRMT1, allowing for quicker and more robust di- and trimethylation of substrates. This

regulatory mechanism would be especially useful in tissues with a high abundance of

substrates.

MATERIALS AND METHODS

Constructs and antibodies

The SPK and APK-RCC1 substrates for determining NRMT2 consensus specificity were

expressed from a modified pet15b vector (Novagen) and were processed by Factor X

cleavage and purified as previously described [9]. The PPK-RCC1 substrate was expressed

in pet30a as previously described[3]. Human NRMT1 and mouse NRMT2 (Open

Biosystems) were cloned into the XbaI and BamHI sites of pKGFP2 to remove one copy of

GFP and create the NRMT1-GFP and NRMT2-GFP constructs for cellular localization

experiments. Human NRMT1 and human NRMT2 (Open Biosystems) were cloned into the

NdeI and XhoI sites of pet15b for production of recombinant protein. The recombinant

human RCC1 substrate was expressed in pET30a [3]. All His-tagged proteins were purified

as previously described [15].

Primary antibodies used for western blot analysis are as follows: 1:20,000 rabbit anti-

trimethylated SPK-RCC1 (me3-RCC1)[3], 1:10,000 rabbit anti-mono/dimethylated SPK-

RCC1 (me1/2-RCC1) [3], 1:1000 rabbit anti-dimethylated PPK-RCC1 (me2-PPK), 1:1000

goat anti-RCC1 (Santa Cruz Biotechnology, Inc., sc-1162), 1:1000 rabbit anti-NRMT1 [9],

and 1:3000 mouse anti-beta-catenin (BD Biosciences).

NRMT2 rescue assay

Lentivirus was produced through calcium-phosphate transfection of 2.5 × 106 human

embryonic kidney (HEK) 293LT cells with the viral envelope plasmid pMD2.G, the viral

packaging vector psPAX2, and pGIPZ (Open Biosystems) containing the shRNAmir and/or

the rescuing cDNA. 10,000 293LT cells were infected with lentivirus (control, NRMT1

shRNAmir, NRMT1 shRNAmir co-expressing murine NRMT1–Flag or NRMT1 shRNAmir

co-expressing murine NRMT2–Flag) to an MOI of 3. The cells were grown for 2 days and

transduced cells were selected by addition of 2 μg ml−1 puromycin. The cells were grown

two additional days and lysed in lysis buffer (500 mM NaCl; 50 mM Tris pH 8.0; 5 mM
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MgCl2; 1 mM EDTA; 1 mM EGTA; 0.1% NP-40; BME and protease inhibitors). Each

lysate (50 μg) was analyzed by western blot.

In vitro methylation assays

In vitro methylation reactions with Factor X digested substrates were done as described

previously [9]. For the assays determining catalytic specificity (both by western blot and

mass spectrometry), 1 μg recombinant human enzyme was mixed with 1 μg recombinant

RCC1 substrate in the presence of 100 μM S-adenosylmethionine (AdoMet) (Sigma-

Aldrich). The reaction volume was brought to 20 μl with methyltransferase (MTase) buffer

(50 mM Tris, pH 8; 50 mM potassium acetate). Each reaction was run for 60 min at 30°C to

ensure reaction ran to completion. For mechanistic studies, 25–500 ng of recombinant

enzyme was mixed with 1–2 μg recombinant RCC1 substrate in the presence of 100 μM

AdoMet. Reaction volume was adjusted to 20 μl with MTase buffer and run from 2.5 to 30

minutes at 30°C depending on the experiment. 5 μl of the total reaction was analyzed in each

lane of the western blots. Measurements of mono/di- and trimethylation of RCC1 were done

on the same reactions. Western blot images were taken with the ChemiDoc MP Imaging

System (Bio-Rad) and % RCC1 trimethylation was quantified using Image Lab (Bio-Rad)

software. Briefly, identical boxes were used to measure the intensity of each trimethylated

band and corresponding total RCC1 loading control. The methylated intensity was divided

by the total RCC1 intensity and multiplied by 100 to give % RCC1 trimethylation.

Mass Spectrometry Analysis

The analysis for the presence and extent of RCC1 N-terminal methylation was conducted as

described by Chen et al. with some modifications [3]. In vitro methylated RCC1 proteins

were resolved on SDS PAGE gels and bands visualized using Coomassie Blue stain. The gel

bands were excised, de-stained and equilibrated into 0.1M triethylammonium bicarbonate,

pH 8.5 and digested with 100ng Asp-N (Roche, Palo Alto, CA) per gel plug. The digest

supernatant was transferred to a new tube and the gel plugs extracted using a modification of

Shevchenko et al [16]. The digest and extract were combined, dried by SpeedVac (Savant,

Thermo Scientific, Waltham, MA) and re-suspended in 20μL of 0.1% formic acid/2%

acetonitrile and then filtered through 0.2um regenerated cellulosic syringe filters (National

Scientific, Thermo Scientific, Waltham, MA). A 5ul aliquot of this peptide solution was

loaded onto a Dionex Acclaim PepMap 100 75μm × 2cm, nanoViper (C18, 3μm, 100Å)

trap, and resolved on a Dionex Acclaim PepMap RSLC 50μm × 15cm, nanoViper (C18,

2μm, 100Å) separating column. The sample was eluted using a linear 2% to 60% acetonitrile

gradient using an EASY nano1000 UHPLC and introduced into a LTQ-Orbitrap ELITE

mass spectrometer (ThermoElectron, Waltham, MA) for accurate mass measurements using

a Nanospray Flex Ion Source (ThermoElectron, Waltham, MA), a stainless steel emitter with

a capillary temperature set to 225 C and a spray voltage of 1.6kV and lock mass enabled

(0% lock mass abundance) for the 371.101236m/z polysiloxane peak as an internal calibrant

[17]. Tandem mass spectra were collected using HCD and ETD fragmentation using an Nth

Order Double Play with ETD Decision Tree method [18] was created in Xcalibur v2.2.

Targeted and data dependent spectra were acquired and searched using MASCOT ver 2.1

through Proteome Discoverer 1.4 considering up to two missed cleavages, as well as

phosphorylation and N-terminal methylation as variable modifications. All spectra MS2 for
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RCC1 were manually interpreted. Extracted ion chromatograms for the +2, +3 and +4

charge states for individual N-terminal RCC1 peptides were aggregated and used to estimate

relative abundances of modified and unmodified, normal and des-Met truncated N-terminal

RCC1 peptides.

NRMT1 and NRMT2 Localization

For live cell imaging, HeLa cells were plated in 2-well Lab-Tek II coverglass (Nunc) in

DMEM/F12 50/50 without phenol red (Cellgro) supplemented with 10% FBS (Gibco) and

transiently transfected with 2.0 μg NRMT1-GFP, NRMT2-GFP, or pKGFP-GFP using

Lipofectamine 2000 (Invitrogen). After 24 hrs, cells were counterstained with DRAQ5 dye

(1 μg ml−1), Imaging was performed on a Zeiss LSM510 Meta confocal microscope, using a

100x oil immersion lens (na 1.3), at 512×512 pixel resolution, and a zoom of 2.0. Images

were processed and quantified using ImageJ 1.41b software.

Quantification of mRNA in mouse tissue

RNA isolation was performed by homogenization of tissues in TRIzol (Life Technologies)

using the Powermax™ Advanced Homogenizing System 200 (VWR). Samples were then

mixed with chloroform to extract RNA, the RNA was pelleted using isopropanol, and then

washed with ethanol. cDNA was synthesized using the SuperScript First-Strand Synthesis

System (Invitrogen). Quantitative RT-PCR was performed with SYBR green PCR Master

Mix and the CFX96 Touch™ Real-Time PCR Detection System and Sequence Detection

Software (Bio-Rad). Primers (Integrated DNA Technologies) were designed using Primer 3

v 0.4.0. Primers sequences were 5′-TCT TCC CCC AGG TAG CTC T-3, 5′-TGC AGA

GGT TTT TAA GGG AAG-3′ for NRMT1 and 5′-CTT TCA GAG CTA CCT CTA CC-3′,

5′-GAA ATT CAC GAG AGG CTT GG-3′ for NRMT2. Gene expression was analyzed

using a standard curve as previously described [19], as there were no housekeeping controls

expressed at comparably low levels and constant between tissues. All real-time PCR assays

included analysis of melting curves and agarose gel electrophoresis to confirm the presence

of single PCR reaction products. The identity of NRMT1 and NRMT2 real-time PCR

products was confirmed by sequencing (DNA Sequencing Core, University of Louisville,

Louisville, KY).

RESULTS

Substrate specificity of NRMT2 is similar to NRMT1

NRMT1 has one close human homolog METTL11B [10], which we renamed NRMT2. The

amino acid sequence identity between NRMT1 and NRMT2 is close to 50%, with all the

catalytic residues being fully conserved (Figure 1). NRMT2 has an additional 60 amino acid

N-terminal domain, which likely has a structure comprised of two helices (Figure 2A).

Homology modeling by the Robetta server [20] showed that the overall fold of the catalytic

domain of NRMT2 is highly similar to NRMT1 (RMSD less than 2.0Å), with all the critical

catalytic residues occupying the same spatial positions (Figure 2B). We have previously

shown that Asn169, Asp178, Asp181, and Ser183 are needed for the catalytic activity of

NRMT1 [9], and the homology modeling places the corresponding Asn223, Asp232,

Asp235, and Ser237 of NRMT2 in almost identical positions in the catalytic site (Figure
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2B). The modeling also reveals conserved aromatic residues in the active sites of NRMT1

and NRMT2 (Figure 2C) that are reminiscent of the aromatic residues of chromodomains

and may be responsible for binding methylated substrates or products [7].

Sequence and structural similarity of NRMT1 to NRMT2 suggest that these two enzymes

likely have similar enzymatic activities and substrate specificities. To test if NRMT2 is

capable of methylating SPK, PPK or APK N-terminal consensus sequences (which can all

be recognized by our me2-PPK RCC1 antibody), we employed a system in which Factor X

cleavage provides efficient exposure of the residue to be methylated [9]. In vitro methylation

assays showed that recombinant NRMT2 is capable of methylating SPK, PPK and APK

recombinant substrates (Figure 3A). Furthermore, C-terminally FLAG-tagged murine

NRMT2 expressed in 293LT cells is capable of rescuing NRMT1 knockdown and restoring

efficient RCC1 αN-methylation, indicating the enzymes have overlapping catalytic activities

(Figure 3B). However, we had previously seen that rescuing NRMT1 knockdown with

NRMT1-FLAG restores both RCC1 mono/di- and trimethylation [9], but rescue with

NRMT2-FLAG only restores RCC1 mono/dimethylation (Figures 3B and C).

Catalytic Activity of NRMT2 differs from NRMT1

To verify the rescue experiments indicating NRMT2 does not have trimethylase activity, we

performed in vitro methylation assays with recombinant human NRMT1 or recombinant

human NRMT2 as the enzyme and recombinant human RCC1 as the substrate. The reaction

was done for 60 minutes at 30°C in the presence of 100 μM AdoMet with 1 μg each of

enzyme and substrate. These conditions were chosen to ensure the reaction went to

completion and the amount of enzyme was not rate limiting. The reaction was then run on an

SDS-polyacrylamide gel and analyzed by western blot with anti-me1/2RCC1 and anti-

me3RCC1 antibodies. After 60 minutes, little RCC1 mono/dimethylation is seen following

incubation with NRMT1, but higher levels are seen with NRMT2 (Figure 4A). In contrast,

when looking at RCC1 trimethylation, there are high levels following incubation with

NRMT1, but none after NRMT2 treatment (Figure 4A). These data indicate that after 60

minutes, NRMT1 is capable of almost completely trimethylating RCC1, while NRMT2 can

only complete dimethylation.

As the me1/2-RCC1 antibody recognizes both mono- and dimethylation, we wanted to use

mass spectrometry (MS) to verify that NRMT2 was capable of both N-terminal mono- and

dimethylation. The same in vitro methylation reactions were performed as above, run on an

SDS-polyacrylamide gel, and stained with Coomassie brilliant blue. The RCC1 protein band

was excised and analyzed for N-terminal methylation by MS. As is observed by western

blot, LC-MS/MS analysis indicated that the NRMT1 reaction produced almost complete

trimethylation of RCC1 (Figure 4B and Supplemental Figure 1). However, surprisingly the

NRMT2 reaction only produced significant levels of monomethylation (Figure 4C and

Supplemental Figure 1), indicating NRMT2 is primarily an N-terminal monomethylase.

NRMT2 Localization and Tissue Expression

Now knowing that NRMT1 and NRMT2 have different catalytic activities, we were

interested in determining if they also have different cellular localization patterns. We tagged
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NRMT2 with green fluorescent protein (GFP) and expressed it in HeLa cells. Similarly to

NRMT1 [9] (Figure 5A), immunofluorescent analysis shows NRMT2 is enriched in the

nuclear compartment as compared to a GFP-GFP control protein (Figure 5A). The nuclear to

cytoplasmic ratio of NRMT1 and NRMT2 was also quantified and found to be significantly

different than that of the GFP-GFP control (Figure 5B).

As we determined that NRMT1 and NRMT2 have similar cellular localization patterns, we

next analyzed their tissue distribution. Quantitative Real-time PCR (qRT-PCR) analysis was

performed for both NRMT1 and NRMT2 in mouse tissue lysates. Both enzymes are

expressed at fairly low levels in all tissues examined (approximately 100–200 copies of

transcript per 40 ug of cDNA). However, NRMT1 mRNA is enriched in the brain, NRMT2

mRNA is enriched in the liver, and both are enriched in skeletal muscle (Figures 5C and D).

Due to the low expression levels, we confirmed the specificity of the NRMT1 and NRMT2

qRT-PCR reactions by sequencing the products to verify that the correct targets were

amplified (data not shown).

NRMT2 primes for NRMT1

To establish a functional distinction between two N-terminal methyltransferase family

members that have such similar subcellular localization and tissue expression profiles, we

performed enzyme assays with NRMT1 and NRMT2 individually or in combination. We

hypothesized that one reason for overlapping localization and expression patterns is that

NRMT1 and NRMT2 are working synergistically. Lysine methylation has been shown to

occur by one of two mechanisms, processive or distributive [21]. Processive

methyltransferases can add up to three methyl groups without dissociation from the

substrate. Therefore trimethylation by these enzymes is not dependent on the concentration

of previously mono- or dimethylated substrate. In contrast, distributive methyltransferases

add a methyl group, then must dissociate from the substrate before additional methyl groups

can be added [21]. Increasing the amount of previously mono- or dimethylated substrate can

thereby increase di- or trimethylation by these methyltransferases.

The complex pattern of RCC1 N-terminal methylation in mammalian cells (5%

unmethylated, 20% monomethylated, 30% dimethylated, and 45% trimethylated) [3]

indicates that NRMT1 is distributive or has an extremely low kcat. If NRMT1 is distributive,

NRMT2 should be able to increase NRMT1 di- and trimethylation activity by increasing the

pool of monomethylated substrates available. This would be especially useful in the

presence of high concentrations of substrate.

We analyzed the methylation mechanisms of NRMT1 and NRMT2 by performing in vitro

methylation assays with increasing concentrations of recombinant enzyme and a constant

concentration of substrate (recombinant human RCC1). If the reaction time is kept constant,

a processive enzyme will produce different amounts of only one methylation state.

However, a distributive enzyme will produce all three methylation sites, with the highest

order of methylation occurring slowly and dependent on the concentration of enzyme [21].

As shown in Figure 6A, at low concentrations of NRMT1 we first observe robust RCC1

mono/dimethylation. Increasing the concentration of NRMT1 results in a gradual

accumulation of RCC1 trimethylation with a corresponding decrease in RCC1 mono/

Petkowski et al. Page 7

Biochem J. Author manuscript; available in PMC 2014 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dimethylation (Figure 6A). The appearance of both mono/di- and trimethylation, the order in

which they appear, and the eventual decrease of RCC1 mono/dimethylation indicate that

NRMT1 is a distributive trimethylase.

In contrast, when using NRMT2 as the enzyme, we only observe RCC1 mono/

dimethylation, which we now know from the mass spectrometry data is predominantly

monomethylation (Figure 6B). These levels rise with increasing concentration of NRMT2

and do not decrease at high levels of enzyme, as seen with NRMT1. We do not see the

appearance of RCC1 trimethylation (Figure 6B), further confirming NRMT2 is not a

trimethylase. When NRMT1 and NRMT2 are combined in a reaction, RCC1 trimethylation

appears more rapidly and intensely (Figures 6C and D), indicating that NRMT2 can serve as

an activator/primer for NRMT1 trimethylation.

DISCUSSION

These experiments verify for the first time that NRMT2 is an N-terminal methyltransferase,

that it has a different catalytic specificity from its homolog NRMT1, and that it can prime

NRMT1 substrates for higher degrees of methylation. NRMT1 and NRMT2 are not the first

highly similar methyltransferase family members to differ in their specific catalytic

functions. The nuclear receptor SET domain-containing methyltransferases NSD1, NSD2,

and NSD3 are almost identical in a 700 amino acid stretch (including their catalytic

domain), yet bind histone H3 differently and catalyze different levels of methylation at

lysine 36 [13, 14, 22]. Structural studies indicate the differences in the NSD

methyltransferases comes from their chromatin binding motifs, which target them to

different promoter regions [22]. Comparison of NRMT1 crystal structure and NRMT2

homology model indicate that the main region of variance between the two homologs is the

additional N-terminal domain of NRMT2. These additional bulky helices could easily

prevent binding of NRMT2 to previously methylated substrates. Thus, it will be interesting

to see if deleting the N-terminal domain of NRMT2 will allow it to di- and trimethylate its

substrates. It would also be interesting to determine if switching the conserved trio of

aromatic residues in the active sites of NRMT1 and NRMT2 could switch their catalytic

activities. Though similar in structure (Figure 2C), the exact residues differ slightly and

could dictate binding of unmethylated versus mono- or dimethylated substrates (see EZH2

below) [23].

The inability of NRMT2 to di- or trimethylate X-P-K substrates in vitro indicates that it is

primarily a monomethylase. However, NRMT1 is capable of trimethylation in vitro,

demonstrating the two enzymes do have inherent catalytic differences and may be

differentially regulated. For example, the monomethylase activity of NRMT2 may protect it

from product feedback inhibition. We have previously shown NRMT1 can bind to and

become inhibited by its di- and trimethylated products [7]. As NRMT2 is not able to di- and

trimethylate substrates, it is also unlikely to bind these products. Di- and trimethylated

species constitute the majority of N-terminally methylated proteins in the cell [3], so

NRMT2 expression could be used to alleviate or bypass this inhibition. This would be

especially useful in tissues like skeletal muscle, which contains high amounts of

trimethylated myosin proteins [9]. Higher NRMT2 expression in skeletal muscle (Figure
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5D) may aid NRMT1 strained by substrate burden and product inhibition. It is currently

unclear why NRMT1 mRNA is enriched in the brain and NRMT2 mRNA is enriched in the

liver. However, these unique aspects of their expression patterns suggest they are serving

non-redundant, tissue-specific functions.

In addition, loss of NRMT1 activity alone has phenotypic consequences both in vitro [9] and

in vivo (C.S.T unpublished data), indicating NRMT1 and NRMT2 have non-redundant roles

during cell growth and development. These data also demonstrate that N-terminal

monomethylation and di/trimethylation serve non-redundant functions. There is mounting

evidence of distinct functional roles for different levels of histone methylation, with the

extent of methylation often controlling the binding of effector proteins [24]. There is also

evidence that disruption of these levels has extreme biological effects. The histone

methyltransferase EZH2 is predominantly a histone H3 lysine 27 (H3K27) monomethylase

[23]. However, in a subset of follicular lymphoma and diffuse-large B-cell lymphomas there

is a gain-of-function tyrosine to phenylalanine mutation at amino acid 641 (Y641F) in the

active site that turns EZH2 into a H3K27 trimethylase [23]. It is proposed that this change in

methylation ability alters the transcriptions levels of different tumor suppressors regulated

by EZH2, leading to the progression of B-cell tumorigenesis [23].

In the same way, mutations that alter the expression levels or catalytic functions of NRMT1

or NRMT2 could produce developmental defects and lead to disease. In fact, mutations in

both NRMT1 and NRMT2 have been found in a variety of cancers, including point

mutations in the NRMT2 active site [25–27] (Cosmic Catalogue of Somatic Mutations in

Cancer). NRMT1 is overexpressed in colon and rectal cancers [28, 29], indicating an

increase in di/trimethylated substrates may exacerbate the pathology of these diseases.

However, in breast cancer, NRMT1 expression is more often decreased [30–32], indicating

di/trimethylated substrates may be protective against this pathology or an increase in

monomethylated substrates may be particularly detrimental. It will be interesting to now

analyze NRMT2 levels in these disease states and see how they correspond, and to

determine if NRMT1 and NRMT2 mutations are commonly found in the same tumor

samples. It will also be interesting to identify exactly which N-terminally methylated targets

play a role in each disease state and to determine if the particular targets differ between

cancer types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CENP-A Centromere protein A

CENP-B Centromere protein B

MOI multiplicity of infection

AdoMet S-adenosylmethionine

SAH S-adenosylhomocysteine

NSD nuclear receptor SET domain-containing

EZH2 enhancer of zeste homolog 2
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Summary Statement

We have verified the existence of a second mammalian N-terminal methyltransferase

(NRMT2) and shown it has a different catalytic activity from and can prime for its

previously identified homolog (NRMT1).
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Figure 1. NRMT2 is a close ortholog of NRMT1
Multiple sequence alignment of truncated NRMT2 (NRMT2d - which lacks the 60 amino

acid N-terminal domain) and NRMT1 shows sequence identity as high as 50% and sequence

similarity at 75%. Identical and similar amino acids are in shaded gray boxes.
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Figure 2. NRMT2 and NRMT1 are structurally similar
(A) Homology-based model (as calculated by Robetta server) of NRMT2 molecule (yellow)

having the same overall fold as NRMT1 crystal structure (green). Position of the SAH

molecule in the NRMT1 crystal structure is shown in blue. The N-terminal 60 amino acid

domain of NRMT2, which is not present in NRMT1, is modeled as two helices. (B) Critical

catalytic residues in NRMT2 (orange font) occupy the same spatial positions as in the

NRMT1 crystal structure (black font). (C) Conserved aromatic resides in NRMT1 and

NRMT2 form a chromodomain-like arrangement of aromatic residues and may be

responsible for binding methylated substrates and products.
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Figure 3. Substrate specificity of NRMT2 is similar to NRMT1
(A) In vitro methylation reactions showing recombinant murine NRMT2 fused to His-tag

and GFP can methylate the same N-terminal consensus sequences (SPK-, APK-, and PPK-

RCC1) as recombinant NRMT1. (B) Expression of murine NRMT2-FLAG rescues RCC1

mono/dimethylation levels in NRMT1 knockdown cells, but not RCC1 trimethylation. Anti-

β-catenin is used as a loading control. (C) Anti-FLAG co-immunoprecipitation

demonstrating both the NRMT1 and NRMT2 rescue constructs are expressed.
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Figure 4. NRMT2 is an N-terminal monomethylase
(A) In vitro methylation assays of recombinant human RCC1 showing that after 60 min

human recombinant NRMT1 produces a significant amount of trimethylated RCC1 with

some mono/dimethylated RCC1 remaining. In contrast, under the same conditions, human

recombinant NRMT2 only produces mono/dimethylated RCC1 and no trimethylation. (B
and C) Mass spectrometry analysis of identical reactions, confirming that of the recombinant

RCC1 with a cleaved initiating methionine, (B) NRMT1 trimethylates 75%, dimethylates

3%, and monomethylates 1%. (C) NRMTII monomethylates 42% and produces negligible

amounts of both di-and trimethylation.
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Figure 5. Comparison of NRMT1 and NRMT2 localization and expression patterns
(A) NRMT2-GFP and NRMT1-GFP localize in the nuclei of HeLa cells as shown by

immunofluorescence, compared to a GFP-GFP control protein. (B) Nuclear to cytoplasmic

rations were compared to the double GFP fusion protein by two-tailed independent t tests. *

Indicates P<0.01. n=10 independent samples per construct. Error bars: +/− 1 s.d. (C) qRT-

PCR analysis of NRMT1 mRNA expression levels in a panel of mouse tissue extracts.

Tissues were isolated independently from three female wild type C57BL/6 mice and number

of copies determined by standard curve analysis [19]. Error bars denote ± 1 standard error of

the mean (s.e.m.). (D) qRT-PCR analysis of NRMT2 mRNA expression levels in a panel of

mouse tissue extracts. Samples were processed and analyzed as the NRMT1 samples above.
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Figure 6. NRMT1 is a distributive methyltransferase whose trimethylation activity is enhanced
by the presence of NRMT2
(A) In vitro methylation reactions with increasing concentrations of recombinant human

NRMT1 show first the appearance of mono/dimethylated RCC1, followed by a gradual

increase in RCC1 trimethylation and corresponding decrease of mono/dimethylation. (-)

Denotes the no enzyme control. (B) The same reactions with recombinant human NRMT2

show a slow increase in RCC1 mono/dimethylation and no accumulation of RCC1

trimethylation. (C) Combining the two enzymes in the presence of excess substrate results in

a faster and more abundant production of trimethylated RCC1 as compared to NRMT1

alone, indicating NRMT2 is priming substrates for NRMT1 trimethylation. (D)

Quantification of the increase in RCC1 trimethylation in the presence of NRMT2. Error bars

represent ± 1 s.e.m. Data were analyzed by two-tailed independent t tests, * p<0.05. n = 3.
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